
PETRI NET BASED APPROACH TO TEST BENCH
CONSTRUCTING FOR DATAPATH

Andrei Karatkevich
Institute of Computer Science and Electronics, University of Zielona Gora, Podgorna 50, Zielona Gora, Poland

Keywords: System design, Data path, Test bench, Simulation, Verification, Petri nets.

Abstract: Testing a data path in a digital system such as a microcontroller requires checking every possible way of
sending data between the functional units. This paper considers a task of generating a test bench for a given
data path, which covers every way of data sending with minimized number of simulations of microinstructions.
We present a method in which a data path is modeled by a Petri net. The task of optimal test bench generation is
formulated as a task of covering all transitions by a sequence with minimal length. It can be solved by finding
certain T-invariant of the net and a firing sequence corresponding to it. The proposed method is illustrated by
two case studies of testing data paths of simple processors.

1 INTRODUCTION

The von Neumann computer architecture defines the
control unitas a distinct part of a design. Nowadays,
a digital system is often considered as a composition
of control unit (CU) anddata path(DP) (Fig. 1). The
separate synthesis methods for data path and control
unit are developed (Baranov, 2008; Barkalow and We-
grzyn, 2006; Wisniewski, 2009).

PETRI NET BASED APPROACH TO TEST BENCH
CONSTRUCTING FOR DATAPATH

Andrei Karatkevich
Institute of Computer Science and Electronics, University of Zielona Gora, Podgorna 50, Zielona Gora, Poland

A.Karatkevich@iie.uz.zgora.pl

Keywords: System design, data path, test bench, simulation, verification, Petri nets.

Abstract: Testing a data path in a digital system such as a microcontroller requires checking every possible way of
sending data between the functional units. This paper considers a task of generating a test bench for a given
data path, which covers every way of data sending with minimized number of simulations of microinstructions.
We present a method in which a data path is modeled by a Petri net. The task of optimal test bench generation is
formulated as a task of covering all transitions by a sequence with minimal length. It can be solved by finding
certain T-invariant of the net and a firing sequence corresponding to it. The proposed method is illustrated by
two case studies of testing data paths of simple processors.

1 INTRODUCTION

The von Neumann computer architecture defines the
control unit as a distinct part of a design. Nowadays,
a digital system is often considered as a composition
of control unit (CU) and data path (DP) (Fig. 1). The
separate synthesis methods for data path and control
unit are developed (Baranov, 2008; Barkalow andWe-
grzyn, 2006; Wisniewski, 2009).

�� ��

����	
�

�
���

����	
�

������
���� �	�����

��

�


��

��

��
��
��

��
��
��

Figure 1: Digital system as a composition of CU and DP.

To verify a formal specification of a design, a test
bench should be constructed. Among the necessary
components of a test bench there are input vectors
(stimuli) and the expected output vectors. The de-
sign is simulated with the stimuli at its input, and the
output values being the result of simulation are com-
pared to the expected values. If there is a difference

between them, then the mistakes in the design are de-
tected (Baranov, 2008).

As far as data path and control unit are designed
separately, it is reasonable to test them also separately,
constructing special test bench for each of them. Data
path consists of such units as memory blocks, regis-
ters, arithmetic logic units, counters, multiplexors and
so on. For testing a data path it is necessary to check
every direct connection between its units at least once.
But it is possible to write some input data directly
only to the inputs of a DP. We also suppose that it is
possible to read data only from the ”output” units. If
a data path is represented by an oriented graph, where
nodes correspond to the data path units, and arcs cor-
respond to direct data sending between the units (a
connection graph), then the task of data path testing
can be presented as a task of covering all arcs of the
graph by the paths from its start nodes to end nodes.
Note that ”sending” data from a data path unit to it-
self (such as operation i : i 1, where i is imple-
mented as a counter) also should be checked; such
situation can be represented in a connection graph as
a self-loop. Also, every microinstruction should be
checked, even if two or more microinstructions send
data between the same pair of units (it means that a
connection graph may have multi-edges).

An algorithm for automated generation of a test-

Figure 1: Digital system as a composition of CU and DP.

To verify a formal specification of a design, a test
bench should be constructed. Among the necessary
components of a test bench there are input vectors
(stimuli) and the expected output vectors. The de-
sign is simulated with the stimuli at its input, and the
output values being the result of simulation are com-
pared to the expected values. If there is a difference
between them, then the mistakes in the design are de-
tected (Baranov, 2008).

As far as data path and control unit are designed
separately, it is reasonable to test them also separately,
constructing special test bench for each of them. Data
path consists of such units as memory blocks, regis-
ters, arithmetic logic units, counters, multiplexors and
so on. For testing a data path it is necessary to check
every direct connection between its units at least once.
But it is possible to write some input data directly
only to the inputs of a DP. We also suppose that it is
possible to read data only from the ”output” units. If
a data path is represented by an oriented graph, where
nodes correspond to the data path units, and arcs cor-
respond to direct data sending between the units (a
connection graph), then the task of data path testing
can be presented as a task of covering all arcs of the
graph by the paths from its start nodes to end nodes.
Note that ”sending” data from a data path unit to it-
self (such as operationi := i + 1, wherei is imple-
mented as a counter) also should be checked; such
situation can be represented in a connection graph as
a self-loop. Also,everymicroinstruction should be
checked, even if two or more microinstructions send
data between the same pair of units (it means that a
connection graph may have multi-edges).

