
(role)CAST: A FRAMEWORK FOR ON-LINE SERVICE TESTING�

Guglielmo De Angelis, Antonia Bertolino
ISTI – CNR, Via Moruzzi 1, 56124 Pisa, Italy

Andrea Polini
Computer Science Division, School of Science and Technologies, University of Camerino, 62032 Camerino, Italy

Keywords: Service oriented architecture, SOA testing, Role based access control, On-line testing.

Abstract: Engineering of service-oriented systems is still an immature discipline. Traditional software engineering ap-
proaches do not adequately fit development needs arising in this widely adopted paradigm. In particular,
because of dynamic service composition, several engineering activities typically performed off-line (i.e., pre-
deployment) have to be carried on also on-line (i.e., during real usage). In this paper, we present a framework
called (role)CAST which supports an instantiation of the concept of on-line testing of services, for the purpose
of validating their compliance to role-based service access policies.

1 INTRODUCTION

The Service-oriented Architecture (SOA) paradigm
has gained significant attention within academia and
companies to which it promises effective and conve-
nient new ways of doing business. As a result several
quite mature technologies are today available to im-
plement SOA solutions, among which Web Services
(WSs) are probably the most widespread. Yet a sim-
ilar degree of maturity is not evident on the method-
ological side where several aspects of SOA develop-
ment need further investigation. In particular it is
necessary to rethink software engineering methodolo-
gies, so to move from the current largely design-time
approach to a mainly run-time model. In this regard,
testing is among the software engineering lifecycle
phases which are the most affected and would cer-
tainly benefit from the possibility of being extended
to run-time.

The application of traditional testing techniques
typically assumes that the tester has quite detailed in-
formation and strong control over the test subject and
its environment. In a SOA context these assumptions
are hardly acceptable: a service under test will typi-
cally interact with other services which are outside of
the tester’s control. Moreover, the presence of mech-

�This work has been partially supported by the European
Project FP7 IP 216287: TAS3, and by the European Project
FP7 IP 257178: CHOReOS.

anisms for run-time discovery and binding does not
even permit to foresee, before run-time, who will be
the partner in a service interaction. To overcome the
lack of information and control, which makes off-line
integration testing activities not effective, we propose
to test a service composition within its real execution
context: this is referred to in this paper as on-line
testing. So on-line testing consists of proactive ser-
vice invocations designed by testers, and foresees the
execution of such test invocations on a service while
it is engaged in serving real requests. According to
this definition we do not consider activities such as
run-time monitoring (Ghezzi and Guinea, 2007) or
“passive testing” (Lee et al., 1997) as on-line testing,
since such approaches limit themselves to passively
observe how the system spontaneously behaves, with-
out triggering any proactive action on the system it-
self.

We are aware though that such an approach poses
big challenges, in terms of costs and potential im-
pact, which may undermine its acceptance. Such
challenges mainly account for possible testing side
effects, in particular when stateful resources are con-
sidered. Nevertheless, in some contexts on-line test-
ing can be regarded as a useful technique to increase
trust among organizations interacting via deployed
services. In this perspective, an encouraging trend is
that the “Future Internet” will be increasingly shaped
by service federations.

13De Angelis G., Bertolino A. and Polini A..
(role)CAST: A FRAMEWORK FOR ON-LINE SERVICE TESTING.
DOI: 10.5220/0003340500130018
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 13-18
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



A service federation is a network of services,
possibly belonging to different organizations, which
abide by defined rules (both technical and organi-
zational) to be followed by all federation members
to pursue one or more common goals. In other
words, service federations constitute an organized
world within which rules and mechanisms are put
in place to govern the integration and the interac-
tions among participating services. Appropriate rules
should be established within a federation to make
profit of on-line testing opportunities (Bertolino and
Polini, 2009).

Within a federation resources are usually pro-
tected by means of a combination of access control
policies. Such policies can be specified on any role,
entity, action, or resource within the federation. In re-
cently developed architectures (Pacyna et al., 2009;
Kellomäki, 2009) it is possible to dynamically de-
fine and update such access control policies. More-
over, striving for high flexibility, service federations
are pushed to develop access control solutions that
are decentralized and application-independent (Pa-
cyna et al., 2009). For example, the architectural style
of service federations usually keeps the application
specific logic and the authorization infrastructure as
separated aspects. Thus, the interface of each feder-
ated service is dynamically bound to external services
(e.g. Policy Decision Point – PDP; Policy Enforce-
ment Point – PEP) in order to grant or to deny service
access requests.

