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Abstract: Despite the strong requirement of supporting deterministic real-time scheduling on virtualization based 
multi-OS embedded systems, which enables co-location of a real-time operating system and a general-
purpose operating system on a single device, there are few investigations in the real-world hardware. In this 
paper we introduce our virtualization layer called SPUMONE, which runs on single-core and multi-core 
SH-4A processors. SPUMONE achieves the low overhead, and requires a small amount of engineering 
efforts to modify guest OS kernels for executing on SPUMONE. SPUMONE now can execute the 
TOPPERS real-time OS and Linux as a general-purpose OS concurrently on a single embedded platform. In 
addition we propose two techniques to mitigate the interference of Linux to the real-time responsiveness of 
RTOS. The first technique leverages the interrupt priority level mechanism supported by the SH-4A 
processor. The second is the proactive migration of a virtual core among physical cores to prevent the Linux 
kernel activity from blocking the interrupts assigned to RTOS. The evaluation shows that our techniques can 
decrease the interrupt latency of RTOS entailed by Linux. In addition, sharing a physical core between 
RTOS and Linux will increase total processor utilization.  

1 INTRODUCTION 

Modern embedded systems like cell-phones and 
digital home appliances are rapidly enhancing their 
functionality, getting competitive with desktop 
systems. However there are some embedded system 
specific requirements for real-time control 
processing, which is difficult to be supported by 
general-purpose operating systems.  

Therefore, constructing an embedded device with 
a real-time operating system (RTOS) and a general-
purpose operating system (GPOS) has been attracted 
as an approach to let embedded devices balance real-
time responsiveness and rich functionalities. There 
are various approaches to satisfy the above 
requirement. One of the approaches is to use a multi-
core SoC typically equipped with two independent 
processors, one for RTOS and the other for GPOS. 
Another approach is to use the hybrid system 
(Mantegazza, 2000); (Takada, 2002); (Yodaiken, 
1999) which executes GPOS as a task of RTOS. 

In this paper, we focus on virtualization 
technologies, originally widely used in enterprise 
servers and desktop computers. Now, embedded 
systems are attractive target as a new research field 
of virtualization technologies (Heiser, 2008). 
Embedded systems require different characteristics 
and gives some new challenges that have not been 
discussed in the previous research fields of 
virtualization technologies. According to the 
discussions in (Armand, 2009), the requirements to 
the embedded system hardware virtualization are: 

i. To require minimal or no modification to OS 
kernels and their applications. 

ii. To let OSes to reuse their native device 
drivers. 

iii. To support the real-time responsiveness in 
order to maintain the real-time property of 
RTOS. 

Virtualization technologies for enterprise servers 
and desktop systems, like VMware (http://www. 
vmware.com/) and Xen (Barham, 2003), do not 
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fulfill these requirements. Especially the third 
requirement is difficult to be supported by traditional 
virtualization technologies. Because the virtual 
memory virtualization and the I/O virtualization 
require complex manipulation of data structures 
inside virtualization layers, they require to 
synchronize the data structures, and make the 
virtualization layer complex. Therefore, we need to 
develop virtualization layers specialized for 
embedded systems. In our approach, we have 
developed our own virtualization layer for 
embedded devices and evaluated its real-time 
responsiveness. 

There are three contributions introduced in this 
paper. 

• The first contribution is an OS consolidation 
methodology which fits the requirements of 
embedded systems. The evaluation shows that 
the basic overhead and engineering cost 
required to the guest OSes are significantly 
smaller compared with other solutions. 

• The second contribution is an investigation on 
the real-time properties of the virtualization 
technology for embedded devices. Despite the 
growth of real-time virtualization 
technologies, their real-time properties have 
not been sufficiently discussed. 

• The last contribution is to propose two 
techniques for decreasing the latency 
introduced to RTOS. The first technique is to 
leverage the interrupt priority level (IPL) 
mechanism to enable RTOS to preempt a 
GPOS’s critical section at any time. The other 
is to migrate virtual cores among physical 
cores, when they enter into a critical section, 
in order to prevent GPOS kernel activities to 
block the execution of RTOS. 

