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Abstract: With DNA sequence data production no longer the bottleneck in microbial studies, a rapidly increasing 
number of researchers from diverse areas of interest can now use metagenomic tools to study their environ-
ment of interest. The large quantities of sequence data becoming available are posing significant challenges 
to the existing analysis tools and indeed to the community providing analysis portals. 

1 INTRODUCTION 

Direct sequencing of environmental DNA (aka “me-
tagenomics”) has been ongoing for several 
years(Tyson et al., 2004), (Bentley et al., 2008), 
(Venter et al., 2004), (Margulies et al., 2005), 
(Williamson et al., 2008). These types of experi-
ments were enabled by breakthroughs in DNA se-
quencing technology that lowered the cost for ob-
taining large quantities of DNA reads. Similar to the 
sequencing cost for the human genome costs for 
sequencing metagenomic DNA have been dropping 
dramatically since the early 2000s. Data analysis for 
complex microbial assemblages has proven to be 
one of the key component of any metagenomic ex-
periment, leading to the development of a number of 
software packages and several portals offering anal-
ysis, data integration and visualization (McHardy et 
al., 2007), (Yooseph et al., 2007).With the advent of 
next generation sequencing (Wilkening et al., 2009), 
(Stein, 2010) data analysis for metagenomic data 
sets became even more difficult. Existing tools are 
not efficiently working since reads got shorter and 
more abundant (see e.g.(Qin et al., 2010)) and com-
putational requirements grew dramatically (Meyer et 
al., 2008). The length of reads went from an 700-
900bp of Q20 reads with Sanger sequencing to 75-
150bp for Illumina reads or about 450bp for 454 
reads.  

While only five years ago, data sets of several 
million base-pairs (MBp) were considered disruptive 
(take as an example the debate (Bentley et al., 

2008)). Data sets of this size can now be created 
with a single instrument run of e.g. a Roche 454 
instrument (see Figure 1 for data set sizes). With 
sequencing no longer the bottleneck it used to be 
both in financial terms and by the fact that few cen-
ters were capable of creating “large” data sets, the 
metagenome analysis ecosystem undergoing change.  

2 METAGENOME DATA 

Data Set Sizes grow rapidly (see Figure 1) and are 
outpacing the growth of computing equipment. As 
stated frequently by many authors, the growth trajec-
tories of computing equipment and sequencing tech-
nology show dramatic differences, computing capa-
bilities doubling every 18 month and sequencing 
roughly doubling every 5-6 months (for a recent 
discussion see:(Seshadri et al., 2007)). 
 
The Number of Data Producers Grows as well. 
The long discussed democratization of sequencing 
has finally arrived, allowing new individual insti-
tutes and universities to generate large scale se-
quencing data that just recently could be produced 
only from large sequencing facilities.  

If 10 sequencing machines could be dedicated to 
global metagenomic sequencing, with the current 
state of the art technology of 200 gigabases (Gb) in 
around 10 days, we will be able to get 200 Gb of 
metagenomics sequences per day. 
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Figure 1: Data set sizes grow exponentially. Over time for Illumina Solexa platform (red) and stay stable for the Roche 454 
platform. 

An influx prior to the advent of metagenomic data 
of that magnitude is likely to overwhelm the arc-
hives (SRA and Genbank and their international 
companions), which are struggling to keep up with a 
few big centers submitting large data quantities, it 
also represents demands on the analysis providers 
mentioned above that are beyond their capabilities. 

Even to this day the current analysis portals do 
not provide an integration of the data from the Me-
tahit project (Qin et al., 2010). Published in early 
2010, the MetaHit project produced 500 GBp of 
metagenomic data for gut microbial communities 
that will be an important resource for other research-
ers studying the human gut. However integrating 
even one single large experiment is proving to be a 
major challenge to the existing systems. 

With the advent of the latest generation of se-
quencing instruments, even smaller centers have the 
ability to produce data sets of that size within two 
weeks. It is just the analysis bottleneck that prohibits 
widescale adoption of large shotgun metagenomics 
projects for many areas of research. 

The argument made here is speculative in that we 
predict a certain number of sequencing instruments 
to be dedicated to running metagenomics experi-
ments, however past submission history of our exist-
ing analysis portals MG-RAST and IMG/M can 
serve as evidence for the growing adoption of next 
generation sequencing (see Figure 2 below).  

