
GUARANTEEING STRONG (X)HTML COMPLIANCE
FOR DYNAMIC WEB APPLICATIONS

Paul G. Talaga and Steve J. Chapin
Syracuse University, Syracuse, NY, U.S.A.

Keywords: W3C compliance, Web development, Haskell.

Abstract: We report on the embedding of a domain specific language, (X)HTML, into Haskell and demonstrate how this
superficial context-free language can be represented and rendered to guarantee World Wide Web Consortium
(W3C) compliance. Compliance of web content is important for the health of the Internet, accessibility,
visibility, and reliable search. While tools exist to verify web content is compliant according to the W3C, few
systems guarantee that all dynamically produced content is compliant. We presentCH-(X)HTML, a library
for generating compliant (X)HTML content for all dynamic content by using Haskell to encode the non-trivial
syntax of (X)HTML set forth by the W3C. Any compliant document can be represented with this library, while
a compilation or run-time error will occur if non-compliant markup is attempted. To demonstrate our library
we present examples and performance measurements.

1 INTRODUCTION

Conformity of web content to the World Wide Web
Consortium’s (W3C) standards is a goal every web
developer should aspire to meet. Conformity leads
to increased visibility as more browsers can ren-
der the markup consistently,increased accessibil-
ity for disabled users using non-typical browsing
styles(Chisholm, 1999),more reliable Internet search
by presenting search engines with consistent page
structures(Davies, 2005), and in some casescom-
pliance with legal requirements (Brewer and Henry,
2006; Moss, 2010; Wittersheim, 2006; dda, 2010).

Unfortunately the majority of web content is non-
compliant, with one study finding 95% of pages on-
line are not valid(Chen et al., 2005). Not surprisingly,
the majority of web frameworks do not guarantee gen-
erated content is compliant. Popular internet browsers
perpetuate the problem by creatively parsing and ren-
dering invalid code in an attempt to retain users.

While tools exist to check validity of static con-
tent, few systems exist that claim strong validity ofall
produced content. With dynamic web applications, it
is harder to guarantee validity due to the dynamic na-
ture of their outputs. Assuring compliance for spe-
cific inputs is possible, but proving compliance for all
inputs is analogous to proof by example. Web frame-
works using Model-View-Controller design practices
provide some assurances based on compliant templa-

tes, but it remains easy for an unknowing developer
or user input to break this compliance. Such deficien-
cies in frameworks can have security consequences
as well(Hansen, 2009). Rather than make it easy
for developers to produce invalid content, frameworks
should make it impossible to be non-compliant.

1.1 Contributions

We presentCH-(X)HTML, a Haskell library for build-
ing (X)HTML content with strong W3C compliance
for all outputs. By using Haskell’s recursive types,
multiple parameter and functional dependency of type
classes, web content is built by separating structure
from content in a typed tree data structure way, much
like the underlying (X)HTML. The resulting structure
can be stored, manipulated, or serialized to a standard
W3C compliant textual representation.

We identify five traits common to all W3C
(X)HTML specifications which must be met for
a document to be compliant and show howCH-
(X)HTML enforces four of these at compile-time, with
the fifth optionally at run-time.

The remainder of the paper is structured as fol-
lows. We analyze and categorize commonalities be-
tween different W3C (X)HTML specifications in Sec-
tion 2, identifying requirements a W3C compliant
producing system must possess. Section 3 provides
an overview ofCH-(X)HTML and discusses how it is

71G. Talaga P. and J. Chapin S..
GUARANTEEING STRONG (X)HTML COMPLIANCE FOR DYNAMIC WEB APPLICATIONS.
DOI: 10.5220/0003348800710079
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 71-79
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

able to enforce the W3C specifications while being
easy to use. Sample code is provided showing the use
of the library, followed by a performance evaluation
in Section 4. Related work and our conclusion are in
Sections 5 and 6 respectively.