We have developed a thin virtualization layer 
called SPUMONE which enables the co-execution 
of multiple OSes on a single-core processor and 
multi-core processor equipped with the SH-4A 
architecture cores. SPUMONE can co-execute 
TOPPERS RTOS (TOPPERS is a RTOS which 
meets μITRON RTOS specification widely used in 
Japanese industry) and Linux. The evaluation shows 
that our approach improves the real-time 
responsiveness significantly. Also, our evaluation 
shows that the tradeoffs between the proposed 
techniques that offer a guideline to consider which 
technique is appropriate for respective target 
domains. 

The rest of the paper is structured as follows. In 
Section 2, we show the design and implementation 
of SPUMONE. Section 3 proposes two techniques to 

reduce interrupt latency. Section 4 presents the 
evaluation showing the effectiveness of the proposed 
approach. In Section 5, we show related work, and 
finally, we conclude the paper in Section 6. 

2 DESIGN AND 
IMPLEMENTATION 

This section introduces our methodology for 
accommodating multiple OSes on the top of a single 
embedded device. The methodology is based on a 
thin virtualization layer called SPUMONE and some 
modifications to guest OS kernels. 

 

Figure 1: SPUMONE based system on a single-core 
processor. 

 

Figure 2: SPUMONE based system on a multi-core 
processor. 

2.1 Light-weighted Virtualization 
Layer: for Embedded Systems: 
SPUMONE 

SPUMONE (Software Processing Unit, 
Multiplexing ONE into two or more) is a thin 
software layer for multiplexing a single physical 
processor into multiple virtual processors. In other 
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words, SPUMONE provides a virtual multi-core 
processor interface on the top of a physical single-
core processor. Unlike typical virtualization layers, 
SPUMONE itself and guest OS kernels are executed 
in the privileged address space as shown in Fig. 1, in 
order to simplify the system design and to eliminate 
the overhead of cross domain calls between the user 
and kernel mode for invoking system-calls and 
hypercalls. If an OS does not leverage privilege 
levels, its applications will be executed in the kernel 
mode altogether. Executing OS kernels in the user 
mode is known to complicate the implementation of 
the virtualization layer, because all privileged 
instructions need to be emulated.  

In SPUMONE, the majority of the kernel 
instructions, including the privileged instructions, 
are executed directly by the real processor, and only 
a minimal set of instructions are emulated by 
SPUMONE. The emulated instructions are invoked 
from the OS kernels using simple function calls. 
Since the interface has no binary compatibility with 
the original processor interface, we simply modify 
the source code of OS kernels, a method known as 
the para-virtualization. Thus we assume that we have 
the access to the source code of the OS kernels. 
However, the modifications of OS kernels are very 
small as described in Section 2.2. 

SPUMONE assumes to use an SMP (Symmetric 
Multiprocessing)-based multi-core processor. All 
codes and data for applications and guest OS kernels 
reside in the shared memory. SPUMONE for multi-
core processors is designed in a distributed model: a 
dedicated instance of SPUMONE is assigned to each 
physical core as shown in Fig. 2. This design is 
chosen in order to eliminate the unpredictable 
overhead of synchronization among multiple 
processor cores. In addition, the basic lock 
mechanism can be easily shared between the single-
core and multi-core version. The approach simplifies 
the design of SPUMONE. It also enables the system 
to scale on multi-core and many-core processors as 
discussed in (Baumann, 2009). 

2.1.1 Interrupt/Trap Delivery 

Interrupt virtualization is a key feature of 
SPUMONE. Interrupts are intercepted by 
SPUMONE before they are delivered to each guest 
OS. When SPUMONE receives an interrupt, it looks 
up the interrupt destination table to make a decision 
to which OS it should be delivered. The destination 
virtual processor is statically defined for each 
interrupt source when the OS kernels are built. Traps 

are also delivered to SPUMONE first, then are 
directly forwarded to the currently executing OS. 