An algorithm for automated generation of a test-
ing sequence of microinstructions for data path by
means of connection graph covering is presented in
(Karatkevich and Baranov, 2010); the task is reduced
to one of the variants of the route inspection problem,
which can be effectively solved. But there is a prob-
lem with the graph-based approach: if a microinstruc-

506
Karatkevich A..
PETRI NET BASED APPROACH TO TEST BENCH CONSTRUCTING FOR DATAPATH.
DOI: 10.5220/0003363105060511
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2011), pages
506-511
ISBN: 978-989-8425-48-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



tion may contain several microoperations (which is
usual for control units (Baranov, 2008)), then one mi-
croinstruction may send data between more than two
data path units. A test sequence consists of microin-
structions, not of microoperations. Then we cannot
directly obtain a test sequence from a path in a data
path connection graph. So it is reasonable to model
a data path not just by a graph, but by a Petri net
(where a transition represents a microinstruction), and
to solve the task by generating a minimized firing se-
quence covering all its transitions. The presented pa-
per describes an algorithm of test sequence generation
for data path, using Petri net as a data path model.

2 PETRI NETS

Petri nets are used as one of the basic models of
concurrent discrete systems (Murata, 1989; Peterson,
1981). A Petri net can be considered as a bipartite ori-
ented graph with two kinds of nodes:placesandtran-
sitions(Fig. 2). Places of a net may containtokens,
and a configuration of the tokens is called amark-
ing (state) of the net. A marking is denoted asM,
with some indexes if needed. A marking issafe if
no place contains more than one token. A marking
can be changed byfiring (execution) of the enabled
transitions. Anenabled transitionis such transition
that every itsinput place(a place from which an arc
leads to the transition) contains a token.Transition fir-
ing removes a token from each input place and adds
a token to eachoutput place(a place to which an arc
leads from the transition) of it. Note that we will need,
among others, the transitions without input or output
places. A transition without input places is always en-
abled; a transition without output places, when firing,
does not add any token anywhere.

For a Petri netN with n transitions andm places,
theincidence matrix A= [ai j ] is anm×n matrix such
that

ai j = a+
i j −a−i j (1)

wherea+
i j = 1 if and only if placep j is an output place

of transitionti , otherwisea+
i j = 0; anda−i j = 1 if and

only if placep j is an input place of transitionti , oth-
erwisea−i j = 0. Everyai j represents the number of
tokens changed in placep j by firing of transitionti .

An integern-vectorx is aT-invariant, if ATx = 0.
A firing count vectorof a firing sequence (a se-

quence of transition firings)σ is ann-vector of non-
negative integersσ such that theith entry ofσ denotes
the number of times transitionti fires in sequenceσ.

Theorem 1(Murata, 1989): Ann-vectorx≥ 0 is a
T-invariant if and only if there exists a markingM and
firing sequenceσ from M back toM with its firing
count vectorσ = x.

ing sequence of microinstructions for data path by
means of connection graph covering is presented in
(Karatkevich and Baranov, 2010); the task is reduced
to one of the variants of the route inspection problem,
which can be effectively solved. But there is a prob-
lem with the graph-based approach: if a microinstruc-
tion may contain several microoperations (which is
usual for control units (Baranov, 2008)), then one mi-
croinstruction may send data between more than two
data path units. A test sequence consists of microin-
structions, not of microoperations. Then we cannot
directly obtain a test sequence from a path in a data
path connection graph. So it is reasonable to model
a data path not just by a graph, but by a Petri net
(where a transition represents a microinstruction), and
to solve the task by generating a minimized firing se-
quence covering all its transitions. The presented pa-
per describes an algorithm of test sequence generation
for data path, using Petri net as a data path model.

2 PETRI NETS

Petri nets are used as one of the basic models of
concurrent discrete systems (Murata, 1989; Peterson,
1981). A Petri net can be considered as a bipartite ori-
ented graph with two kinds of nodes: places and tran-
sitions (Fig. 2). Places of a net may contain tokens,
and a configuration of the tokens is called a mark-
ing (state) of the net. A marking is denoted as M,
with some indexes if needed. A marking is safe if
no place contains more than one token. A marking
can be changed by firing (execution) of the enabled
transitions. An enabled transition is such transition
that every its input place (a place from which an arc
leads to the transition) contains a token. Transition fir-
ing removes a token from each input place and adds
a token to each output place (a place to which an arc
leads from the transition) of it. Note that we will need,
among others, the transitions without input or output
places. A transition without input places is always en-
abled; a transition without output places, when firing,
does not add any token anywhere.