2 W3C COMPLIANCE

The W3C has set forth numerous variants of specifi-
cations of HTML and XHTML, with more on the way
in the form of HTML5. Examples include HTML 3.2,
HTML 4.01 Strict, and XHTML 1.00 Transitional.
While conformance to a specific document type def-
inition (DTD) is our goal, identifying commonalities
will assure easy conversion to any HTML DTD. For
example, the difference between HTML 4.01 Strict
and HTML 4.01 Transitional is merely the allowance
of certain tags. Likewise, HTML 4.01 Frameset and
XHTML 1.00 Frameset differ in their document type:
SGML and XML respectively(Group, 2002).

We have identified five classes of common re-
quirements between different (X)HTML DTDs based
on Thiemann’s work(Thiemann, 2001). A system ca-
pable of supporting all requirement classes should be
able to include support for all requirements in any of
the W3C specifications. These classes include the fol-
lowing:

Well-formed. An (X)HTML document is well-
formed if all tags have appropriate starting and ending
characters, as well as an ending tag when needed. All
attributes have the formattribute="value" inside
a tag. All characters should be in the correct con-
text. For example, all markup characters should only
be used for markup including<,>,&,".

Tag-conforming. An (X)HTML document is tag-
conforming if all tags are defined and valid within that
DTD. No browser specific tags should be used.

Attribute-conforming. An (X)HTML document is
attribute-conforming if all attributes names are al-
lowed for that specific tag. For example, thep tag
can not contain anhref attribute. Similarly, the value
type of every attribute matches its DTD description.
Required attributes are also provided.

Inclusion & Exclusion. An (X)HTML document
obeys inclusion & exclusion if the nesting of all tags
follow the specific DTD. For example, in HTML 4.01
no a tag can be a descendant of anothera tag. Simi-
larly, thetr tag requires atd tag to be its child. While

SGML, of which HTML is a member, allows deep
nesting rules, XML does not(Group, 2002). XML
can specify what children are allowed, but not grand-
children or beyond. Thus, the XHTML 1.0 specifica-
tion recommends the inclusion & exclusion of tags,
but can not require it. We feel that since XHTML
is fully based on HTML this requirement is impor-
tant and should be enforced. In support, the W3C on-
line validator marks inclusion & exclusion problems
in XHTML as errors. The draft HTML5 specification
broadens nesting rules by restrictinggroups of tags
to be children(htm, 2010). For example, ana tag in
HTML5 must not contain anyinteractive content, of
which 15 tags are members.

Tag Ordering. An (X)HTML document obeys tag
ordering if sibling tags are ordered as described in
their DTD. As an example, thehead tag must precede
thebody tag as children of thehtml tag.

3 CH-(X)HTML

Our system is built as an embedded domain-specific
language, implemented in Haskell, capable of em-
bodying the requirements set forth by the W3C. The
use of a strongly typed language guarantees strong
compliance of the application atcompile time, while
allowing easy representation of the embedded lan-
guage. Any strongly typed language could be used
for such a system, but Haskell’s multiple parameter
and functional dependency type classes cleans up the
syntax for the developer.

CH-(X)HTML is available for download1 or on
Hackage2. XHtml 1.0 Strict(Group, 2002), Transi-
tional, and Frameset are currently supported at this
time.

3.1 Implementation Overview

CH-(X)HTML’s design is outlined through a series of
refinements guaranteeing each of the five W3C spec-
ification classes described above. Code examples are
meant to convey design methods, not produce fully
correct HTML.

Well-formed & Tag Conformance. At its core,
CH-(X)HTML uses ordinary Haskell types to imple-
ment a recursively defined tree data structure repre-
senting the (X)HTML document. Each node in the
tree represents a tag, with inner tags stored as a list

1http://fuzzpault.com/chxhtml
2http://hackage.haskell.org/package/CHXHtml

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

72

of children. Depending on the tag, the node may
have none, or a variable number of children. Tag at-
tributes are stored with each node. Character data is
inserted using apcdata constructor. An example of
this scheme is given:

data Ent = Html Attributes [Ent] |
Body Attributes [Ent] |
P Attributes [Ent] |
A Attributes [Ent] |
Br Attributes |
Cdata String | ...

data Attributes = [String]
render :: Ent -> String

Only defined tags for a specific DTD exist as con-
structors, thus forcing tag-conformance. When the
data structure has been constructed and is ready to
be serialized, a recursive functionrender traverses
the structure, returning a string containing tags and
properly formatted attributes and values. All charac-
ter data (CDATA) is HTML escaped before rendering
preventing embedding of HTML markup. Separating
content from structure, along with HTML escaping,
forces all produced content to be well-formed and tag-
conforming.