In our view, service federations provide a perfect
context for applying on-line testing. Specifically, we
consider that service federations supporting dynamic
composition and run-time modification of the access
control policies could exploit an on-line infrastructure
to proactively test their evolutions. For example, ser-
vices within the federation could have to regularly un-
dergo on-line testing to assess that they (continue to)
comply with their public and manifested access poli-
cies. On the other hand, access control mechanisms
have to be considered in any testing strategy also at
the application level.

This paper presents (role)CAST, a framework
supporting on-line testing in service federations
that includes authentication/authorization/identifica-
tion mechanisms. The paper is organized as follows.
Section 2 presents the (role)CAST framework. Sec-
tion 3 reports experiences from a demo example. Re-
lated works are then summarised in Section 4. Finally,
Section 5 draws some conclusions and opportunities
for future work.

2 FRAMEWORK

In this section we describe the on-line testing frame-
work we have developed within the European project
TAS3, a FP7 project investigating trustful sharing of
personal information2. We first outline a high-level
architecture (Section 2.1) that has been conceived
as generic and can be reproduced in any federation;
then we describe its (role)CAST implementation (Sec-
tion 2.2) meant to be compatible with the TAS3 refer-
ence instantiation.

2.1 High-level Architecture

To implement the idea of on-line testing we need to
include in the federation a set of testing services that
can pretend being as many service clients with a de-
fined role, thanks to the cooperation of some trusted
parties. In fact, some members of the federation
should be aware of on-line testing activities and sup-
port them through appropriate extensions to the fed-
erated infrastructure. So, for example, given a service
to test and a published policy, the testing service may
interact with the Identity Provider (IdP)3 asking for
being recognized as a service that can play the role
defined in the policy.

The high-level architecture we propose is orga-
nized in four main components: the Test Driver, the
Test Robot, the Tester Backport, and the Oracle (see
Figure 1). The Test Driver configures and runs in-
stances of the Test Robot component for each on-line
testing session. In particular, the Test Driver includes
a test scheduler that activates on-line testing sessions
either in an event-driven way or periodically.

The Test Robot loads the test cases from a reposi-
tory (see Step ›). Each test case specifies the service
under test, the remote operation to invoke, and the role
that the Test Robot has to play. As said above, we as-
sume that the IdP collaborates with the Test Robot via
the Tester Backport. The latter is an abstract compo-
nent that extends the interface of a generic IdP ser-
vice. In particular, the IdP delegates the Tester Back-
port to sign role assertions (i.e. declarations that a
given actor can play a given role). The communica-
tion between the Tester Robot and the Tester Back-
port is subject to security issues, as malicious clients
may interfere with the Tester Backport trying to get
signed credential. In Figure 1 at Step fi, we require
that the communication between the Tester Robot and
the Tester Backport is established on a secure SOAP
channel. For example, we assume that on this channel

2http://www.tas3.eu/
3Simplifying, an IdP is an asserter that provides at-

tributes representing the identity of an entity.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

14



Figure 1: On-line Testing: High-Level Architecture.

the messages are digitally signed, and asymmetrically
encrypted. Once the Tester Robot has collected all
credentials specified within the test case, it can assem-
ble the SOAP message and send it to the service un-
der test. The SOAP message includes in its header the
IdP-signed role that the tester is playing (see Step fl).
The response returned by the service under test can be
either a “functionally-correct” message or an error on
the request for a resource (e.g. “access denied” mes-
sage). Thus, it is forwarded to an oracle that checks if
the reply of the service under test actually conforms to
the expected result associated with the test case (see
Step °). A difference between the service reply and
the expected result reveals a mismatch between how
the service access policy is manifested and how this
policy is actually implemented. In Figure 1, the Ora-
cle is an abstract component that defines the minimal
assumptions we made (partial oracle).

Note that, services might masquerade error mes-
sages for user-friendliness (e.g., they could produce
a “pretty formatted” page). We are assuming that the
service federation is able to unambiguously recognize
“access denied” error messages without the need to
delve into the semantics of the payload of the mes-
sage.

Finally, the results of the test executions are stored
in the Test Results Repository (see Step –) for possi-
ble further inspection.

The definition of a meaningful set of test cases,
and of the corresponding pass/fail decisions, certainly
constitutes a complex task which depends on several
factors. In scenarios in which access policies are de-
fined at the business level, and possibly expressed in
natural language, test cases derivation may be man-
ual and the oracle may refer to an ad-hoc repository
that associates test cases with expected results. When

policies are expressed using computer readable for-
mat (e.g., in XACML (Moses, 2005)), the test cases
and expected results can be automatically derived.