For a Petri net N with n transitions and m places,
the incidence matrix A ai j is an m n matrix such
that

ai j ai j ai j (1)

where ai j 1 if and only if place p j is an output place

of transition ti, otherwise ai j 0; and ai j 1 if and
only if place p j is an input place of transition ti, oth-

erwise ai j 0. Every ai j represents the number of
tokens changed in place p j by firing of transition ti.

An integer n-vector x is a T-invariant, if AT x 0.
A firing count vector of a firing sequence (a se-

quence of transition firings) is an n-vector of non-
negative integers such that the ith entry of denotes
the number of times transition ti fires in sequence .

Theorem 1 (Murata, 1989): An n-vector x 0 is a
T-invariant if and only if there exists a marking M and
firing sequence from M back to M with its firing
count vector σ x.

p1 

p2 

p3 

p4 

p5 

p6 

p7 

p8 

Figure 2: An example of Petri net.

3 IDEA OF THEMETHOD

Let us construct for given data path a modeling Petri
net in the following way. A place corresponds to ev-
ery data path unit; a transition ti corresponds to every
microinstruction Yi, and a place p j is an input place
for ti if and only if there is a microoperation in Yi such
that it sends data from the unit corresponding to p j;
place pk is an output place for ti if and only if there
is a microoperation in Yi such that it sends data to the
unit corresponding to pk.

Now, let us remove every place corresponding to
an input or output data path unit. It will cause that
our net will have transitions without input places and
transitions without output places. Indeed, at any mo-
ment we can write data to the input units and read
from the output units. Hence any firing sequence in
the obtained net will correspond to a possible way of
data sending in the data path.

Suppose that initially the Petri net has no tokens.
The tokens can be introduced by firing the transitions
without input places. Any nonempty firing sequence
leading from empty marking back to empty marking
corresponds to data sending from input to output units
of the data path. As follows from Theorem 1, a T-
invariant corresponds to every such firing sequence.
By finding a T-invariant x 0 we can find a firing se-
quence covering all transitions, which will correspond
to a sequence of microinstructions allowing to check
every connection in the data path.

Figure 2: An example of Petri net.

3 IDEA OF THE METHOD

Let us construct for given data path a modeling Petri
net in the following way. A place corresponds to ev-
ery data path unit; a transitionti corresponds to every
microinstructionYi , and a placep j is an input place
for ti if and only if there is a microoperation inYi such
that it sends datafrom the unit corresponding top j ;
placepk is an output place forti if and only if there
is a microoperation inYi such that it sends datato the
unit corresponding topk.

Now, let usremoveevery place corresponding to
an input or output data path unit. It will cause that
our net will have transitions without input places and
transitions without output places. Indeed, at any mo-
ment we can write data to the input units and read
from the output units. Hence any firing sequence in
the obtained net will correspond to a possible way of
data sending in the data path.

Suppose that initially the Petri net has no tokens.
The tokens can be introduced by firing the transitions
without input places. Any nonempty firing sequence
leading from empty marking back to empty marking
corresponds to data sending from input to output units
of the data path. As follows from Theorem 1, a T-
invariant corresponds to every such firing sequence.
By finding a T-invariantx > 0 we can find a firing se-
quence covering all transitions, which will correspond
to a sequence of microinstructions allowing to check
every connection in the data path.

To find the T-invariants, it is necessary to solve
the system of linear equationsATx = 0. It can be
solved by Gauss’ method (Hefferon, 2008). Then,
finding among the set of solutions one which consists
of positive integers and has minimal sum of values of

PETRI NET BASED APPROACH TO TEST BENCH CONSTRUCTING FOR DATAPATH

507



the variables is a linear programming task which can
be solved by the simplex method or another appro-
priate method (Vanderbei, 2008). When the minimal
T-invariant covering all transitions is obtained, a cor-
responding firing sequence can be calculated from it.
The test sequence of the microinstructions can be ob-
tained from the firing sequence.

4 THE PROPOSED ALGORITHM

Below the algorithm of test sequence generation is
presented.

1. Create a Petri netN, where places correspond to
the internal data path units, and transitions corre-
spond to possible data transfers between the units
(including input and output ones); one transition
corresponds to one microinstruction.

2. Solve the system of linear equationsATx = 0 by
Gauss’ method. Note that the rows ofA corre-
sponding to the self-loops and to direct data send-
ing from input to output units consist of zeros. As
far asany values of the corresponding entries of
a T-invariant are possible, use value 1 of them. If
the system has no solutions, go to step 7.

3. Find the solution consisting of positive integers
with minimal sum. It can be formulated as a lin-
ear programming problem with the function to be
maximized f (x) = −x1 − x2 − ...− xn (note that
not everyxi is a free variable) and problem con-
strainsx1 > 0,x2 > 0, ...,xn > 0. If the problem
has no trivial solution, it can be solved by the sim-
plex method.

4. Construct for the selected solution (T-invariant)
x a firing sequenceσ with its firing count vec-
tor equal tox such that every reached marking is
safe. To do that, simulate firing of the transitions
according to their number inx, starting from the
empty marking. If an unsafe marking is obtained
or a marking in which not all transitions have fired
appropriate number of times but none of them is
enabled, then the constructing should backtrack,
returning to the most resent transition where an-
other possibility of firing existed, and try another
possibility. If the algorithm fails to constructσ for
x, go to step 8.

