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Abstract: In this paper, we present a fast 3D motion parameter estimation approach integrating the depth information
acquired by a stereo camera head mounted on a mobile robot. Afterwards, the resulting 3D motion parameters
are used to generate and accurately position motion vectors of the generated depth sequence in the 3D space
using the geometrical information of the stereo camera head. The proposed approach has successfully detected
and estimated predefined motion patterns such as motion in the Z direction and motion vectors pointing to the
robot which is very important to overcome typical problems in autonomous mobile robotic vision such as
collision detection and inhibition of the ego-motion defects of a moving camera head. The output of the
algorithm is part of a multi-object segmentation approach implemented in an active vision system.

1 INTRODUCTION before the surface projection model or prior segmen-
tation information (Schmudderich et al., 2008), which
3D motion interpretation has evolved into one of the is considered a vital drawback in the autonomous
most challenging problems in computer vision. The robotic field where unpredicted scenarios and model
process of detecting moving objects as well as the es-geometry may exist. Moreover, they did not address
timation of their motion parameters provides a signif- the multi-moving non-rigid objects problem where
icant source of information to better understand dy- several objects could be occluded in different depth
namic scenes. The motion in computer vision is re- levels (Kim etal., 2010). Furthermore, integrating the
lated to the change of the spatio-temporal informa- depth information provides accurate estimation for
tion of pixels. Computing a single 3D motion from a motion in thez direction even for a static vision sys-
2D image flow by finding the optimal coefficient val- tem which is not applicable to monocular systems (Li
ues in a 2D signal transform suffers from ambiguous et al., 2008; Ribnick et al., 2009). Another aspect that
interpretations concerning 3D motion especially mo- should be taken into consideration is the computation
tions in the Z direction. On the other hand, one of speed as active vision applications require fast algo-
the main challenges facing the segmentation of 3D rithms to act realistic in such a dynamic environment.
multi-moving objects in an active vision system is In this paper, a new algorithm is proposed to en-
the segmentation of an incoherent MVF into parti- hance the computational speed of the motion segmen-
tions in reasonable computation time. This especially tation approach presented in (Shafik and Mertsching,
proved to be difficult when moving objects are par- 2008) by integrating the depth information in the 3D
tially visible and not connected. Hence, it is impor- motion parameters estimation process. Hence, the
tant to detect, estimate, and segment the MVF inde- search space has been reduced to be five dimensions
pendently from a predefined spatial coherence such aswhich represent the rotation around #)g andzaxes
object contours generated from image segmentationand translation in the direction of thke- andy—axis.
approaches. Such methods are dependent on a grouffthe geometrical information of the mobile robot and
of features which could be affected by the continu- the mounted stereo camera head has been taken into
ous environment change in a dynamic scene, e.g., theconsideration in order to accurately position the mo-
results of the color-based segmentation approachegion vectors in the 3D spatial domain. The resulting
could be affected by illumination changes. 3D MVF provide the ability to detect and estimate
Yet, some of these 3D motion estimation and seg- any predefined motion patterns which is vital for pre-
mentation approaches require a pre-defined 3D modeldicting any possible collision not only with the robot
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but with any objects in the observed 3D environment. tures are used for the object model is very important to
The disparity map is generated using a segment-determine the 3D pose by fitting the selected feature
based scan line stereo algorithm presented in (Shafikto corresponding features in an image. In this case,
and Mertsching, 2009) which is fast and independent the feature is the object surface with the object silhou-
of the GPU power (needed for other applications). ette which implements 2D non-motion affinity cues
The research presented in this paper is intended togenerated from object segmentation. (Hasler et al.,
be included in active vision applications (Ali and 2009) suggested a texture model based method for
Mertsching, 2009; Aziz and Mertsching, 2009). In 3D pose estimation. Contour and local descriptors
order to analyze those applications in a scalable com-are used for matching, where the influence of the fea-
plex scene, a virtual environment for simulating a mo- tures is automatically adapted during tracking. This
bile robot platform (SIMORE) is used (Kotthauser approach has shown its ability to deal with a rich tex-
and Mertsching, 2010). tured and non-static background as it has shown ro-
The remainder of the paper is organized as fol- bustness to shadows, occlusions, and noise in gen-
lows: section 2 gives an account of the related work eral situations overcoming the drawbacks of the single
to the proposed method, while section 3 describing in features. However, the use of several cameras from
details the proposed algorithm. Section 4 discussesdifferent angles is necessary for the estimation of 3D
the results of experiments and evaluates the outcomeobject positions which is not the case for a single mo-
of the proposed method, and finally, section 5 con- bile robot. Another application for motion segmenta-
cludes the paper. tion and 3D modeling (Yamasaki and Aizawa, 2007)
for consecutive sequences of 3D models (frames) rep-
resented as a 3D polygon mesh has conducted the mo-
tion segmentation by analyzing the degree of motion
2 "RELATED WORK using extracted feature vectors, while each frame con-
tains three types of data such as coordinates of ver-
In (Massad et al.,, 2002; Shafik and Mertsching, tices, connection, and color.
2007), a 3D motion segmentation approach is con-  On the other hand, using the spatial coherence
ceptually able to handle transparent motion which de- as in (Pundlik and Birchfield, 2006; Taylor et al.,
scribes the perception of more than one VE|0City field 2010) requires prior information of the Object geome-
in the same local region of an image despite the pixel- try. Such information is mainly based on a predefined
connectivity of objects where motion parameters are agssumption of spatial constraints or detecting certain
used as a homogeneity criterion for the Segmentationgroups of feature points which in the case of our au-
prOCGSS.Other approaCheS in this context assume thafonomous System are not available. In addition, im-
each segment represents a rigid and connected objechlementing such constraints leads to image segmenta-
such as (Gruber and Weiss, 2007) where 2D non- tion rather than segmenting the generated MVF based
motion affinity cues are incorporated into 3D mo- on jts motion parameters.
tion segmentation using the Expectation Maximiza-
tion (EM) algorithm. In the Expectation step, the
mean and covariance of the 3D motions are calculated
using matrix operations, and in the Maximization step 3 PROPOSED ALGORITHM
:Jheerfg[rrr]li?l"tnl;]rZr?elﬂ'r(;;hzii?n%?zqzt?é?]t.lorl] nazg (;leguztzclj. ’byln this part, the functionality of the proposed algo-

