
IMPROVING THE PERFORMANCE OF RTOS  
USING MULTIPLE REGISTER FILES ARCHITECTURE 

Jong-Woong Kim, Soo-Hyun Kwon, Kab-Su Han and Jeong-Hoon Cho 
EEC, Kyung-pook National University, Daegu, Republic of Korea 

Keywords: Task Context Switch, Real-Time OS, Embedded System, Register file (RF). 

Abstract: In recent years, real-time operating systems (RTOS) have been becoming more and more important in 
embedded systems because of increasing the number of task with complex functions and the need of faster 
response time. Faster response time is strongly related to the task context switch time and especially task 
context switch time is the most important factor to determine the performance of RTOS. Most embedded 
systems are suffering from processing it. In this paper, we present the technique to improve the performance 
of RTOS by reducing the task context switch overhead. To achieve this goal, we suggest multiple register 
files architecture and a task to register file mapping algorithm based on rate monotonic (RM) scheduling 
algorithm for efficiently using our new architecture. Also we show the experimental results to improving 
our technique using ATmega103 implementation in FPGA. As a result we can decrease the task context 
switch overhead up to 23% depend on the number of register files even though there are some area 
overheads by increasing the number of register files. 

1 INTRODUCTION 

Recently, as embedded systems have extended their 
application from traditional manufactures, logistics, 
service business to high-tech aviation, space, 
military, multimedia communication, and next 
generation energy business, they have to support 
multiple, real-time and multimedia processing 
capabilities and the wire/wireless network service. 
These trends result in increasing the complexity of 
embedded system and embedded applications as 
well and also the usage of real-time operating 
system (RTOS). RTOS is the an operating system 
intended for real-time applications and serves 
application requests nearly real-time based on the 
prioiry. It is desighed to minimize critical sections of 
system code so that it can process application 
requests within a certain amount of time. Thesedays 
RTOS is widely used in the cellular phone 
communication equipment, industry facilities and 
vehicle and so on, and there are some popular RTOS 
used in each relevant field repectively like IOS, 
REX, L4 and OSEK. RTOS provides task 
scheduling, resource management, synchronization, 
communication and precise timing so it can cover 
various applications (John and Rajkumar, 2004). 

However there exists some overheads such as task 
scheduling, time management, and event 
management which cause the performance 
degradation of RTOS like difficult prediction or late 
response time. Therefore it is important to reduce 
these overheads to guarantee the performance of 
RTOS.  

Task context switching refers to the computing 
process of storing the present state and restoring the 
previous state of CPU so that CPU can resume from 
the same point at a later time. It can make multiple 
processes possible to share a single CPU. Though 
task context switching is an essential feature of a 
multitasking embedded system, it causes 
unavoidable system overhead at the same time 
(Philip, 1996) (Hassan, 2000). In general, the 
overhead of context switching is about 10~20% in 
total running time (Dan, 2007). 

In this paper we suggest the technique for 
reducing the overhead of task context switching that 
is the most critical part of RTOS. Our technique 
organizes the multiple register files (MRF) 
architecture and a mapping algorithm between tasks 
and register files (RF) based on the rate monotonic 
(RM) scheduling algorithm(Stewart and  Barr, 2002). 
Our technique makes it possible to reduce the task 

451
Kim J., Kwon S., Han K. and Cho J. (2011).
IMPROVING THE PERFORMANCE OF RTOS USING MULTIPLE REGISTER FILES ARCHITECTURE.
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems, pages 451-455
DOI: 10.5220/0003365304510455
Copyright c
 SciTePress



 

context switching overhead so that it can gurantee 
faster reponser time. 

This paper is organized as follows. In section 2, 
we present the previous and related works and 
describe our MRF architecture and scheduling for 
fast context switching in section 3. In section 4 we 
show the experimental results about the context 
switching improvement using our approach. Finally 
we make a summary of our work and conclusions 
and talk about our future work in section 5. 