 
Figure 2: Number of data sets is growing fast (red) and the 
number of groups submitting is also rising (blue).  

Analysis Cost Dominates the overall experimental 
costs. As shown by (Meyer et al., 2008) the cost of 
running sequence analysis is significantly higher 
than the cost of sequencing. 
 
Multiple Analysis Providers Re-run the initial 
sequence analysis results using slightly different 
tools and parameters. Driven by historical factors, 
not by actual scientific need the various groups pro-
viding data portals for the metagenomics community 
((Meyer et al., 2008), (Seshadri et al., 2007), (Mar-
kowitz et al., 2008)) each run separate analysis pipe-
lines, sharing significant parts of the value add 
process.  

 
 
 
 

BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms

364



 
Figure 3: Computing cost dominate sequencing costs. While sequencing costs remain almost identical across platforms, the 
analysis costs vary with data set sizes. The cost of sequencing compared to the cost of running BLASTX analysis. Data 
from (Meyer et al., 2008) using the Amazon EC2 cloud machine as a cost model. 

Given the cost of computing almost identical 
analysis, sharing of results would be very desirable 
at a time when significantly more data sets are being 
created. However due to the aforementioned imple-
mentation details, sharing the computational results 
is currently not possible. 

In the current state of metagenomics, no single 
tool can provide all the answers to researchers, so 
submissions of data sets to multiple portals are the 
norm rather than the exception. This frequently leads 
to a multiple months wait time for researchers due to 
the need to re-compute the basic similarity analysis. 

3 METAGENOME STANDARDS 

Data Standards are required to allow sharing of not 
only sequence sets but also computational results. If 
present these data standards would allow “instant” 
access to the metagenomic views and analysis tools 
provided by the other portals without incurring the 
extensive cost for re-computing the analysis.  

However at the current state of development 
analysis provides lack the ability to even identify 
data sets that have been submitted to other portals 
before. The lack of experimental metadata, or better 
the universal adoption of metadata standards by the 
various communities producing metagenomes leads 
to more or less anonymous data sets. While efforts 

like GOLD (Liolios et al., 2007) provided an invalu-
able service to the community using Sanger se-
quencing to produce complete microbial genomes in 
the past., the widespread adoption of metagenomic 
sequencing have led to a situation where only a 
subset of metagenomes is registered with GOLD. 

Adoption of Metadata Standards by the com-
munity is ongoing, but the existing standards pro-
posed by the Genomics Standards Consortium (Field 
et al., 2008), (Kottmann et al., 2008) are only slowly 
being accepted. However with analysis providers 
updating their tools to enforce metadata standards 
compliance, the community of users will be guided 
towards metadata standards compliance. 

The standards proposed by the GSC include mi-
nimal checklists that are required of about a dozen 
terms and the ability to create environmental pack-
ages that comprise many more parameters. With 
these packages, specific communities e.g. medical, 
soil or marine metagenomics can establish their 
specific metadata sets. 

Machine Readable Metadata is absolutely re-
quired in a data ecosystem that contains several 
thousand data sets today and will contain several 
hundred thousand metagenomic data sets in the near 
future. The need for metadata goes beyond the de-
scription of sampling location and informatics anal-
ysis. While the recent discussion on the “rare bios-
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phere” (Huse et al., 2010), (Sogin et al., 2006), 
(Reeder and Knight, 2009) has shown that informat-
ics analysis plays a significant role and can in fact 
lead to significant false understanding of microbial 
diversity in a given sample, a similar discussion is 
already on the way regarding biome appropriate 
strategies for DNA isolation and handling (Martin-
Laurent et al., 2001), (Lauber et al., 2010). Sampling 
strategies and the need for appropriate biological and 
technical replicates (in short statistically sound sam-
pling) are likely next-in-line discussions that the 
community will have, now that the sequencing cost 
are no longer prohibiting the creation of replicates. 

Report Metagenomic Data Analysis is another 
area that will require significant community input. 
While a discussion about the pan-genome (Bentley, 
2009) has clearly shown that the existing data stan-
dards are inadequate for reporting pan-genome vari-
ation. Even reporting more or less complete micro-
bial genomes extracted from metagenomic data sets 
will proof to be a difficult task given the current 
community standard operating procedures.  
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