
eGRADER
The Programming Solutions’ Grader in Introductory Java Courses

Fatima AlShamsi and Ashraf Elnagar
Departement of Computer Science, College of Sciences, University of Sharjah, Sharjah, U.A.E.

Keywords: Java, Programming, Computer Science Education.

Abstract: This paper presents a graph-based grading system for Java introductory programming courses, eGrader.
This system grades submission both dynamically and statically to ensure a complete and through grading
job. While dynamic analysis is based on JUnit framework, the static analysis is based on the graph
representation of the program and its quality which is measured by software metrics. The graph
representation is based on the Control Dependence Graphs (CDG) and Method Call Dependencies (MCD).
eGrader outperformed existing systems in two ways: the ability of grading submission with semantic-errors,
effectively, and generating reports for students as a feedback on their performance and instructors on the
overall performance of the class. eGrader is well received by instructors not only for saving time and effort
but also for its high success rate represented by four performance measures which are sensitivity (97.37%),
specificity (98.1%), precision (98.04%) and accuracy (97.07%).

1 INTRODUCTION

The idea of making the process of grading
programming assignments automatic started with
teaching programming. In 1960’s, Hollingsworth
(Hollingsworth, 1960) introduced one of the earliest
systems which grade students programs written in
Assembly language. Since then, the development
and implementation of Automatic Programming
Assignment Grading (APAG) systems has been a
subject of great interest to many researchers. The
need for decreasing the load of the work on the
grader, timely feedback for the students and get rid
of the emotional effects on the grading results are
some of the reasons that motivated the need for
APAG systems.

 Although several automatic and semi-automatic
programming grading systems were proposed in the
literature, few of them can handle semantic errors in
code. Besides, most of the existing systems are only
concerned about the students’ scores ignoring all
other resulting data.

This paper presents a new system, eGrader, for
grading Java students’ solutions, both dynamically
and statically, in introductory programming courses.
Reports generated by eGrader make it a unique
system not only to grade students’ submissions and
provide them with detailed feedback but also to

assist instructors in constructing a database over all
students and produce outcome analysis. In addition,
eGrader is one of few systems to grade Java source
code with the existence of semantic errors.

The remainder of the paper is organized as
follows: Section 2 summarizes the existing APAG
systems. Section 3 discusses the methodology
adopted in eGrader. Components of eGrader
framework are described in Section 4. In Section 5,
we discuss the experimental results. We conclude
the work and present possible future directions in
Section 6.

2 RELATED WORK

Different approaches have been adopted to develop
APAG systems. Approaches can be categorized to
three basic categories; dynamic or test based,
semantic-similarity based, and graph based.

The dynamic-based is the most well known
approach that has been used by many existing
systems. Douce et al. reviewed automatic
programming assessments which are dynamic-based
in (Douce et al., 2005). Using this approach, the
mark assigned to a programming assignment
depends on the output results from testing it against
a predefined set of data. However, this approach is

36 AlShamsi F. and Elnagar A..
eGRADER - The Programming Solutions’ Grader in Introductory Java Courses.
DOI: 10.5220/0003338600360045
In Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU-2011), pages 36-45
ISBN: 978-989-8425-50-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

not applicable if a programming assignment does not
compile and run to produce an output. In this case,
no matter how the assignment is good it will receive
a zero mark. Moreover, using dynamic-based
approach does not ensure that the assignment
producing correct output is following the required
criteria. Examples of dynamic-based systems are
Kassandra (Von Matt, 1994) and RoboProf (Daly &
Waldron, 2004).

The semantic similarity-based (SS-APAG)
approach overcomes the drawbacks of the dynamic-
based approach. Using this approach the grading of a
student's program is achieved by calculating
semantic similarities between the student's program
and each correct model program after they are
standardized. This approach evaluates how close a
student's source code to a correct solution?
However, this approach can become expensive in
terms of time and memory requirements if the
program size and problem complexity increase. ELP
(Troung et al., 2002) and SSBG (Wang et al., 2007)
are two examples of this approach.