2 RELATE WORKS 

In the past many researches on RTOS have focused 
on the scheduling mechanisms but most of them did 
not pay attention to the task context switching. But 
as the importance of task context switching is 
getting bigger, there are more researches aiming at 
reducing task context switching overhead. We can 
divide them into two parts; one is for minimizing the 
register movements in each context switching and 
the other is minimizing the frequency of context 
switching. First of all, (Snyder, Whalley and Baker, 
1995) and (Zhou and Petrov, 2006) suggested an 
architecture and compiler techniques to reduce the 
register movements in each context switching. Their 
ideas were based on the difference of the number of 
used registers of each task during the execution time. 
So they prepared the table containing the context 
switching points influences the table size, 
performance and response time, which needs a 
precise task scheduling in real-time system. On the 
other hand for reducing the number of context 
switching more registers are usually required. 
(Alverson, Callahan, Cummings, koblenz, 
Porterfield and Smith, 1990), (Adiletta, Rosenbluth, 
Bernstein, Wolrich and Wilkinson, 2002) and 
(Kongetira, Aingaran and Olukotun, 2005) 
suggested an architecture where the hardware 
threads have their own RFs and (Nuth and Dally, 
1995) proposed a hardware which has a large fully-
associative shared RF set. Although both strategies 
are suitable for high-end multithreaded processors, a 
large number of register for each thread causes 
considerable drawbacks of embedded processors 
such as the higher manufacturing cost and more 
power consumption. 

In this paper, our approach reduces register 
movements when the task context switching occurs 
so we can achieve faster response time.  

3 OUR APPROACH 

3.1 Architecture 

During task context switching the task context of 
general-purpose registers, program counter (PC) and 
stack pointer of the present task are stored and the 
context of the next running task are restored. As we 
analyze the task context switch process of general 
RTOS, it spend much time storing data of general 
purpose register and restoring. Its overhead time is 
given by: ( ௦ܶ௧௥ × ௦ܰ௧௥) × ( ீܰ௥௘௚  + ௌܰ௥௘௚) (1) 

Where NGreg refers to the number of general-
purpose registers, NSreg means the number of status 
registers, Nstr is the number of store operations. We 
assume that there is only one instruction for store 
operation, Tstr means required time to perform single 
store operation (Hassan, 2000), (Dan, 2007). We can 
calculate store time of context switch using equation 
1 and also can calculate restore time  

 
Figure 1: Multiple register files architecture 

We propose the MRF architecture by adding 
more RFs to minimize the context switch overhead, 
especially focus on reducing time of store and 
restore. Figure 1 shows our MRF architecture. The 
number of RFs is flexible so that we can change it 
based on the number of tasks in embedded 
applications. But there are constraints of area we 
will explain about this in section 4.4. To select a RF 
we add MUX, DEMUX and the select buffer which 
can make selecting a RF easy by just writing the 
identifier of RFs in the buffer. And we add a special 
RF for interrupt service routines (ISR). For example 
when ISR is occurred regularly by timer in uC/OS-
II(Jean, 1998), it calls various functions like 
OSTimeTick(), OSIntExit(), etc. Because some data 
can be lost during ISR, we need this special RF to 

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

452



 

store and restore current state. The result of some 
experiments we found that the size of this special RF 
is much smaller than other RFs and you can see it in 
figure 1. We reserve nth RF, RFn for ISR.  

3.2 Task to RF Mapping Algorithm 

There are two kinds of context switching in our 
MRF architecture; one is in which the number of 
tasks is less than or equal to the number of RFs and 
the other is in which the number of tasks is more 
than the number of register files.  

If the number of tasks of applications is less than 
or equal to the number of register files, each task can 
have its own RF. It means whenever task context 
switch is occurred there is no store and restore 
process of register. Therefore we can change 
equation 1 for calculating new task context switch 
overhead time of this ideal case: ( ௦ܶ௧௥ × ௦ܰ௧௥) × ௌܰ௥௘௚ + ௖ܰ௛ (2) 

Where Nch is the number of the select instruction 
of select buffer. Instead of store and restore of the 
whole registers except status registers, only writing 
the identifier of RFs to the select buffer, the task 
context switch is done. For example think about a 
processor with 32 general-purpose registers. When 
task context switch occurred, there are 32 PUSH and 
32 POP instructions to store and restore context of 
registers. But our MRF architecture just needs 4 
instructions for task context switch. Whenever the 
task context switch is occurred, we can reduce 60 
instructions. 

And the number of tasks in applications is more 
than the number of RFs, it’s not possible to one-to-
one matching between tasks and RFs anymore. 
Some tasks can have their own RFs but some have 
to share RFs. To minimize the number of task 
context switch we use priorities of the RM 
scheduling algorithm to select 1:1 mapping tasks. 
RM scheduling algorithm is one of the static-priority 
scheduling algorithm, the static priorities are 
assigned on the basis of the period of the job. A task 
with shorter period will have a higher job priority. 
Based on this feature of RM scheduling algorithm 
we assign the priority of each task depending on 
their period, and then we assign a RF to a task with 
high priority. It can guarantee less number of task 
context switching.  