To let SPUMONE receive interrupts before the 
OSes, we modified the interrupt entry point of the 
OS kernels to the SPUMONE’s vector table. The 
entry point of each OS is notified to SPUMONE via 
a virtual instruction for registering their vector table. 
An interrupt is first examined by the SPUMONE’s 
interrupt handler in which the destination virtual 
processor is decided and the corresponding 
scheduler is invoked. When the interrupt triggers OS 
switching, all the registers of the current OS are 
saved into the register stack, then the register stack 
for the previous OS is restored. Finally, the 
execution branches into the entry point of the 
destination OS. The processor registers are setup just 
as the real interrupt is occurred, so the source code 
of the OS entry points does not need to be modified. 

The interrupt delivery process on a multi-core 
platform works basically as same as the one on a 
single-core platform. Each SPUMONE instance 
delivers interrupts to their destinations. On a multi-
core system, virtual cores may migrate among 
physical cores. In order to deliver interrupts to a 
virtual core running on a different core, the 
assignments of interrupts and physical cores are 
switched along with the virtual core migration. 

2.1.2 Virtual Processor Scheduling 

A processor is multiplexed by scheduling the 
execution of OSes. The execution states of the OSes 
are managed by data structures that we call virtual 
processors or virtual cores. When switching the 
execution of the virtual processors, all the hardware 
registers are stored into the corresponding virtual 
processor’s register table, and then restored from the 
table of the next executing virtual processor. The 
mechanism is similar to the process implementation 
of a typical OS, however the virtual processor saves 
the entire processor state, including the privileged 
control registers. 

The scheduling algorithm of virtual processors is 
the fixed priority preemptive scheduling. When 
RTOS and GPOS share the same physical core, the 
virtual processor bound to RTOS would gain a 
higher priority than the virtual processor bound to 
GPOS in order to maintain the real-time 
responsiveness of RTOS. This means that GPOS is 
executed only when the virtual processor for RTOS 
is in an idle state and has no task to be executed. The 
process scheduling is left up to OSes so the 
scheduling model for each OS is not changed. Idle 
RTOS resumes its execution when it receives an 
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interrupt. The interrupt for RTOS preempts GPOS 
immediately, even if GPOS is disabling its 
interrupts. 

When virtual cores assigned to GPOS are 
migrated to be executed on a shared core, those 
cores are scheduled with the timesharing scheduler. 

2.1.3 Inter-core Communication 

Communications among SPUMONE instances 
running on their physical cores are implemented 
with the shared memory area and the inter-core 
interrupt (ICI) mechanism. First, a sender stores data 
on a specific memory area, then it sends an interrupt 
to a receiver, and the receiver copies the data from 
the shared memory. 

2.2 Modifying OS Kernels 

Each guest OS is modified to be aware of the 
existence of the other guest OS, because hardware 
resources other than the processor are not 
multiplexed by SPUMONE. Thus those are 
exclusively assigned to each OS by reconfiguring or 
by modifying their OS kernels. The following 
describes the points of the OS kernels to be modified 
in order to run on the top of SPUMONE. 
Interrupt Vector Table Register Instruction. 
The instruction registering the address of a vector 
table is replaced to notify the address to the 
SPUMONE’s interrupt manager. Typically this 
instruction is invoked once during  the OS 
initialization. 
Bootstrap. 
In addition to the features supported by the single-
core SPUMONE, the multi-core version provides the 
virtual reset vector device, which is responsible for 
resetting the program counter of the virtual core that 
resides on a different core.  
Physical Memory.  
A fixed physical memory area is assigned to each 
guest OS. The physical address for the OSes can be 
simply changed by modifying the configuration files 
or their source codes. Virtualizing the physical 
memory would increase the size of the virtualization 
layer and the substantial performance overhead. In 
addition, unlike the virtualization layer for enterprise 
systems, embedded systems need to support a fixed 
number of OSes. For these reasons we assigned the 
fixed physical memory area for each OS. 
Idle Instruction. 
On a real processor, the idle instruction suspends a 
processor until it receives an interrupt. On a 