. rithm will be described. In a neural system for in-
2007) the ego-motion problem has been handled us- ) ;
ing a stereo vision system where feature points (basi_terpretlng optical flow (Tsao et al., 1991), the com-

cally road lane markings) are matched between pairspUta.‘t'on of a 3D r.“°“°” from a 2D image flow or a
of frames and linked into 3D trajectories. However, motion template finds the optimal coefficient values

the estimated parameter is only the vehicle velocity. 'l? a sgjsé%ngl tr:%rt'ggrg?'a Tgﬁm'(dezl) %%t'galllisr?ﬁgon
Recently, many works have concentrated on the studysa‘r);aced a ()3(/ ), is POINK, Y,
of the geometry of dynamic scenes by modeling dy- =PXY).

namic 3D real world objects (Rosenhahn et al., 2007; 6
Yang and Wang, 2009) where the projected surface of Uopt(X,Y) = Zciq (x,y) (1)
a 3D object model and the data of a previously esti- i=

mated 3D pose are used to generate a shape prior tavheree (x,y) represents the six infinitesimal genera-
the segmentation process. The goal of 2D-3D pose es-tors in form of a 2D vector field.

timation is to estimate a rigid motion which fits a 3D

object model to 2D image data. Choosing which fea-
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Integrating the depth information into the 3D mo-

tion parameters estimation process reduces the search |-

space to 5D where the parameter coefficient of the
translation inz directioncg will equal the depth dif-
ference between two consecutive disparity maps:

di 4)
whered! is the depth of poin (x,y,t) andd! ! is

the depth of its correspondence poRix + dx,y +

oy,t + 1) determined by the motion vectds f(i)

generated using a fast variational optical flow ap-

proach (Bruhn et al., 2005). Before the estimation
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Figure 1. Segmentation of two different synthetic motions:
(a) first motion, (b) second motion, (c) noisy MVF consists
of the two previous motions, (d) result of the mation seg-
mentation approach.

Ex(c(pm)) = ﬁ 5 /@ ldpm?
pe

The estimation process is re-applied after the ex-

(6)

approach starts, a noise reduction process is appliedclusion of vectors that do not belong to the same mo-

to the input MVF in order to limit the estimation pro-
cess to the valid vectors only. Then, a motion seg-
ments class is initialized where every segment con-
tains the motion parameters informatiofg') of the

attached motion. The segmentation process considers

the whole MVF representing one motion at the first
iteration.

A validation process is applied to each unpro-
cessed vectonf=Ce € {1,0} in order to detect
whether it belongs to the same motion or not by mea-
suring the vector differencé fy between the esti-
mated vector and the actual input vector.

9fi(Ppm) = UVE — Vinp(Pm)
_ . 9 %)
Uﬁ_o eg if 9 fk(pm) mfln
wherer is the minimum threshold that a vec-

min
tor difference should pass in order to consider an es-

timated vectowg~ 0 belonging to the current motion
segmeng’ generated by the motion parametef& )

For an image poinpy, the update process starts
by estimating the motion paramete(gm) using the
following error function

tion. Fig. 1 demonstrates the result of motion segmen-
tation of two different synthetic motions.

3.1 3D Representation of Motion
Parameters

The visualization difference between a projected 3D
point into a 2D plane using the equations proposed
in (Tsao et al., 1991) and the 3D homogeneous trans-
formation matrix resulting from multiplying the cur-
rent 3D spatial position and the perspective matrix
must be taken into consideration. Hence, in order to
represent a similar visualization of the projected 3D
point in the real 3D spatial domain using the OpenGL
libraries, transformation functions have to be applied
to estimate the OpenGL transformation matrix coef-
ficients €,ty,t; for translation motion andy, 6y, 6,
for rotation motion) from the pre-estimated 3D mo-
tion parameter coefficients of the projected motipn
(eq. no. 1). The projective transformation requires an
external calibration of the camera geometry to obtain
the scale information (Ribnick et al., 2009).