 
Task to RF mapping algorithm shows the 

mapping sequence. The inputs to this algorithm are a 
task set containing m tasks and a RF set with n-1 
RFs except the special RF(RFn). Based on RM 
scheduling algorithm we assign a priority to each 
task in line 1. Here we assume the smaller number 
means the higher priority. And then we order m 
tasks in task set by their priorities in increasing order 
in line 2. Until the number of RF in RF set is equal 
to or less than 1, we assign a RF to a task one on one 
(line 3-7). After that if there are tasks which do not 
have their own RF., they are mapped to the last RFn-1 
and they share it.  

 
Figure 2: the example of mapping. 

Figure 2 shows the result of the m tasks to n RFs 
mapping when m is bigger than n. The last RFn is the 
special RF for ISR so we don’t use it for tasks. After 
mapping is done n-2 tasks use their RFs and the m-
(n-2) tasks share one RF for task context switch. In 
other words, n-2 RFs are assigned to n-2 tasks with 
high priorities and the remainder use the single RF.  ( ௦ܶ௧௥ × ௦ܰ௧௥) × ௌܰ௥௘௚ + ௖ܰ௛ + ௖ܶ௛௞ (3) ( ௦ܶ௧௥ × ௦ܰ௧௥) × ( ௌܰ௥௘௚ + ீܰ௥௘௚) + ௖ܰ௛ + ௖ܶ௛௞ (4) 

where Tchk is the time to check whether the next 
processing task has its own RF or shares a RF. 
Equation 3 calculates task context switch time for 

Task to RF mapping algorithm 
input: task set with m tasks, RFset with n-1 RFs  
output : mapping result between tasks and RFs  
1: assign priorities to all tasks using RM scheduling  
2: sort task set by their priorities in increasing order 
3: while ( |RF| > 1 ) do 
4:      remove task from the first of task set  
5:      remove RF from RF set 
6:      assign task to RF 
7: end while 
8: if ( task set  ≠ {∅}) 
9:      assign all left tasks in task set to RFn-1 
10: end if 

IMPROVING THE PERFORMANCE OF RTOS USING MULTIPLE REGISTER FILES ARCHITECTURE

453



 

the 1:1 mapping task and equation 4 is for tasks 
sharing one RF. Equation 3 has a checking time, Tchk 
by comparing with equation 2 but it is small enough 
to ignore because it can be executed by simple 
conditional instruction. To maximize the effect of 
equation 3 we use RM scheduling in task to RF 
mapping and can reduce the amount of time to store 
and restore general registers data than previous 
architecture. 

4 RESULTS 

4.1 Experimental Setup 

We implemented ATmega103 architecture in Virtex-
4 FPGA board using VHDL. We added RFs in our 
implementation of the ATmega103 - we change the 
number of RFs from 2 to 6. For convenience we call 
ATmega103 in FPGA with single RF “Original”, 
our multiple register files architecture “MRF”. We 
run uC/OS-II with 5 tasks and 1 idle task on both 
architectures. uC/OS-II  executes each task 
periodically with its unique period. When there are 
no tasks to execute, uC/OS-II  executes an idle task 
automatically which counts the number of the 
execution of this task. We set one time tick as 10ms 
and evaluate performance in each case by changing 
the number of tasks and RFs. ܷ = ෍ ௜ܶ௜௡௜ୀଵܥ  ≤ ݊ √2೙ − 1 (5) 

Where U is the usage factor of CPU, C is the 
execution time of each task, T is the period of task 
and n is the total number of task. We assigned 
execution times and periods to them by equation 
5(Stewart and Barr, 2002). In RM scheduling, to 
guarantee no starvation we have to satisfy the 
equation 5. According to period of a task, each task 
has its own priority. So T1 with the shortest period 
has the highest priority and it activates every 1 
tick(10ms) and executes a loop 7000 times. Table 
shows the features of tasks we use. We run this 
application for 4000 tick. 

Table 1: Task scheduling. 

task Period 
(tick) 

Execution 
time 

(# of loop) 
Priority 

T1 1 7000 0 
T2 3 7800 1 
T3 5 15000 2 
T4 14 18900 3 
T5 57 21650 4 

4.2 Without Starvation 

uC/OS-II executes 6 tasks including one idle task by 
changing the number of RFs from 1 to 6. To show 
how fast our approach is we measure the total 
execution time of idle task and the longer execution 
count of idle task means reduction of execution time 
of tasks. Figure 3 shows that idle task has been 
running about 23% more than original method and it 
means that an overall execution time of tasks is 
reduced about 23%. But there is no change except 
MRF on uC/OS-II so it relate to reduction of context 
switch. 

 
Figure 3: The execution time of idle task without 
starvation. 