virtualized environment, this is used to yield the use 
of real processor to another OS. We prevent the 
execution of this instruction by replacing it with the 
SPUMONE API. Typically this instruction is 
embedded in a specific part of the kernel, which is 
fairly easy to find. 
Peripheral Devices. 
Peripheral devices are assigned by SPUMONE to 
each OS exclusively. This is done by modifying the 
configuration of each OS not to share the same 
peripherals. We assume that most of devices can be 
assigned exclusively to each OS. This assumption is 
reasonable because embedded system multi-OS 
platforms have asymmetric OS combinations unlike 
a symmetric multi-OS platform for enterprise 
systems. It consists of different kinds of OSes, 
usually RTOS and GPOS. For instance, RTOS is 
used for controlling specific peripherals such as a 
radio transmitter and some digital signal processors, 
and GPOS for controlling a display and various 
human interaction devices. 

However some devices cannot be assigned 
exclusively to each OS because both systems need to 
use them. For instance, only one interrupt controller 
is provided by the experimental processor we used. 
Usually OS clears some of its registers during its 
initialization. In the case of running on SPUMONE, 
the OS booting after the first one should be careful 
not to clear or overwrite the settings of the OS 
executed first. We modified the Linux initialization 
code to preserve the settings done by TOPPERS. 

3 INTERRUPT LATENCY 
REDUCTION 

3.1 Interrupt Priority Level Separation 

In order to minimize the interrupt latency of RTOS 
in the reasonable bound although the activities of 
GPOS run concurrently on a single device, we 
propose two technique. The first technique is 
replacing the interrupt enable and disable 
instructions with the virtual instruction interface. A 
typical OS disables all interrupt sources when 
disabling interrupts for the atomic execution. On the 
other hand, our approach leverages the interrupt 
mechanism of the processor: we assign the higher 
half of the interrupt priority levels (IPLs) to RTOS 
and the lower half to GPOS (Fig. 3). When GPOS 
tries to block the interrupts, it modifies its interrupt 
mask to the middle priority. RTOS may therefore 
preempt  GPOS  even  if it is disabling the interrupts  
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Figure 3: The interrupt priority levels separation. 

(Fig. 4 (1)). On the other hand, when RTOS is 
running, the interrupts are blocked by the processor 
(Fig. 4 (2)). These blocked interrupts could be 
delivered immediately when GPOS is dispatched. 

The instructions enabling and disabling 
interrupts are typically provided as the kernel 
internal API. They are typically coded as inline 
functions or macros in the kernel source code. For 
GPOS, we replace those APIs with the instructions 
enabling the entire level of interrupts and disabling 
only low priorities interrupts. For RTOS, we replace 
the API with the instructions enabling only high 
priority interrupts and disabling the entire level of 
interrupts. Therefore, interrupts assigned to RTOS 
are immediately delivered to RTOS, and the 
interrupts assigned to GPOS are blocked during the 
RTOS’s execution. Fig. 3 shows the interrupt 
priority levels assignment for each OS, which we 
used in the evaluation environment.  

 
Figure 4: Interrupt Delivery Mechanism. 

3.2 Virtual Processor Core Migration 

The second technique is based on the virtual core 
migration. When we implemented the first 
technique, we found that some paths of the GPOS 
kernel gained a highest lock priority unexpectedly 

(e.g. bootstrap, idle thread). This suggests us the 
possibility that some device drivers or kernel 
modules programmed in a bad manner gains a 
higher IPL and interferes with the activity of RTOS. 
We modified SPUMONE to proactively migrate a 
virtual core, which is assigned to GPOS sharing a 
physical core with RTOS, to another physical core 
when it traps into the kernel or interrupts are 
triggered as shown in Fig. 5. In this way, only the 
user level code of GPOS is executed concurrently on 
a shared physical core, which will never change the 
priority levels. Therefore, RTOS may preempt 
GPOS immediately without separating IPLs used in 
the first technique. 