The graph based approach is a promising one
which overcomes the drawbacks of other
approaches. This approach represents source code as
a graph with edges representing dependencies
between different components of the program.
Graph representation provides abstract information
that is not only supports comparing source codes
with lower cost (than semantic similarity approach)
but also enables assessing source code quality
through analyzing software metrics. Comparing
graph representations for two programs is done on
the structure level of the program. This approach has
been applied in two different ways: graph
transformation such as in (Truong, 2004) and graph
similarity such as in (Naude, 2010).

3 METHODOLGY

eGrader can efficiently and accurately grade a Java
source code using both dynamic and static analysis.
The dynamic analysis process is carried out using
the JUnit framework (Massol & Husted, 2003)
which is proved to be effective, complete and
precise. It provides features that do not only ease the
dynamic analysis process but also makes it flexible
to generate dynamic tests for different types of
problems in several ways.

 The static analysis process consists of two parts:
the structural-similarity which is based on the graph
representation of the program and the quality which
is measured by software metrics. The graph

representation is based on the Control Dependence
Graphs (CDG) and Method Call Dependencies
(MCD) which are constructed from the abstract
syntax tree of the source code. From the graph
representation, structure and software metrics are
specified along with control structures’ positions and
represented as a code which we call it Identification
Pattern. The result of static analysis is the output of
the matching process between students’
identification pattern and models’ identification
patterns.

3.1 Identification Pattern

The identification pattern is a representation of the
structure and software engineering metrics of a
program. The structure is presented in the
identification pattern based on the program tracing
(without executing it) starting from the main
method. The structure and software engineering are
two major components of any identification pattern.

3.1.1 The Structure Component

Table 1: Basic Categories and Controls of the structure
component of the identification pattern.

Basic
Category

Code Control Code

Conditions 1

if_statement 1
elseif_statement 2
else_statement 3
switch_statement 4
case_statement 5
General_statement *

Loops 2

for_loop 1
while_loop 2
dowhile_loop 3
General_loop *

Method
calls

3
Recursive method call 1
Non recursive method call 2
General_method_call *

Exceptions 4

try_block 1
catch_block 2
finally_block 3
General_block 4

The structure component consists of several sub
components represented with a mask of digits. Each
sub-component represents a control structure or a
method call in the program structure. Each sub-
component is composed of three types of codes:
basic category, control and position.

 Table 1 shows the code representation for basic
categories and controls of the structure components.

eGRADER - The Programming Solutions' Grader in Introductory Java Courses

37

For example, a for loop control is of the Loops
basic category and for_loop control which is
represented with the code 21. The code 1* is a
representation for the Conditions basic category
and General_statement control, which means
any of the Conditions control is acceptable. This
type of coding is used in the model solution's
programs only.

Figure 1: ComputeFactorial class.

Figure 2: Structure component of ComputeFactorial
class.

 The position code consists of one or more digits
representing the position of a control structure or a
method call in the whole program structure. It also
represents the position relative to other control
structures and method calls in the program structure.

Figure 1 depicts an example of the structure
component for ComputeFactorial's
identification pattern. Class ComputeFactorial
in Figure calls the method factorial to compute the
factorial value after checking its validity (number
>=0).

To trace ComputeFactorial, we start with
the control structure if (number >= 0). Since
this control structure is a condition control of type
if_statement, the basic category is set to 1 and the
control is set to 1 too. The position of this control
structure is 1 as it's the first control structure to
trace. The second control structure to trace is the
method call fact = factorial(number)
which is a call to a non recursive method. The basic

category for the method call is 3 and a non recursive
method has the control value 2. Since fact =
factorial(number) is control dependent on
the first control structure to trace, which is if
(number >= 0), the number of digits in the
position code will increase by one and will be 11.
The if_statement at line 38 inside the method
factorial has the code 11111, where the first 1 is for
the basic category (conditions), the second 1 is for
the control (if_statement) and 111 is for the
position. The control structure while (number
> 0) at line 41 is traced after the control structure
at line 38, so while (number > 0) has a
position value greater than the position value of if
(number >= 0) by one which is 112. The
else_statement at line 29 is the last control structure
to trace and it is control dependent on if
(number >= 0). The code for else is 1311,
where 1 is for the basic category, 3 is for the control
and 11 is for the position.
 The whole ordered structure component of
ComputeFactorial's identification pattern is
shown in Figure 2.