Specifically, with respect to this aspect we pur-
sued two main approaches. On the one hand we de-
veloped a test designer supporting the tester in test
case modeling using UML. The designer uses Model-
driven technologies4 in order to automatically trans-
form such test cases into a Test Driver implementing
them. On the other hand, we also support the auto-
mated derivation of a test suite starting by a XACML
2.0 service policy (Bertolino et al., 2010).

2.2 (role)CAST

The (role)CAST5 framework (ROLE CompliAnce
Service on-line Testing) is an implementation of the
high-level architecture described above. In particular,
(role)CAST supports on-line testing of access policies
of SOAP services whose roles have been defined by
means of SAML assertions.

SAML is an XML-based framework proposed by
the OASIS Consortium for communicating user au-
thentication, entitlement, and attribute information.
In brief, SAML allows one party to make assertions
regarding the identity, attributes, and entitlements
about a subject. An assertion contains a subject of
the assertion, the conditions used to validate the as-
sertion, and assertion statements (i.e. authentication
statements, attribute statements, authorization deci-
sion statements). In particular attribute statements
usually contain specific identifying attributes about
the subject.

The API that (role)CAST provides can be used to
program the Tester Robot depicted in Figure 1, with
the planned sequences of test invocations.

Each test invocation is configured specifying the
URI of the service under test, the payload of the
SOAP body message, the role that the Tester Robot
has to play, and a key that identifies the test case
within the oracle. At each invocation the Tester Robot
logs the result of the test in a repository and returns
the functional message replied by the service under
test.

Service authentication/authorization/identifica-
tion is essential in many service interaction contexts.
In such cases without the possibility of assuming
different client identities the tester will not be able
to make any invocations to functionality for which
specific roles are required. The (role)CAST API was
designed to be modular and flexible, so that testers
can reuse it as support to authenticating service

4http://www.eclipse.org/modeling/
5http://labse.isti.cnr.it/tools/rolecast

(role)CAST: A FRAMEWORK FOR ON-LINE SERVICE TESTING

15



interactions in other testing approaches (Bertolino
et al., 2008) (e.g. functional and non-functional
testing). Specifically, the payload of the SOAP body
message (i.e. the operation to invoke and its actual
parameters) is part of the configuration of the Tester
Robot. Testers can pack the SOAP payload focusing
on other testing goals and then delegate to (role)CAST
the execution of the invocation of the service under
test.

Composing (role)CAST with other testing frame-
works needs a precise definition of how the Tester
Robot handles “access denied” errors. Specifically,
when the Tester Robot catches a remote exception
thrown by the service under test, it is important to un-
derstand if the error was due to a denied access to
the resource, or to other issues. In the first case, the
Tester Robot first queries the oracle, and then evalu-
ates and logs the test result. In the second case, the
Tester Robot logs that an untractable error was raised
and forwards the exception to upper layers (e.g. the
Tester Robot invoker). The strategy we implemented
in (role)CAST is reported in (Bertolino, 2009).

3 AN APPLICATION EXAMPLE

This section describes an application of (role)CAST to
a demo service federation. This scenario raises pri-
vacy and security concerns, and is one of the demon-
stration scenarios considered in TAS3.

3.1 Reference Scenario

The EmployabilityNetwork provides on-line access
to an internships management and work placement
system for the students in a University. Specifically,
this scenario foresees that each department of a Uni-
versity has a Placement Service Coordinator (PSC)
that forwards applications from students to one or
more Placement Provider (PP) looking for a match.
EmployabilityNetwork functioning relies on an on-
line and role-based authorization system. The con-
figurations, the authorization mechanisms, the autho-
rization policies, the members of the federation and
the roles that each member plays within the federation
can dynamically change during EmployabilityNet-
work lifetime. For example a new PP can join Emplo-
yabilityNetwork, or an existing PP can be discov-
ered and linked by a PSC of a department.

In such a scenario, it is evidently untenable to ar-
gue that each time the authorization infrastructure is
subject to some reconfiguration, the system Employa-
bilityNetwork should suspend its service in order to

undergo an irremissible integration testing phase. In-
stead, on-line testing can proactively stimulate, and
dynamically validate the services within Employabi-
lityNetwork, trying to anticipate potential integra-
tion errors at run-time. Furthermore, by checking if
the services in EmployabilityNetwork actually be-
have in compliance with their expected specifications,
on-line testing will increase the trust and the depend-
ability of the whole federation.