4.3 With Starvation  

We change the execution time of T4 from 18900 to 
19100 so that the application can’t satisfy the 
equation (5) anymore and it results in the starvation 
during program execution.  

 
Figure 4: The execution time of idle task with starvation. 

As shown Figure 5, when there is one RF, 
uC/OS-II can’t execute the tasks properly because of 
the starvation. But we change the number of RFs, 
uC/OS-II can execute them well. Because reduction 
of execute time make them runnable. More we add 
RFs, we get more count of idle task. It means that 

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

454



 

the context switch overhead is reduced when the 
number of RFs is approaching the number of task. 
This experiment shows that our MRF makes 
possible to properly execute6 applications with 
starvations. 

4.4 Area Overhead 

We compare the additional area of RFs. The 
proportion of single RF in VHDL-original excluding 
the program and data memory is about 21%. We 
compared the area proportions which come from 
HDL synthesis tools, while changed the number of 
RFs from 2 to 6 in Virtex-4 FPGA. Figure 5 shows 
the result. 

 
Figure 5: Comparison about area. 

Figure 5 shows that the total area including 
MUX, DEMUX and a select buffer, a special RF 
increases proportionally to the number of RF in 
FPGA. When the number of RF is 5 the total area is 
almost double than original architecture in FPGA. 
But in this experiment we didn’t implement the 
memories in ATmega103 and the CPU area 
including RF occupies very small amount in the 
whole chip set so that the increasing area by adding 
RFs is to be negligible. 

5 CONCLUSIONS 

In this paper, we presented MRF architecture and a 
task to RF mapping algorithm based on RM 
scheduling for fast task context switch. Our MRF 
architecture makes faster response time possible by 
reducing store and restore task context. We also 
propose the mapping algorithm between tasks and 
RFs which guarantees that the most frequently 
executing tasks can have their own RFs. We 
implemented ATmega103 by using VHDL and 
FPGA for experiment and modified uC/OS-II to run 
tasks on MRF architecture. As we expected the total 

area increased linearly by adding more RFs but we 
can reduce task context switching overheads by 23%, 
shown as figure 3. And we can run the tasks 
properly when starvation is occurred in our MRF 
architecture. 

We just assume static-priority scheduling 
algorithm on MRF architecture, in the future, we 
have to research other scheduling algorithms on the 
MRF like EDF. Also, we need to research another 
evaluation method, e.g. count instructions, count 
time ticks. Finally we have to compare the result 
among other solutions to ensure. 

REFERENCES 

John A. Stankovic. R. Rajkumar, 2004. The book, Kluwer 
Academic Publishers. "Real-Time Operating System," 
Real-Time Systems. 

Philip A. Laplante, 1996. The book, Real-Time systems 
Design and Analysis: An Engineer ’ s Handbook, 
Second Edition. 

Hassan Gomaa, 2000. Designing Concurrent, 
Distributed, and Real-Time Applications with 
UML. 

Dan Tsafrir, 2007. "The context-switch overhead inflicted 
by hardware interrupts (and the enigma of do-nothing 
loops)," Experimental computer science on 
Experimental computer science. 

David B. Stewart and Michael Barr, 2002. Paper. 
Introduction to Rate Monotonic Scheduling, 
Embedded Systems Programming. 

J. S. Snyder, D. B. Whalley, and T. P. Baker, 1995. Paper. 
Fast context swtiches: Compiler and architectural 
support for preemptive scheduling. Microprocessors 
and Microsystems. 

X. Zhou and P. Petrov, 2006. Paper. Rapid and low-cost 
context-switch through embedded processor 
customization for real-time and control applications. 
Proceedings of the 43rd annual Conference on Design 
Automation. 

R. Alverson, D. Callahan, D. Cummings, B. koblenz, A. 
Porterfield, and B. Smith, 1990. Paper. The Tera 
computer system. Proceedings of the 1990 
International Conference on Supercomputing, 

M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and 
H. Wilkinson. 2002. Paper. The next generation of 
intel ixp network processors. Intel Technology Journal. 

P. Kongetira, K. Aingaran, and K. Olukotun, 2005. Paper. 
Niagara: A 32-way multithreaded sparc processor. 
Micro, IEEE. 

P. R. Nuth and W. J. Dally, 1995. Paper. The named-state 
register file: Implementation and performance. IN 
Proc. 1st Intl Symp. on High-Performance Computer 
Architecture HPCA. 

Jean J Labrosse, 1998. The book., R&D Books [M]. 
uC/OS-II: The Real-Time Kernel. 

IMPROVING THE PERFORMANCE OF RTOS USING MULTIPLE REGISTER FILES ARCHITECTURE

455