 
Figure 5: Virtual core migration. 

4 EVALUATION 

We evaluated the basic overhead, the engineering 
cost of modifying the OS kernels, and the real-time 
responsiveness of RTOS running on SPUMONE. 
The evaluation for a single-core system is done on 
the SH-2007 reference board, with the SH-4A 400 
MHz processor and 128MB memory. The evaluation 
for a multi-core system is done on the 
MSRP1BASE02, with a RP1 quad core 600 MHz 
processor and 128MB memory. The core is also 
based on the SH4A architecture. We use 
TOPPERS/JSP 1.3 as RTOS and Linux 2.6.16 as 
GPOS for the single-core, and Linux 2.6.24.3 as 
GPOS for the multi-core processor. Linux mounts an 
NFS share exported by the host machine as its root 
file system. The basic overhead and engineering cost 
are both evaluated on single-core environment. 

4.1 Basic Overhead 

For evaluating the basic overhead of SPUMONE, 
we have measured the overhead of interrupt 
handling latency and the time to build the Linux 
kernel on the top of native (an unmodified OS 
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running on a bare-metal hardware) Linux and 
modified Linux, respectively. 

Table 1 shows the average and the worst case 
CPU cycles required to handle the interrupts 
delivered to native TOPPERS and modified 
TOPPERS. In the average case, SPUMONE imposes 
0.67μs overhead to the latency. The worst case 
overhead shows the time required to save the states 
of Linux and to restore the states of TOPPERS. The 
increased latency is sufficiently small and 
predictable for executing real-time applications. 

Table 1: The latency of handling the timer interrupts in 
TOPPERS.  

Configuration CPU Clocks Time(μs) 
TOPPERS 
(native) 

average 102 0.25 
worst 102 0.26 

TOPPERS on 
SPUMONE 

average 367 0.92 
worst 1582 3.96 

Table 2 shows the time required to build Linux 
kernel on native Linux and modified Linux executed 
on the top of SPUMONE together with TOPPERS. 
TOPPERS only receives the timer interrupts each 
1ms, and executes no other tasks. The result shows 
that SPUMONE and TOPPERS impose the overhead 
of 1.4% to the Linux performance. Note that the 
overhead includes the cycles consumed by 
TOPPERS. The result shows that the overhead of the 
virtualization to the system throughput is sufficiently 
small. 

Table 2: Linux kernel build time. 

Configuration Time Overhead 
Linux Only 68m5.9s - 
Linux and TOPPERS 69m3.1s 1.4% 

4.2 Engineering Cost 

We evaluated the engineering cost of reusing RTOS 
and GPOS by comparing the number of modified 
lines of code (LoC) in each OS kernel. Table 3 
shows the LoC added and removed from the original 
Linux kernels. We did not count the lines of device 
drivers for inter-kernel communication because the 
number of lines will differ depending on how many 
protocols they support and how complex are them. 
We did not include the LoC of utility device drivers 
provided for communication between Linux and 
RTOS or Linux and servers processes because it 
depends on how many protocols and how complex 
those are implemented.  

Table 3: The total number of modified LoC in *.c, *.S, 
*.h, Makefiles. 

OS(Linux version) Added 
LoC Removed Loc 

Linux/SPUMONE(2.6.24.3) 161 8 
RTLinux 3.2(2.6.9) 2798 1131 
RTAI 3.6.2 (2.6.19) 5920 163 
OK Linux (2.6.24) 28149 - 

The table also shows the modified LoC for RTLinux 
(Yodaiken 1999), RTAI (Mantegazza 2000) and OK 
Linux (Heiser 2008) that are previous approaches to 
support the multi OS environments. Since we could 
not find RTLinux, RTAI, OK Linux for the SH-4A 
processor architecture, we evaluated them developed 
for the Intel architecture. OK Linux is a Linux 
kernel virtualized to run on the L4 microkernel. For 
OK Linux, we only counted the code added to the 
architecture dependent directory arch/l4 and 
include/asm-l4. The comparison would not be fair in 
a precise sense, however as the table shows, it is 
clear that our approach requires significantly small 
modifications to the Linux kernel. This result is 
achieved because we are executing OS in the kernel 
mode. 