5. Construct for the firing sequenceσ corresponding
sequence of microinstructions for the test bench
in the following way. Scan the firing sequence.
For every transitionti add the corresponding mi-
croinstructionYi, if and only if in the sequence of
microinstructions there is no previous entry ofYi

such that no microinstruction between those en-
tries writes data to at least one of data path units
to whichYi writes or from which it reads.

6. The test sequence is constructed successfully. The
end.

7. Constructing of the test sequence failed (this pos-
sibility is discussed below). The end.

8. Constructing of the test sequence failed, an incon-
sistency in the design is detected (this possibility
is discussed below). The end.

5 EXAMPLES

5.1 General Information

For the examples we use the designs created by means
of the experimental EDA tool Abelite which imple-
ments high-level synthesis and a very fast optimizing
synthesis of FSM and combinational circuits (Bara-
nov, 2008; Baranov, 2009). The Abelite design
methodology follows the common model in which
any digital system is regarded as a composition of
control unit and data path. One of the main concepts
used in this methodology is the construction of the
so-callednaked data path, which doesn’t contain any
cloud circuits, only standard regular units. The data
path design is described in detail in (Baranov, 2008).

5.2 A Simple Processor

As the first example we use a design of a very simple
processor implementing two operations - the bubble
sort and the search of the maximal element. It is an
improved version of the design described in (Bara-
nov, 2009). List of its microinstructions is presented
in Table 1. The connection graph of the data path is
presented in Figure 3.

The Petri net modeling the data path is shown in
Figure 4. ”Non-existing” places (corresponding to in-
put and output data path units) and the incident arcs
are dashed. Numbers of transitions correspond to
numbers of microinstructions.

The T-invariants for the net shown in Figure 4 can
be obtained by solving the following system, where
numbers of variables correspond to numbers of tran-
sitions in Figure 4:

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

508



�����

����	

	


���


�����	

��


������ ��

�

�
�

�
��

���

�
���

���

�
���
���

������	�

����������

���

�
�

�
�

���
�

	� ���������


���������

���

���


�����

��

���

��

���

��

��
�
�

���

���

��

��

���

��

���

� 

��


���

�� 

�


Figure 3: Connection graph for the first example.

Figure 4: Petri net modeling the data path.

x18 x19 0
x6 x7 x8 x10 x16 0

x1 x5 x9 x21 0
x11 x15 x18 0

x1 x8 x9 x10 x15 x16 0
x3 x8 x13 x16 x17 x20 0

x3 x10 x13 x17 x20 0

(2)

Table 1: Functional microinstructions and microoperations
for the first example

Microinstructions Microoperations

The solution set can be described by the following
equations:

x1 x9 2x10 x15 2x16 2x17
2x20

x3 x10 x13 x17 x20
x5 2x9 2x10 x15 2x16 2x17

2x20 x21
x6 x7 2x17 2x20
x8 x10 x16 2x17 2x20

x11 x15 x19
x18 x19

(3)

The function which should be minimized (keep-
ing all free and bound variables positive integers)
is 21

i 1 xi x2 x4 2x7 2x9 3x10 x12 x14
2x15 2x16 6x17 3x19 6x20 2x21. One of the
minimal solutions (the T-invariant we are looking for)

Figure 3: Connection graph for the first example.

����	

	


���


�����	

��


������

�

�
�

�

� ���

���

�
���
���

������	�

����������

���

�
��

	�

���������


���������

���


�����
��

���
���

��

��

���

���

��

��

���

��

��


����

�
�

Figure 4: Petri net modeling the data path.

x18 x19 0
x6 x7 x8 x10 x16 0

x1 x5 x9 x21 0
x11 x15 x18 0

x1 x8 x9 x10 x15 x16 0
x3 x8 x13 x16 x17 x20 0

x3 x10 x13 x17 x20 0

(2)

Table 1: Functional microinstructions and microoperations
for the first example

Microinstructions Microoperations

The solution set can be described by the following
equations:

x1 x9 2x10 x15 2x16 2x17
2x20

x3 x10 x13 x17 x20
x5 2x9 2x10 x15 2x16 2x17

2x20 x21
x6 x7 2x17 2x20
x8 x10 x16 2x17 2x20

x11 x15 x19
x18 x19

(3)

The function which should be minimized (keep-
ing all free and bound variables positive integers)
is 21

i 1 xi x2 x4 2x7 2x9 3x10 x12 x14
2x15 2x16 6x17 3x19 6x20 2x21. One of the
minimal solutions (the T-invariant we are looking for)

Figure 4: Petri net modeling the data path.



































−x18+x19 = 0
x6−x7−x8 +x10+x16 = 0

x1 +x5−x9−x21 = 0
x11−x15−x18 = 0

x1−x8+x9−x10+x15−x16 = 0
−x3 +x8−x13−x16−x17−x20 = 0

x3−x10+x13−x17−x20 = 0

(2)

Table 1: Functional microinstructions and microoperations
for the first example.