Attribute Conformance. To limit allowed at-
tributes and their types, each tag is given a custom at-
tribute type allowing only valid attributes to be used.
If an attribute is set more than once therender func-
tion will use only the last, guaranteeing a unique value
for each attribute. Required attributes can either be
automatically inserted at run-time to guarantee com-
pliance, or rendered as-is with a warning if attributes
are lacking. This run-time compliance issue is dis-
cussed in Section 3.2.

The example below implements attribute confor-
mance described above.

data Ent = Html [Att_html] [Ent] |
Body [Att_body] [Ent] |
P [Att_p] [Ent] |
A [Att_a] [Ent] |
Br [Att_b] |
Cdata String | ...

--
data Att_html = Lang_html String |

Dir_html String | ...
data Att_body = Lang_body String |

Dir_body String |
Onload_body String | ...

...
render :: Ent -> String

Inclusion & Exclusion Conformance. Thus far
any tag can be a child of any other. For inclusion &
exclusion conformance we use new data types repre-
senting the context of those tags. Each DTD describes
allowed children for each tag, required tags, as well
as limits on all descendants. For example, Table 1 de-
scribes the inclusion & exclusion rules for some tags
in HTML 4.01 Strict. A + in the required children
column signifies at least one child must exist.

By using unique types for each tag only allowed
children tags can be inserted. To enforce descendant
rules, a new set of types are used which lack the for-
bidden tag. Thus, rather than one constructor speci-
fying a tag, a set of constructors may, each valid in
a different context. For example the following code
correctly prohibits nesting of thea tag by effectively
duplicating theEnt3 type but lacking thea.

data Ent = Html Att_html [Ent2]
data Ent2 = Body Att_body [Ent3]
data Ent3 = A3 Att_p [Ent_no_a] |

P3 Att_p [Ent3] |
Br3 Att_b |
Cdata3 String | ...

data Ent_no_a = P_no_a Att_p [Ent_no_a] |
Br_no_a Att_b |
Cdata_no_a String | ...

- Attributes same as above
render :: Ent -> String

In practice, preventing a deep descendant results in
duplication of nearly all types. HadEnt3 allowed
some other child other than itself, then it too must be
duplicated with a_no_a version, and so on. A com-
binatorial explosion could prove this approach unfea-
sible, but our analysis has shown otherwise. For ex-
ample, by enumerating all possible valid nesting situ-
ations in HTML 4.0 Strict, a total of 45 groups of tags
were needed to properly limit allowed children while
preventing invalid descendant situations.

Assuring the required children tags exist is
checked at run-time which is discussed in Section 3.2.

Tag Order Conformance. To validate or warn
against tag-order conformance errors, a run-time
checkerchildErrors can be used. Section 3.2 dis-
cusses the issues and trade offs involved with such a
run-time system.

3.2 Complete Compile-time Compliance
vs. Usability

A trade-off exists between complete compile-time
compliance and usability with regard to tag ordering,

GUARANTEEING STRONG (X)HTML COMPLIANCE FOR DYNAMIC WEB APPLICATIONS

73

Table 1: Inclusion & Exclusion Examples in HTML 4.01.

Tag Required Children Allowed Children Disallowed Descendants
html head,body head,body
body + p,div,...
p a,br,cdata,...
a br,cdata,... a
tr + th,td
form + p,div,... form
...

required children tags, and required attributes. A li-
brary’s interface should be obvious, allowing exist-
ing HTML knowledge to be used easily in a new con-
text. For usability we’ve decided to have four forms
of tag constructors: two with children, and two with-
out, detailed in Section 3.4. Children tags are spec-
ified as a regular Haskell list for those tags allowing
children. Similarly, tag attributes are described in list
form as well. This allows the developer to easily write
markup and apply any list manipulation function to
tags or attributes. Unfortunately there is no way to re-
strict the list elements or their order at compile-time.
A run-time checkerchildErrorscan scan the com-
pleted document for tag ordering, required children,
or required attribute errors if needed.