Let us consider the WSs ComputerSciencePSC,
BiologyPSC, BitIdeaPP, and the JobCenterPP
belonging to EmployabilityNetwork. Where
ComputerSciencePSC, and BiologyPSC are respec-
tively the PSC of the Computer Science and of the Bi-
ology department; JobCenterPP is a service interface
of a general purpose job-center; while BitIdeaPP is
the interface to the recruiting system of a company
acting in ICT. Each PP accepts requests from a PSC
according with the status of their subscription to the
federation. For example, the PSC of the department
of Computer Science can forward queries to both the
PP, while the subscription of the PSC from the Biol-
ogy department is only valid for querying the generic
JobCenterPP.

When accessing a WS, each service within Em-
ployabilityNetwork must provide the credentials
testifying the roles it is playing. Technically, their
SOAP requests will include within the SOAP header
a SAML assertion in form of WS-Security To-
ken (Monzillo et al., 2006).

3.2 Implementation and Usage

We implemented a running demo that simulates the
scenario described above. We also implemented a
simple module that emulates the functionality of an
IdP service. We do not pretend that such a module
will be used as a real IdP, nevertheless it is able to sign
SAML assertions with the RSA public-key cryptogra-
phy algorithm, and this is enough for our purpose.

We start by devising a set of test cases to be
(periodically or following an event-driven strategy)
executed within EmployabilityNetwork to validate
role-based authorization. Figure 2 depicts the UML-
based design of a test plan for EmployabilityNet-
work. In this case, the abstraction level of the test
context is intentionally high, giving emphasis to both
the role of the services, and the target of the test.

The test plan schedules invocations between the
four WSs. With reference to Figure 2, a UML re-
lation tagged by the term �testCase� (i.e. a UML
stereotype) specifies the configuration of a test case.

For example, Figure 3 depicts the instantiation of
the tagged values for the test case of a client acting as

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

16



Figure 2: Test Plan for EmployabilityNetwork.

Figure 3: Test Case Configuration for BiologyPSC.

BiologyPSC, that invokes the match operation ex-
ported by the service BitIdeaPP. This test succeeds
if access to the resource is denied. Furthermore, the
tagged values associated with the test scenario sched-
ules that the test plan is periodically executed (e.g.
every 2 hours, or weekly, or other).

A code generator embedded in the UML test cases
designer automatically compiles the test context de-
picted in Figure 2 into an implementation of the Test
Driver component built on (role)CAST. An on-line
testing session over EmployabilityNetwork can be
started executing such generated component. Thus,
the Test Driver acting as a service within Employa-
bilityNetwork, and precisely playing the role of a
BiologyPSC, periodically invokes the other PPs with
requests to access their functionality.

To demonstrate the usefulness of on-line testing,
we played with the EmployabilityNetwork testbed
by injecting malfunctions and verifying if the on-
line test cases could detect these errors. For in-
stance, we injected a bug in the service module of
JobCenterPP that decides whether access requests
should be granted or not (i.e. the PDP). Specifi-
cally, we have modified such PDP to provide a ran-
dom response between permit or access-denied, to
incoming authorization requests. Thus, for example,
the PDP of JobCenterPP may erroneously recognize
the ComputerSciencePSC tokens as associated to an
unauthorized account. In this case, the service mod-
ule of JobCenterPP that implements the decisions of

the PDP (i.e. the PEP) may deny legitimate service
requests.

The rationale behind this or similar bugs is
twofold: on the one hand the decision process asso-
ciated with management of service accesses (i.e. the
JobCenterPP service) usually relies on a complex
SOA that deals with roles and identities. Thus, this ar-
chitecture style may suffer from integration testing is-
sues related to run-time discovery and binding mech-
anisms.

On the other hand, the credentials themselves
may depend on an external set of configuration data
(i.e. expiration, validity, trustworthiness with re-
spect to the party that assert the role, etc). Such
set may change at runtime and unexpectedly inval-
idate pre-existing configurations. For example, let
us assume that the access to the services is specified
and managed according to policies, e.g. written in
XACML (Moses, 2005). A policy conflict could oc-
cur whenever an access policy to a service changes in
a way that is not anymore compatible with other au-
thentication or privacy policies. As expected, the on-
line testing session on EmployabilityNetwork re-
vealed the inconsistency due to the injected bug. It is
important to remark that, as discussed in Section 4, all
the inconsistencies were revealed launching designed
test cases in order to validate specified behaviours
rather than by observing the system behaviour (i.e.
“monitoring”, or “passive testing”), thus anticipating
the detection of potential errors during real service us-
age.