3.1.2 Software Engineering Metrics (SEM)
Component

Software Engineering Metrics (SEM) consist of 3
sub-components. Each sub component represents
one of the three SEM respectively, number of
variables, number of classes and number of library
method calls. Each sub component consists of two or
three parts depending on whether the SEM
component if for a student's program or a model
program.

 For student's program each sub-component
consists of two parts: Basic category and Number.
The basic category codes are 5 for Variables, 6 for
Classes, and 7 for Library method calls. The
Number represents the number of each SEM
component in the student's program.

 For the model program, each sub-component
consists of three parts: The Basic category,
MinNumber and MaxNumber. The basic category
coding follows the same strategy as in student's
program SEM component. Parameters MinNumber
and MaxNumber consist of two digits each
representing the minimum and the maximum
number of SEM sub-component allowed,
respectively.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

38

Figure 3: A student's SEM component of Figure 1.

Figure 4: A model's SEM component of Figure 1.

Figures 3 and 4 show examples of SEM
component for identification patterns. An example
of a SEM component for ComputeFactorial
(Figure 1) as a student's program is shown in Figure
3. The basic category of type Variables has a
number set to 07 which means the student used 7
variables in his/her program. The code 601 means
there is one class in the file. The number of library
method calls in the student's program is 04 which is
represented in the code 704, where 7 indicates the
basic category (type library method calls). An
example of a SEM component for
ComputeFactorial of Figure 1 as a model
program is shown in Figure 4. The basic category of
type Variables has a MinNumber equals to 04 and
MaxNumber equals to 07 meaning that students are
allowed to use a minimum of 4 variables and a
maximum of 7 variables. Students should not use
more than one class which is represented by the code
60101. The code 70410 indicates that students are
allowed to use a minimum of 4 library method calls
and no more than 10, where 7 represents the basic
category of type library method calls.

3.1.3 Structure and SEM Analysis

The main idea behind the identification pattern is to
analyze both the structure and the SEM of students'
programs. Therefore, an efficient strategy to
compare identification patterns is required. Certain
criteria need to be met to develop an efficient
strategy to compare identification pattern. The
criteria are as follows:
1. Identification pattern matching is based on the

distance between them. The distance measure
used is the number of missing control structures
and SEM for the model program in addition to
the number of extra control structures and SEM
in the student's identification pattern.

D = | NMissing + NExtra | (1)
Where D is the distance, NMissing is the number
of missing control structures, and NExtra is the
number of extra control structures.

2. If there exists a model identification pattern that
matches exactly a student's identification
pattern, the distance between both is set to zero.

3. If no exact match found, the best match is the
model's identification pattern which has the
minimum distance D with the student's
identification pattern.

4. If two models' identification patterns have the
same distance from the student's identification
pattern, the best match is the one that
maximizes the scored mark.

5. The maximum distance equals the number of
control structures and SEM in the model's
identification pattern in addition to the number
of control structures and SEM in the student's
identification pattern. No match exists if this
criterion is valid for all models' identification
pattern given a student's identification pattern.

Figure 5: Recursive solution.

To illustrate our comparison process, an example for
calculating factorial is presented. This example
consists of two models' solution and one student's
solution. The first model solution calculates factorial
using a recursive method (Figure 5). The second one
is nonrecursive solution (Figure 6). An example of a
student's solution is shown in Figure 7.

eGRADER - The Programming Solutions' Grader in Introductory Java Courses

39

Figure 6: Non recursive solution.

Figure 7: A student's solution.