The alternative would be to specify children or
attributes as a tuple. Tuples allow different type el-
ements, but all must be provided. List manipula-
tion would not be possible, nor would all tags have
a standard interface. Some tags may take a 3-tuple,
while others may take a list, or some other combina-
tion thereof. Burdening the developer with such com-
plexities and limitations was deemed too harsh given
the complete compile-time guarantee benefit. The
HaXml project contains a DtdToHaskell utility which
enforces ordering in this manner using tuples(Wallace
and Runciman, 1999).

To strengthen the compile-time guarantees with
regard to W3C compliance, thefix_page function
can attempt to manipulate the document to reach full
W3C compliance. It will return a repaired document,
a synopsis of changes made, and if it was able to reach
full W3C compliance. Currently required attribute
and tag errors are repaired, with tag ordering errors
still in development.

3.3 Cleanup

Writing (X)HTML content using complex construc-
tors described in Section 3.1 becomes unwieldy
quickly. By using multi-parameter type classes and
functional dependencies we can hide this complexity
while still retaining the compile-time guarantees. We
construct a type class per tag such that a function cor-

rectly returns a constructor of the correct type based
on context. The following example shows the type
class for specifying thep tag.

class C_P a b | a -> b where
p :: [Att_p] -> [b] -> a

instance C_P Ent3 Ent3 where
p at r = P_1 at r

instance C_P Ent_no_a Ent_no_a where
p at r = P_2 at r

The class instance used is determined by the con-
text the function is called in, which determines what
type children it may have provided by the functional
dependency of classes. Thus, as long as the root of
the recursive structure has a concrete type all chil-
dren will be uniquely defined. Nesting errors man-
ifest themselves as compile-time class instance type
errors.

Attribute specification is handled in a similar way.
Thus, during development, only the tag or attribute
names must be specified, all complex constructor se-
lection is done by the functional type classes.

3.4 Library Usage

Building an (X)HTML document is done by con-
structing the recursive data structure and serializ-
ing it using therender or render_bs functions.
Content can be served to the web with any num-
ber of Haskell web servers such as HAppS(hap,
2010), Happstack(Elder and Shaw, 2010), Mo-
HWS(Marlow and Bringert, 2010), turbinado(Kemp,
2010), SNAP(Collins et al., 2010), or via ex-
ecutable with CGI(cgi, 2010)(Bringert, 2010) or
FastCGI(Saccoccio et al., 2010)(Bringert and Lem-
mih, 2010) Haskell bindings.CH-(X)HTML can be
used anywhere aString type containing (X)HTML
is needed in Haskell. For speed and efficiency the
render_bs function returns a lazy ByteString repre-
sentation suitable for CGI bindings.

All HTML tags are represented in lower case with
an underscore_ before or after the tag text. Before
assigns no attributes, while after allows a list of at-
tributes. Tags which allow children then take a list of
children.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

74

Table 2: W3C Conformance Performance.

Library Well-formed Tag-conf. Attribute-conf. Inclusion/Exclusion Tag-order-conf.
CH-(X)HTML G# G# #

CH-(X)HTML w/runtime

Text.Html G# # #

Text.XHtml G# # #

BlazeHtml G# # #

Hamlet G# # #

Text.HTML.Light G# # #

PHP # # # # #

Attributes are represented in lower case as well, but
suffixed with_att. This assures no namespace con-
flicts. Assigning an attribute which does not belong
results in a compile-time class instance error.

Validating child ordering is done using the
childErrors function which takes any node as an ar-
gument. A list of errors will be returned, if any, along
with the ordering specification in the DTD which
failed.

Figure 1 exhibits the obligatory Hello World page
whereresult holds the resulting serialized HTML as
a string.