Figure 3: Connection graph for the first example.

Figure 4: Petri net modeling the data path.

x18 x19 0
x6 x7 x8 x10 x16 0

x1 x5 x9 x21 0
x11 x15 x18 0

x1 x8 x9 x10 x15 x16 0
x3 x8 x13 x16 x17 x20 0

x3 x10 x13 x17 x20 0

(2)

Table 1: Functional microinstructions and microoperations
for the first example

Microinstructions Microoperations

Y1
y16
y25

i:=0
mac:=0

Y2 y28 mac:=mac+1

Y3 y31 r2:=r1

Y4 y17 i:=i+1

Y5 y16 i:=0

Y6
y20
y23

m[m adr]:=ext out
m adr:=ext adr

Y7
y15
y23

ext in:=m[m adr]
m adr:=ext adr

Y8
y24
y30

m adr:=mac
r1:=m[m adr]

Y9 y26 mac=i

Y10
y20
y23

m[m adr]:=r2
m adr:=mac

Y11 y18 j:=0

Y12 y19 j:=j+1

Y13
y28
y31

mac:=mac+1
r2:=r1

Y14 y29 mac:=mac-1

Y15 y27 mac:=j

Y16
y20
y23

m[m adr]:=r1
m adr:=mac

Y17
y8
y12

comp16 in1:=r1
comp16 in2:=r2

Y18

y7
y13

comp16 in1:=j
comp16 in2
:=tempReg16

Y19
y2
y32

alu16 in1:=n
tempReg16:=alu16

Y20
y9
y11

comp16 in1:=r2
comp16 in2:=r1

Y21
y6
y10

comp16 in1:=i
comp16 in2:=n

The solution set can be described by the following
equations:

x1 x9 2x10 x15 2x16 2x17
2x20

x3 x10 x13 x17 x20
x5 2x9 2x10 x15 2x16 2x17

2x20 x21
x6 x7 2x17 2x20
x8 x10 x16 2x17 2x20

x11 x15 x19
x18 x19

(3)

The function which should be minimized (keep-
ing all free and bound variables positive integers)
is 21

i 1 xi x2 x4 2x7 2x9 3x10 x12 x14
2x15 2x16 6x17 3x19 6x20 2x21. One of the
minimal solutions (the T-invariant we are looking for)

The solution set can be described by the following
equations:


















































x1 = −x9 +2x10−x15+2x16+2x17
+2x20

x3 = x10−x13+x17+x20
x5 = 2x9−2x10+x15−2x16−2x17

−2x20+x21
x6 = x7 +2x17+2x20
x8 = x10+x16+2x17+2x20

x11 = x15+x19
x18 = x19

(3)

The function which should be minimized (keep-
ing all free and bound variables positive integers)
is ∑21

i=1xi = x2 + x4 + 2x7 + 2x9 + 3x10+ x12+ x14+
2x15 + 2x16+ 6x17 + 3x19 + 6x20 + 2x21. One of the
minimal solutions (the T-invariant we are looking for)
is (3,1,2,1,2,5,1,6,4,1,2,1,1,1,1,1,1,1,1,1,1).

The following firing sequence can be obtained
from this T-invariant:

PETRI NET BASED APPROACH TO TEST BENCH CONSTRUCTING FOR DATAPATH

509



t1t2t4t6t7t6t8t3t6t9t5t8t6t9t5t11t12t14t17t8t3t6t15t8t9t10t1t11
t13t8t9t16t1t8t19t18t20t21.

The resulting test sequence is:
Y1Y2Y4Y6Y7Y8Y3Y9Y5Y8Y11Y12Y14Y17Y8Y15Y10Y13Y16Y8
Y19Y18Y20Y21.

5.3 A More Complex Processor

As the second example we use more complex and re-
alistic design - a 16-bit processor described in (Bara-
nov, 2008). To save place we limit our consideration
only to the 16-bit microoperations which transfer in-
formation from the output of one unit to the input of
another unit (excluding the operations which are exe-
cuted in one operational unit). List of such microop-
erations and corresponding microinstructions is pre-
sented in Table 2. The connection graph of the data
path is presented in Figure 5.

Table 2: Microinstructions and 16-bit microoperations for
the second example

is 3 1 2 1 2 5 1 6 4 1 2 1 1 1 1 1 1 1 1 1 1 .

The following firing sequence can
be obtained from this T-invariant:
t1t2t4t6t7t6t8t3t6t9t5t8t6t9t5t11t12t14t17t8t3t6t15t8t9t10t1t11
t13t8t9t16t1t8t19t18t20t21.

The resulting test sequence is:
Y1Y2Y4Y6Y7Y8Y3Y9Y5Y8Y11Y12Y14Y17Y8Y15Y10Y13Y16Y8
Y19Y18Y20Y21.

5.3 A More Complex Processor

As the second example we use more complex and re-
alistic design - a 16-bit processor described in (Bara-
nov, 2008). To save place we limit our consideration
only to the 16-bit microoperations which transfer in-
formation from the output of one unit to the input of
another unit (excluding the operations which are exe-
cuted in one operational unit). List of such microop-
erations and corresponding microinstructions is pre-
sented in Table 2. The connection graph of the data
path is presented in Figure 5.