The student's identification pattern is compared with
the first model identification pattern in Figure 8. The
basic category and control of each control structure
in the student's identification pattern is compared
with the basic category and control of each control
structure in the model's identification pattern until a
match is found. The distance D in this example is
equal to 2, as two control structures are missing;

Figure 8: Comparison process between the student's
solution in Figure 7 and the model solution in Figure 5.

Figure 9: Comparison process between student's solution
in Figure 7 and model solution in Figure 8.

if_statement and elseif_statement.
In Figure 9, the student's identification pattern is

compared with the second model's identification

CSEDU 2011 - 3rd International Conference on Computer Supported Education

40

Figure 10: eGrader basic screen.

pattern. Steps 1 to 4 show that no matching is found
for the control structure 311 of the student's
identification pattern. The comparison process
proceeds to the next control structure in the student's
identification pattern which is 1111 at Step 5. The
result of the comparison at Step 10 indicates 2 extra
control structures, 2 missing control structures and 1
missing SEM where 505 doesn't match 50710.
Therefore, the distance D is equal to 5.

As a result, the first model's identification pattern
better matches student's identification pattern than
the second one. The mark is to be assigned based on
the first model program.

4 eGRADER FRAMEWORK

The framework of eGrader consists of three
components: Grading Session Generator, Source
code Grader, and Reports Generator. eGrader basic
screen in shown in Figure 10.

4.1 Grading Session Generator

eGrader supports both generating and saving grading
sessions. Generating a grading session is easy,
flexible and quick. A grading session is generated
through three steps: creating model list, creating
assessment criteria, and creating new grading
session.

4.1.1 Creating Model List

Figure 11 shows the flow chart for Creating Model
List Component. Model list is created simply by
adding model solutions, where Identification
Patterns (IP) and Software Engineering Metrics
(SW) are generated automatically. Once an
identification pattern is generated, a dialog box

appears showing the identification pattern and
providing a possibility to modify it. The
modification options are: to choose another form of
Java control structures or a general form.

Figure 11: Flow chart of Creating Model List Component.

SW metrics are optional. Such metrics include
number of variables, number of library methods and
number of classes used. Adding each of the SW
metrics along with their values to the IP is optional.

The model identification code is added then to a
list that can be saved and modified at another time.

4.1.2 Creating Assessment Criteria

Assessment criteria are categorized into five
categories:
A. Condition Statements.
B. Loop Statements.
C. Recursive & Nonrecursive method calls.
D. Exceptions.
E. Variables, classes and library method calls.

eGRADER - The Programming Solutions' Grader in Introductory Java Courses

41

Each category provides input fields for
measuring category weight and penalty (except for
category E) for extra controls. A category is added
to the grading process if it has a weight greater than
zero. If penalty value of a category is greater than
zero, a student who used extra controls (more than
required in the program) of that category will be
penalized. Weights and penalty values are
normalized. Options in each category’s check list
covers all the controls in an introductory Java
course. Assessment criteria can be saved for later
use.

4.1.3 Creating New Grading Session

A grading session is created through New grading
session dialog. In this dialog three files need to be
added which are the solutions set file, the assessment
criteria file and the JUnit test file with an option for
specifying the weight (which has to be in the range
of [0-1]) for dynamic analysis phase. Other files can
be included such as data files to run or test students’
submissions.

4.2 Source code Grader

As most of the existing systems do, the submitted
source code need to be a zipped file named with the
student’s identification number. This naming and
submitting strategy is chosen in order not to burden
the instructor with both searching for required files
in different folders and keeping track of which
submission belongs to which student. The grading
process steps are as follows:
1. Loading grading session. List of solutions will

be loaded, directories and identification pattern
in a table form in the main eGrader’s frame.

2. Loading the submitted zipped files by
specifying their folder.

3. Submissions will be graded and their output will
be inserted into a table.

At this stage, the grading process is completed.
The list of students’ names along with their details is
kept in excel file that is to be loaded to eGrader.

4.3 Reports Generator

eGrader not only grades Java code effectively but
also provides the instructor with detailed
information about the grading process. It helps to
analyze students’ understanding of basic
programming concepts. There are two types of
reports are produced by eGrader: students
assessment reports and class reports.