For a more through description of theCH-
(X)HTML’s usage see thedemo.hs included with the
library source.

4 LIBRARY PERFORMANCE

To gauge our library’s performance against similar
dynamic HTML creation systems, we compared it
to six other libraries: Text.Html, Text.XHtml, Blaze-
Html(Meier and der Jeugt, 2010), Hamlet(Snoyman,
2010), Text.HTML.Light, PHP. The first five are com-
binator libraries in Haskell used for building HTML
content while PHP is a popular web scripting lan-
guage. CH-(X)HTML was tested twice, once with
run-time list checking, and once without.

Table 2 shows each’s W3C compliance guarantees
for all produced content with regard to the five W3C
areas of compliance. Half-filled circles indicate par-
tial compliance. For example,CH-(X)HTMLwithout
run-time list checking is not fully attribute conform-
ing due to possible omission of required attributes.
Other libraries fare even worse by allowing any at-
tribute to be used with any tag.

It is clear CH-(X)HTML without run-time list
checking offers stronger compliance than any library
tested, with full compliance attainable with run-time
checking and repairing enabled.

To test rendering performance, an XHTML 1.0
Strict ’bigtable’ document was created containing a
table with 1000 rows, each with the integers from 1 to

10 in each rowś column.Head andtitle tags were
added for W3C compliance with no other content on
the page. The table is generated dynamically leading
to very short page generating code. The final page
consisted of 11,005 tags and about 121kB total size.

To rule out web server performance each library is
timed until the content is prepared in memory ready
to be sent. Thecriterion library in Haskell is used
to benchmark in this way while the cpu time was mea-
sured for PHP. Testing was done on a Fedora Core 11
server with an AMD 2.3Ghz Athlon 64 X2 processor
with 2GB of RAM.

Speed results are shown in Fig 2. Hamlet was the
fastest, with BlazeHtml and PHP slightly slower at
10ms. CH-(X)HTML without run-time tag ordering
validation beats out Text.Html and Text.XHtml show-
ing CH-(X)HTML is able to compete with generic
HTML productions systems while enforcing four of
the five compliance classes. Adding tag order valida-
tion adds significant time, requiring 115(ms) to render
bigtable in our current implementation. This is due to
an external regular expression library being called for
each tag; for this case 11,005 times. Further bench-
marking with different size tables showed a perfectly
linear relation between tag count and page rendering
time for CH-(X)HTML with tag ordering validation.

To gauge real-world performance forCH-
(X)HTML with tag order validation, a sample of
31,000 random HTML pages were downloaded from
the web and analyzed. The average tag count per
page was 801, with the 50th percentile having 330
tags. Average page size for the sample was 60kB,
with the 50th percentile being 23kB. While bigtable
may stress a dynamic web content generator, it does
not represent a typical web page with respect to tag
count or size. A new average page benchmark was
constructed by using 30 rows from the bigtable bench-
mark and adding plain text in ap tag resulting in
335 tags and about 60kB total size. Figure 3 shows
the vastly different results. PHP now leads, closely
followed by CH-(X)HTML without tag order check-
ing. Even with tag order checkingCH-(X)HTML does
quite well beating out three other libraries.

GUARANTEEING STRONG (X)HTML COMPLIANCE FOR DYNAMIC WEB APPLICATIONS

75

page name = _html [_head [_title [pcdata "Hello " ++ name]],
_body [_h1 [pcdata "Hello " ++ name ++ "!"],

_hr,
_p [pcdata "Hello " ++ name ++ "!"],

]
]

result :: String
result = render (page "World")

Figure 1: Hello World implementation inCH-(X)HTML.

While speed is not our goal,CH-(X)HTML pre-
forms on par with similar dynamic HTML production
systems for most pages while providing more guaran-
tees on compliant output. For pages containing atyp-
ically large amounts of tags, additional speed can be
gained by not running run-time list checking.

5 RELATED WORK

There exist two areas related to our work: XML cre-
ation and manipulation, and general HTML produc-
tion. XHTML has now joined these two areas.

Numerous projects have embedded XML into
other languages and allowed for its manipulation.
Web content creation is not their main goal, but rather
generic XML with custom schema.