4.3 The Effect of Linux Load 
to TOPPERS Real-time 
Responsiveness 

We measured the effect of loads on Linux to the 
dispatch latency of a periodic task in TOPPERS. We 
compared two proposed techniques to reduce the 
interrupt response time. 

A periodic task runs every 1ms. It is sampled 
100,000 times during the measurement. The dispatch 
latency is the time spent from the interrupt triggered 
until the periodic task starts its execution. Only the 
periodic task is executed on TOPPERS which means 
that no other task on TOPPERS will prevent the 
execution of the periodic task. 

 
Figure 6: Dispatch latency on single core (CF write stress 
on Linux without the IPL separation technique). 
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Fig. 6 and 7 compares the distribution of the 
timer interrupt latency without and with the IPL 
separation technique under invoking continuous 
write () to a CF card file system. We executed a 
stress program as the workload on the top of Linux. 
The measurement with the file system load shows 
the maximum latency of 111μs without the IPL 
separation technique. With the IPL separation 
technique, this latency is decreased to 34μs. 
Comparing this result with the measurement done by 
(Abeni, 2002), with the 1.8GHz Athlon processor 
which shows the maximum latency of a few hundred 
μs, we can see that our measurement with the 
400MHz SH processor achieves fairly small 
dispatch latency. 

 
Figure 7: Dispatch latency on single core (CF write stress 
on Linux with the IPL separation technique). 

Fig. 8 and 9 compares the distribution of the 
timer interrupt latency without and with the virtual 
core migration technique under invoking continuous 
write () to NFS share file system. The measurement 
without the virtual core migration technique shows 
the maximum latency of 96 μs. With the virtual core 
migration technique is enabled, the maximum 
latency is reduced to 39 μs. 

 
Figure 8: Dispatch latency on multi-core (NFS stress on 
Linux without the virtual core migration technique). 

 
Figure 9: Dispatch latency on multi-core (NFS stress on 
Linux with the virtual core migration technique). 

 
Figure 10: Dispatch latency on multi-core (frequent IPC 
on Linux without the virtual core migration technique). 

Fig. 10 and 11 compares the distribution of the 
dispatch latency without and with the virtual core 
migration technique under the frequent IPC load on 
the top of Linux. The IPC load is generated by 
hackbench, which is modified to acquire clock 
cycles from a device file which returns the correct 
count independent of the processor utilization of 
RTOS. The latency measured without the virtual 
core migration technique numbered 3770 μs. This is 
because the interrupt assigned to RTOS is blocked 
by the spinlock mechanism of Linux. When the 
virtual core migration technique is enabled, the 
interrupt latency is reduced to 44 μs. 

 
Figure 11: Dispatch latency on multicore (frequent IPC on 
Linux with the  virtual core migration technique). 
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The overall measurement shows the IPL 
separation technique and the virtual core migration 
technique mitigates the effect of interrupt disabling 
performed inside the Linux kernel. Even though this 
measurement only shows the statistical maximum 
interrupt latency, it is clear that the proposed 
techniques can reduce the average interrupt latency 
significantly. 

4.4 The Effect of TOPPERS Periodic 
Task Load to Linux throughput 

We have also measured the effect of the processor 
utilization of TOPPERS to Linux. We compared the 
score of the Dhrystone benchmark and the 
hackbench benchmark with Linux running on the top 
of 4 dedicated cores (indicated as 4 cores in the Fig 
12 and 13), Linux running on the top of 3 dedicated 
cores and one core shared with TOPPERS in various 
workloads (xx% in the figures), and Linux running 
on the top of 3 dedicated cores (indicated as 3 cores 
in the figures). The task on TOPPERS is executed in 
the cycle of 10 ms. The percentage shows the ratio 
of the execution time of the periodic task against the 
cycle (30% means that the task is executed for 3 ms 
continuously). 