4.3.1 Students Assessment Reports

After the grading process is completed and the
student data file is loaded, students’ reports are
generated.

Figure 12: Result (First and second sections) of a student's
report for Computer Factorial assignment.

Student assessment report is a report produced for
each student that consists of four different sections:
1. Identification: contains student information such

as name, identification number, the result of
grading his/her submission. Figure 12 shows an
example for Compute Factorial assignment.

2. Marking: shows the details of the marking
scheme after conducting both the dynamic and
static tests. The dynamic test result includes the
total number of tests and the number of tests
that failed. The static part shows the 5 general
categories and the mark for each one, if
required. In the case of encountering errors, a
message will be inserted to indicate the source
of this error. Marks are deducted based on the
original marking scheme set by the
instructor/grader. Example is shown in Figure
12.

3. Model solution: points to the model solution
that best matches student's submission. Example
is shown in Figure 13.

4. Original code: shows students' solution. A
matching between the structure of the model
solution and the structure of the student's
submission is displayed using color matching
between corresponding control structures.
Example is shown in Figure 14.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

42

Figure 13: Model solution (third section) of a student's
assessment report.

Figure 14: Student solution (fourth section) of a student's
assessment report.

A report for a student’s submission that contains
syntax errors consists of one part only, which
indicates that the submission has syntax errors and
to be checked by a grader. The total mark for this
submission is zero. An example is shown in Figure
15.

Figure 15: A student´s assessment report for a submission
containing syntax errors.

4.3.2 Class Reports

A class report is a summary report on the class
performance for a specific assignment. This report
consists of three parts (three excel sheets) which are:
statistics, dynamic test details and static test details.

Figure 16: Statistics part of Compute Factorial assignment
report.

Useful information such as the assignment's
difficulty level, the number of students who
managed to submit a solution, and the most and least
common solutions, can be derived from the statistics
part.

As presented in Figure 16, the statistics part
contains the following data:

• Number of students' submissions for a given
assignment based on the number of graded
submissions.

• Number of model solutions used to grade the
submissions.

• Most popular model solution.
• Least popular model solution.
• Number of unit tests used to test submission

which is taken from running JUnit test class
against a model solution.

• Number of submissions failed all unit tests.
This number indicates the submissions that
failed all the tests in the JUnit test class.

Figure 17: Dynamic test details part of Compute Factorial
assignment report.

eGRADER - The Programming Solutions' Grader in Introductory Java Courses

43

Figure 18: Static test details part of Compute Factorial
assignment report.

• Number of failed submissions because of
syntax errors.

The dynamic test details part provides a general
overview of the performance of the class. This part
is shown in Figure 17. It displays the following data:
• Tests failed along with the number of students

failed each test.
• List of runtime errors. Such information is

useful for the instructor to identify common
problems and as a result provide necessary
clarification of some concepts in class.

• Other useful statistics such as average,
maximum and minimum marks.

Static test details part provides information on
the performance of the class in the general five
categories. This part as shown in Figure 18 consists
of the following data:
• Assignment Requirements which contains five

categories, where each has three measures:
average mark, highest mark and lowest mark, if
the category is required. Otherwise, the category

will be reported as not required. Group A.
Condition statements; for example, is
represented by, the average mark which is the
average of all submissions marks for this group,
the highest mark which is the highest
submission's mark for this group and the lowest
mark which is the lowest submission's mark for
this group. The same applies for all the other
categories.

• Other useful statistics such as average,
maximum and minimum marks.

5 EXPERIMENTAL RESULTS

eGrader has been evaluated by a representative data
set of students’ solution in Java introductory
programming courses at the University of Sharjah.
This data set consists of students’ submissions for
two semesters with a total of 191 submissions with
an average of 24 students in each class. The
assignment set covers 9 different problems.
 Four types of programming assignments were
used, which are:

• Assignment_1: tests the ability to use
variables, input statements, Java expressions
and mathematical computations and output
statements.