The mainstream language Java has JAXB(jax,
2010), which can create a set of Java classes based
on an XML schema, as well as the inverse. Data can
marshaled in either direction easily allowing dynamic
schema to be accessed in Java. If used for XHTML
production, inclusion/exclusion errors could still be
present as well as possible invalid characters. XML-
Beans is a similar tool(xml, 2010).

The automatic generation of Haskell types from
DTD’s or schema are covered in the HaXml project:
a set of Haskell utilities for parsing, filtering, trans-
forming, and generating XML(Wallace and Runci-
man, 1999). Their DtdToHaskell utility produces a
Haskell source file containing datatypes conforming
to the provided XML DTD. DtdToHaskell’s generic
XML to Haskell type production system works with
XHTML DTDs and even guarantees tag-ordering, but
at the price of usability. Every element (tag) attribute
must be specified even if not used due to their record
syntax implementation. Elements (tags) requiring an
ordered or specific number of children aren’t specified
using list syntax like most tags, but n-tuples, requir-
ing one to reference either the DTD or datatypes to
resolve compilation errors. Our specialized solution
of XHTML uses lists for all children, simplifying the
syntax. Child ordering can be validated at run-time
if needed. XML’s lack of tag inclusion/exclusion re-

striction prevents HaXml from enforcing it as well.
CH-(X)HTML is generated with a similar tool to Dt-
dToHaskell from a raw DTD, but is able to interpret
hybrid DTDs containing nesting restrictions.

HSXML is an XML serialization library for func-
tional languages(Kiselyov, 2010). It is part of a larger
effort to parse XML into S-expressions in functional
languages such as Scheme and Haskell, with HSXML
preforming the reverse. S-expressions are a natu-
ral way of representing nested data with its roots in
Lisp, thereby guaranteeing a well-formed and tag-
conforming document. The library’s current imple-
mentation can handle Inline vs Block context restric-
tions, but no other inclusion/exclusion or child order-
ing restrictions are enforced.

Constructing web content by means of a DOM-
like data structure isn’t new, but libraries guaranteeing
near or full HTML validity are scarce. Many HTML
libraries use HTML like syntax, unlike the above
XML tools, allowing easy construction of pages for
the developer, but with little guarantees to the valid-
ity of the output. Peter Thiemann’s work on W3C
compliance is the closest in the Haskell WASH/CGI
suite(Thiemann, 2002b; Thiemann, 2005; Thiemann,
2001), which includes a HTML & XML content pro-
duction system using types to enforce some validity.
The use of element-transforming style in the library
allows Haskell code to look similar to HTML while
still being valid Haskell source. The author docu-
ments different classifications of validity, which our
analysis in Section 2 is based on, followed by a dis-
cussion of enforcement of those classifications in his
system. The Inclusion & Exclusion issue is raised
and discussed briefly in his 2002 work, concluding the
type class system is unable to handle inclusion & ex-
clusion in their implementation due to the inability to
handle disjunctions of types. As a result, their library
does not support inclusion or exclusion with the ex-
cuse of extreme code size, difficulty in usability, and
a lack of strict guidelines for inclusion & exclusion in
the XHTML specification.

Further work by Thiemann explores an alternate
way of dealing with the inclusion & exclusion issue
in Haskell by way of proposed extensions providing

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

76

0

20

40

60

80

100

120

H
am

le
t

B
la

ze
H

tm
l

P
H

P

T
ex

t.H
T

M
L.

Li
gh

t

C
H

X
H

tm
l

T
ex

t.H
tm

l

T
ex

t.X
H

tm
l

C
H

X
H

tm
l w

/c
he

ck

La
te

nc
y

(m
s)

Rendering Benchmark for Bigtable

Figure 2: Rendering times for XHTML libraries for bigtable.

0

1

2

3

4

5

6

7

8

P
H

P

C
H

X
H

tm
l

B
la

ze
H

tm
l

T
ex

t.H
tm

l

C
H

X
H

tm
l w

/c
he

ck

H
am

le
t

T
ex

t.X
H

tm
l

T
ex

t.H
T

M
L.