Figure 5: Connection graph for the second example.

The modeling Petri net is not shown, because in
this case it is too complex to be readable. There are
5 internal blocks in this datapath: RALU, M0[Adr0],
M1[Adr1], IR2 and PC. So the system of equations
which should be solved to obtain the T-invariants con-
sists of 5 equations (numbers of the variables corre-
spond to the numbers of microinstructions):

Table 2: Microinstructions and 16-bit microoperations for
the second example

Microinstructions Microoperations
Y1 y2 BoR[AdrW]:=RALU

Y2

y5
y6

y8

ALU1:=BoR[AdrR1]
ALU2:=BoR[AdrR2]

RALU:=ALU

Y3
y6
y8

ALU2:=BoR[AdrR2]
RALU:=ALU

Y4

y12
y13

Adr1:=IR2
BoR[AdrW]
:=M1[Adr1]

Y5 y14 BoR[AdrW]:=IR2

Y6 y15
BoR[AdrW]
:=BoR[AdR2]

Y7

y12
y16

Adr1:=IR2
M1[Adr1]

:=BoR[AdrR1]

Y8 y18
BoR[AdrW]

:=BoR[AdrR1]

Y9
y5
y8

ALU1:=BoR[AdrR1]
RALU:=ALU

Y10 y19 PC:=BoR[AdrR2]

Y11 y20 PC:=IR2

Y13 y22 BoR[AdrW]:=InpR

Y14 y24 OutR:=BoR[AdrR1]

Y17 y28 PC:=x"FFFE"

Y18
y30
y31

Adr1:=x"FFFF"
M1[Adr1]:=PC

Y19
y32
y33

Adr0:=Ext Adr
M0[Adr0]:=Ext Out

Y20
y34
y35

Adr1:=Ext Adr
M1[Adr1]:=Ext Out

Y21
y34
y36

Adr1:=Ext Adr
Ext in:=M1[Adr1]

Y22
y32
y37

Adr0:=Ext Adr
Ext in:=M0[Adr0]

Y24
y39
y40

Adr0:=PC
IR1:=M0[Adr0]

Y25
y39
y41

Adr0:=PC
IR2:=M0[Adr0]

x1 x2 x3 x9 0
x19 x22 x24 x25 0

x4 x7 x18 x20 x21 0
x4 x5 x7 x11 x25 0

x10 x11 x17 x18 x24 x25 0

(4)

Its minimal positive integer solution is:
x1 x2 x3 x4 x5 x7 x9 x10 x11 x17 x18 x19 x20 x21
x22 x24 x25 3 1 1 1 1 1 1 4 1 1 1 6 1 2 1 4 .

After constructing a firing sequence cor-
responding to this T-invariant (item 4 of the
algorithm) and test sequence corresponding
to the firing sequence (item 5) we obtain:
Y2Y1Y3Y1Y9Y1Y10Y18Y19Y21Y20Y21Y22Y24Y25Y5Y7Y17Y25
Y11Y25Y4Y6Y8Y13Y14. This sequence covers every
connection and is more representative than the
”hand-made” sequence presented in (Baranov, 2008).

is 3 1 2 1 2 5 1 6 4 1 2 1 1 1 1 1 1 1 1 1 1 .

The following firing sequence can
be obtained from this T-invariant:
t1t2t4t6t7t6t8t3t6t9t5t8t6t9t5t11t12t14t17t8t3t6t15t8t9t10t1t11
t13t8t9t16t1t8t19t18t20t21.

The resulting test sequence is:
Y1Y2Y4Y6Y7Y8Y3Y9Y5Y8Y11Y12Y14Y17Y8Y15Y10Y13Y16Y8
Y19Y18Y20Y21.

5.3 A More Complex Processor

As the second example we use more complex and re-
alistic design - a 16-bit processor described in (Bara-
nov, 2008). To save place we limit our consideration
only to the 16-bit microoperations which transfer in-
formation from the output of one unit to the input of
another unit (excluding the operations which are exe-
cuted in one operational unit). List of such microop-
erations and corresponding microinstructions is pre-
sented in Table 2. The connection graph of the data
path is presented in Figure 5.

���

����

���

��	
���	�


���

�������

��

���

��

���	

����

���

��

���

������� ������

���

���

��

���

��

���

��

���

�� 

��	
���	!


"�#	

�������

�������

	���

$�
����


$�
����


"	�

%&

����

����

"	�

��	
���	�


��

��

� 

� 

���

���

��

��

���

���

���

���

���

���

���

���

���

Figure 5: Connection graph for the second example.