• Assignment_2: tests the ability to use
condition control structures such as if/else-
if/else and switch and case statement. It also
tests students' abilities to use loop structures
such as for, while and do-while statements.

• Assignment_3: tests the ability to use recursive
and non recursive methods.

• Assignment_4: tests the ability to use arrays.

 We are using four performance measures to
evaluate eGrader performance. Namely, sensitivity,
specificity, precision and accuracy.

 Sensitivity measures how many of the correct
submissions are in fact rewarded. Whereas the
specificity is a measure of how many of the wrong
submissions are penalized. Precision is a measure
how many of the rewarded submissions are correct.
Finally, accuracy is a measure of the number of
correctly classified submissions.

Evaluation shows a high success rate represented
by the performance measures which are sensitivity
(97.37%), specificity (98.1%), precision (98.04%)
and accuracy (97.07%) as shown in Figure 19.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

44

Figure 19: eGrader performance.

6 CONCLUSIONS
AND FUTURE WORK

eGrader is a graph based grading system for Java
introductory programming courses. It grades
submissions both statically and dynamically to
ensure a complete and through testing. Dynamic
analysis in our approach is based on the JUnit
framework which has been proved to be effective,
complete and precise. This makes it a suitable tool
for the problem of dynamic analysis for students'
programs. The static analysis process consists of two
parts: the structure-similarity which is based on the
graph representation of the program and the quality
which is measured by software metrics. The graph
representation is based on the Control Dependence
Graphs (CDG) and Method Call Dependencies
(MCD) which are constructed from the abstract
syntax tree of the source code. From the graph
representation, structure and software metrics are
specified along with control structures' positions and
represented as a code which we call it Identification
Pattern.

eGrader outperformed other systems in two
ways. It can efficiently and accurately grade
submissions with semantic error. It also generates a
detailed feedback for each student and a report for
the overall performance for each assignment. This
makes eGrader not only an efficient grading system
but also a data mining tool to analyze students’
performance.

eGrader was appraised by instructors and
teaching assistants for its overall performance
(97.6%) and the great reduction in time needed for
grading submissions when using it. Their comments
provided useful feedback for improvement.

eGrader can be extended to incorporate other
features such as:
• Support GUI-based programs.
• Grade assignments in other programming

languages.
• Offer the eGrader online.

REFERENCES

Daly, C. & Waldron, J., 2004. Assessing the assessment of
programming ability. In Proceedings of the 35th
SIGCSE technical symposium on Computer science
education. New York, 2004. ACM.

Douce, C., Livingstone, D. & Orwell, J., 2005. Automatic
test-based assessment of programming: a review.
Journal on Educational Resources in Computing, 5(3),
p.4.

Hollingsworth, J., 1960. Automatic graders for
programming classes. Communications of the ACM,
3(10), pp.528-29.

Massol, V. & Husted, T., 2003. JUnit in Action.
Greenwich, CT, USA: Manning Publications Co.

Naude, K.A.a.G.J.H.a.V.D., 2010. Marking student
programs using graph similarity. Computers &
Education, 54(2), pp.545-61.

Troung, N., Bancroft, P. & Roe, P., 2002. ELP--A Web
Environment for Learning to Program. In The 19lh
Annual Conference of the Australian Society for
Computers in Learning in Tertiary Education.
Auckland, 2002.

Truong, N.a.R.P.a.B.P., 2004. Static analysis of students'
Java programs. In Proceedings of the sixth conference
on Australasian computing education-Volume 30.
Dunedin, New Zealand , 2004. Australian Computer
Society, Inc.

Von Matt, U., 1994. Kassandra: the automatic grading
system. SIGCUE Outlook, 22, pp.22-26.

Wang, T., Su, X., Wang, Y. & Ma, P., 2007. Semantic
similarity-based grading of student programs.
Information and Software Technology, 49(2), pp.99-
107.

eGRADER - The Programming Solutions' Grader in Introductory Java Courses

45