Fig. 12 shows the total score of the Dhrystone 
benchmark. The bar at the left end shows the score 
of the evaluation done with Linux executed on the 
top of SPUMONE with three physical cores. As long 
as the workload of the periodic task grows, the score 
of Dhrystone degrades. At the load of 90%, the 
result gets close or less than the score of the three 
dedicated core configuration. The result shows the 
overhead of the virtual core migration technique is 
not significant in the benchmark. 

In contrast, Fig. 13 shows the score of 
hackbench, the benchmark which evaluates the 
scalability of the number of cores. The execution 
time of hackbench is increased when the virtual core 
migration technique is enabled. This is caused by the 
frequent system calls invoked during the benchmark, 
which triggers a virtual core to migrate among 
physical cores very frequently. 

From the point of the processor utilization, it is 
better to let Linux share a physical core with RTOS. 
Since RTOS application processes are usually 
designed not to consume the entire processor time, 
in many cases, there is free processor time that can 
be used by Linux effectively. However, the result of 
hackbench shows that the performance improvement 
depends on the characteristics of a workload running 
on the top of Linux. 

The results show that we need to assign Linux 
processes carefully to virtual cores when some 
Linux processes invoke system calls very frequently. 
In this case, SPUMONE should not execute the 
virtual core with RTOS. Because the manual 
configuration between virtual cores and physical 
cores by considering the number of system call 
invocations, it is possible to enhance SPUMONE to 
implement the above manual policy without any 
programmers’ efforts. For example, when 
SPUMONE finds the number of invoking Linux 
system calls is increased, the virtual core to execute 
the system calls is migrated to another physical core 
that is not shared with RTOS, and the virtual core to 
invoke less system calls is migrated to the physical 
core that is shared with RTOS. 

 
Figure 12: The effect of load on TOPPERS to Linux’s 
DMIPS score (y-axis in DMIPS, larger is better). 

 
Figure 13: The effect of load on TOPPERS to Linux’s 
hackbench (y-axis in seconds, smaller is better). 

5 RELATED WORK 

Various approaches have been proposed to balance 
real-time responsiveness and rich functionalities on 
a single platform. One of the approaches is 
modifying GPOS to support real-time 
responsiveness. The real-time patch is a 
modification to the plain Linux kernel to support the 
kernel preemption (Molnar, 2010). It achieves a few 
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hundred μs latency (Abeni, 2002), but still the result 
is not enough by a factor of ten comparing to typical 
RTOSes. Even though the mechanism is potentially 
capable of achieving real-time responsiveness, it 
could be easily spoiled by bad-mannered device 
drivers, which disable interrupts for a long period. 
Porting existing programs from RTOS to Linux 
would increase the risk of implementing such device 
drivers, due to the differences between the 
programming models of RTOS and Linux. Also, the 
developers usually using RTOS are unfamiliar with 
programming on Linux. Then, the possibility to 
write bad mannered device drivers becomes high. In 
addition, porting all the software from RTOS to 
Linux would impose the substantial engineering 
cost. 

Another approach, known as the hybrid system, 
is to execute RTOS in the GPOS kernel. RTLinux 
and RTAI replace the Linux hardware abstraction 
layer with their own version of RTOSes 
(Mantegazza, 2000); (Yodaiken, 1999). Those 
RTOSes would be executed in the kernel mode 
together with the Linux kernel. The interrupt 
response time would only be a few μs, which is 
comparable to typical RTOSes. However those 
RTOSes only support their original programming 
interfaces, which prevents the straight-forward reuse 
of some existing real-time software developed for 
traditional RTOSes. Linux on ITRON is an 
alternative system to RTLinux and RTAI, which 
replaces the Linux hardware abstraction layer with 
the existing RTOS, μITRON (Takada, 2002). This 
architecture enables the system to reuse both the 
software developed for Linux and μITRON. The 
hybrid system provides the high real-time 
responsiveness comparable with RTOS with the 
reasonable engineering cost because a large amount 
of existing software for embedded systems in Japan 
has been developed on μITRON. However, 
considering another combination of RTOS and 
GPOS would impose redesigning the hybrid system 
again from scratch. Because it is usual for 
manufacturers to leverage diverse RTOSes, this 
engineering cost would be problematic. 