The modeling Petri net is not shown, because in
this case it is too complex to be readable. There are
5 internal blocks in this datapath: RALU, M0[Adr0],
M1[Adr1], IR2 and PC. So the system of equations
which should be solved to obtain the T-invariants con-
sists of 5 equations (numbers of the variables corre-
spond to the numbers of microinstructions):

Table 2: Microinstructions and 16-bit microoperations for
the second example

Microinstructions Microoperations

x1 x2 x3 x9 0
x19 x22 x24 x25 0

x4 x7 x18 x20 x21 0
x4 x5 x7 x11 x25 0

x10 x11 x17 x18 x24 x25 0

(4)

Its minimal positive integer solution is:
x1 x2 x3 x4 x5 x7 x9 x10 x11 x17 x18 x19 x20 x21
x22 x24 x25 3 1 1 1 1 1 1 4 1 1 1 6 1 2 1 4 .

After constructing a firing sequence cor-
responding to this T-invariant (item 4 of the
algorithm) and test sequence corresponding
to the firing sequence (item 5) we obtain:
Y2Y1Y3Y1Y9Y1Y10Y18Y19Y21Y20Y21Y22Y24Y25Y5Y7Y17Y25
Y11Y25Y4Y6Y8Y13Y14. This sequence covers every
connection and is more representative than the
”hand-made” sequence presented in (Baranov, 2008).

Figure 5: Connection graph for the second example.

The modeling Petri net is not shown, because in
this case it is too complex to be readable. There are
5 internal blocks in this datapath: RALU, M0[Adr0],
M1[Adr1], IR2 and PC. So the system of equations
which should be solved to obtain the T-invariants con-
sists of 5 equations (numbers of the variables corre-
spond to the numbers of microinstructions):



















−x1+x2 +x3+x9 = 0
x19−x22−x24−x25 = 0

−x4 +x7+x18+x20−x21 = 0
−x4−x5−x7−x11+x25 = 0

x10+x11+x17−x18−x24−x25 = 0

(4)

Its minimal positive integer solution is:
(x1,x2,x3,x4,x5,x7,x9,x10,x11,x17,x18,x19,x20,x21,

x22,x24,x25) = (3,1,1,1,1,1,1,4,1,1,1,6,1,2,1,4).
After constructing a firing sequence cor-

responding to this T-invariant (item 4 of the
algorithm) and test sequence corresponding
to the firing sequence (item 5) we obtain:
Y2Y1Y3Y1Y9Y1Y10Y18Y19Y21Y20Y21Y22Y24Y25Y5Y7Y17Y25
Y11Y25Y4Y6Y8Y13Y14. This sequence covers every
connection and is more representative than the
”hand-made” sequence presented in (Baranov, 2008).

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

510



6 WHEN THE METHOD FAILS

As it can be seen from the description of the algo-
rithm, the situations are possible in which it fails to
generate a test sequence. It happens when there is no
T-invariantx > 0 for the modeling Petri net or when
for the obtained T-invariant the appropriate firing se-
quence does not exist. The second variant means two
possibilities: there is no firing sequence for the ob-
tained T-invariant that starts in empty marking or such
sequence exists, but leads through an unsafe marking.
Three mentioned situations are illustrated in Figure 6.

6 WHEN THE METHOD FAILS

As it can be seen from the description of the algo-
rithm, the situations are possible in which it fails to
generate a test sequence. It happens when there is no
T-invariant x 0 for the modeling Petri net or when
for the obtained T-invariant the appropriate firing se-
quence does not exist. The second variant means two
possibilities: there is no firing sequence for the ob-
tained T-invariant that starts in empty marking or such
sequence exists, but leads through an unsafe marking.
Three mentioned situations are illustrated in Figure 6.

��

��

��

��

��

��

��

�� ��

��
��

Figure 6: Examples of nets for which the method fails to
generate the sequence.

The first of them (Figure 6a; there is no T-invariant
without zero entries) corresponds to a case which is
not impossible (however rather untypical) in a correct
design. In this case any sequence of microinstructions
which transfers data from input to output units of the
data path either reads more than once from the same
unit without writing to it between those readings (p1),
or writes to an internal unit without reading from it
(p2). Then the method described in (Karatkevich and
Baranov, 2010) can be applied.

Two other situations signalize that something is
wrong in the data path structure or in the structure of
microinstructions. If a firing sequence leading from
an empty marking back to itself and covering all tran-
sitions does not exist (Figure 6b), then there is an in-
ternal unit (p3) from which data are read before writ-
ing in it. If such firing sequence exists but has to go
through an unsafe marking (Figure 6c), then there is
a unit (p2) to which data are written more than once
without reading from it between those writings, which
means that some data are lost.

7 CONCLUSIONS

The proposed method provides possibility of auto-
mated generation of sequences of microinstructions
for testing data path of a digital design constructed
as a composition of a data path and a control unit.

Such sequence is a necessary part of a test bench. The
methodwe propose takes into account structure of mi-
croinstructions, which may consist of several micro-
operations. Using Petri net as a model of data path
was found to be suitable for such cases.

However, the method described here at first gener-
ates a long sequence with multiple repetitions of some
transitions and then constructs a sequence of microin-
structions which may be remarkable shorter. Further
research should concentrate on checking whether it
is possible to build a minimized sequence directly,
avoiding constructing a firing sequence correspond-
ing to the T-invariant of the modeling Petri net (as in
this method) or a postman tour in the modeling graph
(as in (Karatkevich and Baranov, 2010)).