Li
gh

t

La
te

nc
y

(m
s)

Rendering Benchmark for Average Page

Figure 3: Rendering times for XHTML libraries for an averagepage.

functional logic overloading, anonymous type func-
tions, and rank-2 polymorphism. With these they are
able to accurately encode and enforce the inclusion &
exclusion properties specified in the DTD(Thiemann,
2002a). A strong symmetry exists between our work
and the suggested extensions. The ability to em-
bed regular expressions on types is analogous to our
generous use of recursive types and run-time child
validation. While extending the type system further
may lead to more enhancements,CH-(X)HTML can

be used currently without any additional extensions.
The LAML(Nørmark, 2005) package for Scheme pro-
vides a set of functions representing HTML tags and
attributes capable of generating HTML programati-
cally. Their goal is bringing abstraction and web au-
thoring to Scheme rather than standards compliance.
Their functions are easy to use and provide well-
formed, tag-conforoming, and some attribute con-
forming content while not preventing inclusion & ex-
clusion, or tag ordering errors.

GUARANTEEING STRONG (X)HTML COMPLIANCE FOR DYNAMIC WEB APPLICATIONS

77

A common Haskell HTML library is
Text.Html(tex, 2010) and relative Text.XHtml
used above, which uses element-transforming style
to build pages. Produced content is well-formed
and tag-conforming due to their structured building
method and HTML escaping of text content. Any
attribute can be added to any tag, thus not being
attribute-conforming. All tags are of the same type
and can be added in any order leading to tag ordering
and inclusion/exclusion violations. Blaze-html(Meier
and der Jeugt, 2010) and Hamlet(Snoyman, 2010) are
similar Haskell libraries, but unfortunately they also
suffer from the same lack of compliance guarantees.

XMLC for Java allows an application developer to
manipulate a DOM structure obtained from parsing a
HTML or XML template file(xml, 2008). Manipula-
tion of the DOM is therefore similar to DOM manip-
ulations in JavaScript. When all transformations are
complete the DOM is serialized and sent to the user.
XMLC does not restrict operations which would re-
sult in invalid content being sent to the user.

Separating structure from content in a web set-
ting is advantageous for security as well. Robert-
son & Vigna(Robertson and Vigna, 2009) explore us-
ing a strongly typed system for HTML generation as
well as producing SQL queries in the web applica-
tion. Their goal is to increase security by preventing
injection attacks targeting the ad-hoc mixing of con-
tent and structure in SQL by representing structure
in a typed way and filtering inserted content. Thus,
the client or SQL server’s parser will not be fooled
by the attempted injection attack. Our work similarly
mitigates injection attacks but does not address web
application vulnerabilities relating to a database.

6 CONCLUSIONS

We have shown how (X)HTML W3C compliance can
be achieved by Haskell while performing on par with
more mature dynamic (X)HTML production systems.
We generalize the W3C (X)HTML specifications into
five classes of requirements a web production sys-
tem must be able to enforce to produce compliant
output. The inclusion & exclusion nesting require-
ment of nearly all (X)HTML DTD’s has proven diffi-
cult to enforce and thus ignored by web production
libraries. Our (X)HTML library, CH-(X)HTML, is
able to partially enforce four of the five classes of
requirements at compile-time, including inclusion &
exclusion, with full compliance attainable at run-time.
Use of the library is straightforward due to multi-
parameter type classes and functional dependencies
allowing a coding style similar to straight (X)HTML,

while guaranteeing strong compliance for all pro-
duced content.

REFERENCES

Brewer, J. and Henry, S. L. (2006). Policies relating to web
accessibility. http://www.w3.org/WAI/Policy/.

Bringert, B. (2010). cgi: A library for writing cgi programs.
http://hackage.haskell.org/package/cgi.

Bringert, B. and Lemmih (2010). fastcgi: A
haskell library for writing fastcgi programs.
http://hackage.haskell.org/package/fastcgi.

CGI (2010). The common gateway interface.
http://hoohoo.ncsa.illinois.edu/cgi/.