4 RELATED WORK

The very idea of continuing testing after a system
has been released is not new, however while previ-
ous approaches referred to re-test after delivery for
evolving software, for us on-line testing is essential
to carry out useful service integration testing. As
systems become more and more distributed and per-
vasive, several frameworks are being developed for
observing system behaviour during real usage, serv-
ing different purposes, e.g., profiling (Elbaum and
Diep, 2005; Orso et al., 2002) or assessing Quality-
of-Service (Raimondi et al., 2008). Nevertheless
such kind of frameworks limit themselves to observe
how the system “spontaneously” behaves, and do not
proactively validate any selected behaviour. This pa-
per is also related to the quite active research thread
on SOA testing. Due to space limitation, for existing
approaches to SOA testing we refer the reader to a re-
cent extensive survey by Canfora and Di Penta (Can-
fora and Di Penta, 2008).

(role)CAST: A FRAMEWORK FOR ON-LINE SERVICE TESTING

17



5 CONCLUSIONS AND FUTURE
WORK

SOA is characterized by specifications and technolo-
gies focusing on run-time interaction among software
services. In this paper we argued in favor of on-
line testing. Specifically, we considered a context in
which on-line testing can more usefully prove its use-
fulness, namely role-based authorization in federated
network services. Along this direction, we proposed
a generic on-line testing framework in which services
are tested with respect to their public access policy.

With respect to our next-future work, we are ex-
perimenting the (role)CAST library within the TAS3

project, which targets full-project scale demonstra-
tors in two domains: e-health, and e-employability.
In the longer term, we intend to explore the usage of
(role)CAST as an enabling tool to possibly apply other
on-line testing strategies.

REFERENCES

Bertolino, A., editor (2009). D10.2 : Trustworthiness Archi-
tecture and Proof of Concept. The TAS3 Consortium.

Bertolino, A., De Angelis, G., Frantzen, L., and Polini, A.
(2008). The PLASTIC Framework and Tools for Test-
ing Service-Oriented Applications. In Proc. of ISSSE,
volume 5413 of LNCS, pages 106–139. Springer.

Bertolino, A., Lonetti, F., and Marchetti, E. (2010). Sys-
tematic XACML request generation for testing pur-
poses. Software Engineering and Advanced Applica-
tions, Euromicro Conference, 0:3–11.

Bertolino, A. and Polini, A. (2009). SOA test governance:
Enabling service integration testing across organiza-
tion and technology borders. In Proc. of WebTest,
pages 277–286. IEEE CS.

Canfora, G. and Di Penta, M. (2008). Service-Oriented Ar-
chitectures Testing: A Survey. In Proc. of ISSSE, vol-
ume 5413 of LNCS, pages 78–105. Springer.

Elbaum, S. and Diep, M. (2005). Profiling deployed soft-
ware: Assessing strategies and testing opportunities.
TSE, 31(4):312–327.

Ghezzi, C. and Guinea, S. (2007). Run-time monitoring in
service-oriented architectures. In Baresi, L. and Di
Nitto, E., editors, Test and Analysis of Web Services,
pages 237–264. Springer.

Kellomäki, S., editor (2009). D2.1 : TAS3 Architecture. The
TAS3 Consortium.

Lee, D., Netravali, A., Sabnani, K., Sugla, B., and John, A.
(1997). Passive Testing and Applications to Network
Management. In Proc of ICNP, page 113. IEEE CS.

Monzillo, R., Kaler, C., Nadalin, A., and Hallem-Baker, P.
(2006). Web Services Security : SAML Token Profile
1.1. The OASIS Consortium.

Moses, T. (2005). eXtensible Access Control Markup Lan-
guage Version 2.0. The OASIS Consortium.

Orso, A., Liang, D., Harrold, M., and Lipton, R. (2002).
Gamma system: Continuous evolution of software af-
ter deployment. In Proc. of ISSTA, pages 65–69.

Pacyna, P., Rutkowski, A., Sarma, A., and Takahashi, K.
(2009). Trusted identity for all: Toward interopera-
ble trusted identity management systems. Computer,
42(5):30–32.

Raimondi, F., Skene, J., and Emmerich, W. (2008). Efficient
online monitoring of web-service SLAs. In Proc. of
SIGSOFT FSE, pages 170–180. ACM.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

18