ACKNOWLEDGEMENTS

I would like to thank Samary Baranov for inspiration,
fruitful discussions and consultations. The projects of
the processors used for the examples are developed by
him.

REFERENCES

Baranov, S. (2008). Logic and System Design of Digital
Systems. TGU, Tallinn.

Baranov, S. (2009). Asms in high level synthesis of eda
tool abelite. In Preprints of the 4th IFACWorkshop on
Discrete-Event System Design, IFAC, Gandia Beach,
pages 195–200. IFAC. (to appear online in IFAC-
PapersOnLine.net).

Barkalow, A. and Wegrzyn, M. (2006). Design of Con-
trol Units with Programmable Logic. University of
Zielona Gora, Zielona Gora.

Hefferon, J. (2008). Linear Algebra. electronic edition,
Colchester.

Karatkevich, A. and Baranov, S. (2010). Graph based ap-
proach to test bench constructing for datapath. In
IWK’10, 55th Internationales Wissenschaftliches Kol-
loquium, pages 662–667. Technische Universitaet Il-
menau.

Murata, T. (1989). Petri nets: properties, analysis and ap-
plications. Proceedings of the IEEE, 77:541–580.

Peterson, J. L. (1981). Petri net theory and the modeling of
systems. Prentice-Hall.

Vanderbei, R. J. (2008). Linear Programming: Foundations
and Extensions. Springer Verlag, 3rd edition.

Wisniewski, R. (2009). Synthesis of compositional micro-
program control units for programmable devices. Uni-
versity of Zielona Gora, Zielona Gora.

Figure 6: Examples of nets for which the method fails to
generate the sequence.

The first of them (Figure 6a; there is no T-invariant
without zero entries) corresponds to a case which is
not impossible (however rather untypical) in a correct
design. In this case any sequence of microinstructions
which transfers data from input to output units of the
data path either reads more than once from the same
unit without writing to it between those readings (p1),
or writes to an internal unit without reading from it
(p2). Then the method described in (Karatkevich and
Baranov, 2010) can be applied.

Two other situations signalize that something is
wrong in the data path structure or in the structure of
microinstructions. If a firing sequence leading from
an empty marking back to itself and covering all tran-
sitions does not exist (Figure 6b), then there is an in-
ternal unit (p3) from which data are readbeforewrit-
ing in it. If such firing sequence exists but has to go
through an unsafe marking (Figure 6c), then there is
a unit (p2) to which data are written more than once
without reading from it between those writings, which
means that some data are lost.

7 CONCLUSIONS

The proposed method provides possibility of auto-
mated generation of sequences of microinstructions
for testing data path of a digital design constructed

as a composition of a data path and a control unit.
Such sequence is a necessary part of a test bench. The
method we propose takes into account structure of mi-
croinstructions, which may consist of several micro-
operations. Using Petri net as a model of data path
was found to be suitable for such cases.

However, the method described here at first gener-
ates a long sequence with multiple repetitions of some
transitions and then constructs a sequence of microin-
structions which may be remarkable shorter. Further
research should concentrate on checking whether it
is possible to build a minimized sequence directly,
avoiding constructing a firing sequence correspond-
ing to the T-invariant of the modeling Petri net (as in
this method) or a postman tour in the modeling graph
(as in (Karatkevich and Baranov, 2010)).

ACKNOWLEDGEMENTS

I would like to thank Samary Baranov for inspiration,
fruitful discussions and consultations. The projects of
the processors used for the examples are developed by
him.

REFERENCES

Baranov, S. (2008).Logic and System Design of Digital
Systems. TGU, Tallinn.

Baranov, S. (2009). Asms in high level synthesis of eda
tool abelite. InPreprints of the 4th IFAC Workshop on
Discrete-Event System Design, IFAC, Gandia Beach,
pages 195–200. IFAC. (to appear online in IFAC-
PapersOnLine.net).

Barkalow, A. and Wegrzyn, M. (2006).Design of Con-
trol Units with Programmable Logic. University of
Zielona Gora, Zielona Gora.

Hefferon, J. (2008). Linear Algebra. electronic edition,
Colchester.

Karatkevich, A. and Baranov, S. (2010). Graph based ap-
proach to test bench constructing for datapath. In
IWK’10, 55th Internationales Wissenschaftliches Kol-
loquium, pages 662–667. Technische Universitaet Il-
menau.

Murata, T. (1989). Petri nets: properties, analysis and ap-
plications.Proceedings of the IEEE, 77:541–580.

Peterson, J. L. (1981).Petri net theory and the modeling of
systems. Prentice-Hall.

Vanderbei, R. J. (2008).Linear Programming: Foundations
and Extensions. Springer Verlag, 3rd edition.

Wisniewski, R. (2009).Synthesis of compositional micro-
program control units for programmable devices. Uni-
versity of Zielona Gora, Zielona Gora.

PETRI NET BASED APPROACH TO TEST BENCH CONSTRUCTING FOR DATAPATH

511