A virtual machine monitor (VMM) is another 
technology focusing on accommodating RTOS and 
GPOS into a single embedded device without the 
modifications or with just the minimal modifications 
to the OS kernels (Heiser, 2008). VMM provides a 
virtual hardware interface which is identical (or 
almost identical) to some real hardware and the 
isolation mechanism between virtualized guest 
OSes. VMM supporting the full-virtualization 
technique exposes a virtual hardware interface 

identical to a real hardware interface. OSes can be 
executed without any modification on the full-
virtualization based VMM. However, implementing 
the full-virtualization technique complicates the 
design of VMM itself or requires special hardware 
supports for the hardware virtualization. 
Unfortunately, the hardware supports for the 
hardware virtualization is still an unfamiliar feature 
for embedded system processors. This motivates 
VMM for embedded system to use the para-
virtualization technique. The L4 microkernel is a 
typical system to offer the para-virtualization 
interface for embedded system. However, the 
engineering cost required for para-virtualizing a 
guest OS kernel is also problematic as described in 
Section 4.2. In addition, switching the privilege 
levels between a guest OS and VMM will entail the 
significant performance degradation. 

In order to achieve the low engineering cost 
while not penalizing performance, SPUMONE 
executes OS kernels and itself in the privileged 
mode. This also contributes to reduce the 
engineering cost of modifying OS kernels, because 
the majority of privileged instructions can be 
executed by a processor directly and only a minimal 
set of instructions needs to be emulated. 
Furthermore, SPUMONE multiplexes only minimal 
hardware resources, while other resources are 
exclusively assigned to each OS by simply 
modifying each OS kernel not to access the same 
hardware resources.  

There are some researches on how to design 
scalable OSes on multi-core and many-core 
processors. Corey is a many-core operating which 
allows applications to explicitly specify the 
assignment of critical OS kernel data structures 
among cores (Wickizer, 2008). This hints the kernel 
to schedule processes to improve the cache locality. 
Multikernel is an experimental OS kernel which 
exploits the multi-core and many-core processor 
parallelism by constructing the system with the 
distributed model (Baumann, 2009). SPUMONE’s 
basic design is similar to Multikernel, but our 
contribution is to reuse existing software programs 
developed on the top of various existing OSes while 
satisfying the real-time responsiveness.  

6 CONCLUSIONS 

In this paper we proposed a light-weight 
virtualization layer which achieves the low overhead 
and low engineering cost to construct multi-OS 
embedded systems. In addition, we evaluated the 
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real-time responsiveness of RTOS running 
concurrently with Linux under various workloads. 
We proposed two techniques to mitigate the 
performance interference from Linux to RTOS; the 
IPL separation technique and the virtual core 
migration technique. The evaluation shows that our 
techniques reduced the interrupt latency 
significantly. Especially on the multi-core system, 
Linux sharing a physical core with RTOS increases 
the processor utilization. However with an 
application triggering frequent system calls may 
loses its throughput due to the frequent virtual core 
migration among physical cores.  

In the future, we will implement several dynamic 
policies to map virtual cores and physical cores 
according to the system workloads. The policies 
migrate virtual cores according to the number of 
system call invocations of Linux as described in 
Section 4.2. The dynamic mapping policy between 
virtual and physical cores also offers the possibility 
to reduce power consumption significantly by 
migrating all virtual cores to a small number of 
physical cores while the system workload is very 
low, because it is possible to turn off the power of 
most of physical cores.  
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