Chen, S., Hong, D., and Shen, V. Y. (2005). An experimen-
tal study on validation problems with existing html
webpages. InInternational Conference on Internet
Computing, pages 373–379.

Collins, G., Beardsley, D., yu Guo, S., and Sanders,
J. (2010). Snap: A haskell web framework.
http://snapframework.com/.

Davies, D. (2005). W3c compliance and seo.
http://www.evolt.org/w3c-compliance-and-seo.

Directgov (2010). The disability discrimination act (dda).
http://www.direct.gov.uk/en/DisabledPeople/Rights
AndObligations/DisabilityRights/DG4001068.

Elder, M. and Shaw, J. (2010). Happstack.
http://happstack.com/index.html.

Group, W. H. W. (2002). Xhtml 1.0: The ex-
tensible hypertext markup language (sec-
ond edition). http://www.w3.org/TR/xhtml1/,
http://www.w3.org/TR/xhtml1/.

Hansen, R. (2009). Xss (cross site scripting) prevention
cheat sheet. http://ha.ckers.org/xss.html.

Happs (2010). Happs. http://happs.org/.

Html5 (2010). Html5. http://dev.w3.org/html5/spec/
Overview.html.

Jaxb (2010). jaxb. https://jaxb.dev.java.net/.

Kemp, A. (2010). Turbinado. http://wiki.github.com/
alsonkemp/turbinado.

Kiselyov, O. (2010). Hsxml: Typed sxml.
http://okmij.org/ftp/Scheme/xml.html#typed-SXML.

Marlow, S. and Bringert, B. (2010). Mohws: Modu-
lar haskell web server. http://hackage.haskell.org/cgi-
bin/hackage-scripts/package/mohws.

Meier, S. and der Jeugt, J. V. (2010). Blazehtml.
http://jaspervdj.be/blaze/.

Moss, T. (2010). Disability discrimination act (dda) & web
accessibility. http://www.webcredible.co.uk/user-
friendly-resources/web-accessibility/uk-website-
legal-requirements.shtml

Nørmark, K. (2005). Web programming in scheme with
laml. J. Funct. Program., 15(1):53–65.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

78

Robertson, W. and Vigna, G. (2009). Static Enforcement
of Web Application Integrity Through Strong Typing.
In Proceedings of the USENIX Security Symposium,
Montreal, Canada.

Saccoccio, R. et al. (2010). Fastcgi. http://www.fastcgi.com
/drupal/.

Snoyman, M. (2010). Yesod web framework.
http://docs.yesodweb.com/.

Text.html (2010). Text.html. http://hackage.haskell.org/
package/html

Thiemann, P. (2001). A typed representation for html and
xml documents in haskell.Journal of Functional Pro-
gramming, 12:2002.

Thiemann, P. (2002a). Programmable type systems for do-
main specific languages.

Thiemann, P. (2002b). Wash/cgi: Server-side web script-
ing with sessions and typed, compositional forms. In
Practical Aspects of Declarative Languages: 4th In-
ternational Symposium, PADL 2002, volume 2257 of
LNCS, pages 192–208. Springer-Verlag.

Thiemann, P. (2005). An embedded domain-specific lan-
guage for type-safe server-side web-scripting.ACM
Transactions on Internet Technology, 5:1533–5399.

Chisholm, W., G. V. I. J. (1999). Web content accessibility
guidelines 1.0. http://www.w3.org/TR/WCAG10/.

Wallace, M. and Runciman, C. (1999). Haskell and xml:
Generic combinators or type-based translation? pages
148–159. ACM Press.

Wittersheim, A. (2006). Why comply?
the movement to w3c compliance.
http://ezinearticles.com/?Why-Comply?-The-
Movement-to-W3C-Compliance&id=162596.

Xmlbeans (2010). Xmlbeans. http://xmlbeans.apache.org/.

Xmlc (2008). Xmlc. http://xmlc.enhydra.org.

GUARANTEEING STRONG (X)HTML COMPLIANCE FOR DYNAMIC WEB APPLICATIONS

79