The translation in thex andy direction will be
equal to the pre-estimated 3D motion parameters
C1,C2, While the translation in the direction and the
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rotation motions involve the perspective information
of the OpenGL Frustum function. In OpenGL, a 3D
point in eye space is projected onto the near plane
(projection plane) using the following transformation

matrix:

2 I
r—nl :J—FI 0
X n Xe
yl_| O Y 0 Ye
= t—b t—
z 0 0 —f+n —2fn| | %
W, f—n f_n| We
0 0 -1 0
(7)
Hence the translation indirectiont, will be
XeN
ty=——
2T Xe— CaXek (8)

wherexs € [—1,1] is the normalized value of the
Xe location on the near plankjs a scaling factor.

In order to estimate the rotation parameters such

as the rotation about treaxis@,, the following trans-
formation matrix has to be used:

X cod, -—sinB, O Xe

Y| |sinB; cod, 0 0| |Ve 9
7 0 o 10|z ©
w 0 0 0 1 L1

the value of derived from eq. no. 3 will be used.

es(xy) = ( N )
10
y = ysK (10)
X = Xe — CgYsK
from eq. no. 7 and 9:
(— —nx _ —N(XeCOBH; — YeSinBe) (11)
r4 Ze
fromeq. no. 10and 11 :
—Ze
(Xe — Cg.Ys-K). —
8, =sint n_|_tan? (ﬁ)
VXE+Ya —Ye
(12)

Fig. 2 demonstrates the rotation around zteis
using the rotation parameter coefficiegtfrom (eq.
no. 3) and the transformed rotation paramétdrom

(eq. no. 12).

The same procedure is applied for the estimation

of the rotation parametef and®6y:
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Figure 2: Rotation around axis. (a) using the rotation
parameter coefficiertg, (b) perspective view of the trans-
formed rotation parameté, using OpenGL.

— — 2k
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3.2 3D Representation of Motion
Vectors

In order to estimate the metric values of the dispar-
ity maps, the distance between the stereo cameras
and the focal length has to be known. Stereo algo-
rithms search only a window of disparities where the
range of determined objects is restricted to some in-
terval called theHoropter. The search window can

be moved to an offset by shifting the stereo images
along the baseline and must be large enough to en-
compass the ranges of objects in the scene. Hence,
the determined depth valaewill be:

b.f
X —X
wherex; — X is the disparity value.
The representation of a vector in the 3D domain
requires the 3D spatial information of its two points
R1(x,y,2) andR2(X,y,Z):

(15)

d
Xi T
P1xy.2) = |, d (16)

f
d

d
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For an accurate 3D representation of the 2D MVs,
U; andV; are functions of the depth information:
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Figure 3: A synthetic 3D motion templates. (a) the gener-
ated 2D MVF of the motion parameters= (1,0,1,0,0,0)
representing translation in tixeandz direction. (b-c) the in-
correct 3D MVF and its perspective view in OpenGL gener-
ated usingy; andy; values of the 2D MVF. (d-e) the correct
3D MVF generated using; andV; values.

(d)

Ui = u+ (d —df)xs (18)

Vi =i+ (d - db)ys (19)
where thay; andy; are the 2D generated MV com-
ponents. Fig. 3 represents the error resulting from
using the 2D MV components; andy; in the esti-
mation of X andy values of a 3D motion parame-
tersc = (1,0,1,0,0,0) representing translation in the
x andz direction.

4 RESULTSAND DISCUSSION

In this section, the result of applying the proposed ap-
proach to two different data sets will be presented. In
order to correctly test and analyze the result of the
proposed algorithm, a virtual environment simulating

a mobile robot in a scalable complex scene is used.

In this environment the simulated robot is in front of

SYSTEM
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Figure 4: 3D Representation of MVFs generated from the
simulated framework (Simore). (a) Left, an acquired image
from the mounted stereo camera head in Simore. Right,
the generated MVF. (b) Left, the spatial positioning error o
direct 3D representation of disparity maps. Right, theltesu
of the 3D MVF representation of the proposed approach.

&

a stable cube, a moving cone, and a size changeable
ball. The direct 3D representation of disparity maps
generated from the stereo image sequences without
taking into consideration the perspective transforma-
tion results in falsely positioning the MVF in the 3D
spatial domain. Fig. 4 demonstrates the error of a di-
rect 3D representation of disparity maps where the
disparity values belonging to the scene ground are
falsely located along thg axis, and the result of the
proposed 3D MVF representation where the MVs be-
long to the same scene ground are correctly posi-
tioned.

The second data set is representing a real
stereo image sequence squired from a stereo system
mounted on a moving car The proposed approach
has successfully modeled the 3D spatiotemporal in-

Ipistributed Processing of Local Data for On-Line

Car Services, a DIPLODOC road
<http://tev.fbk.eu/DATABASES/road.htn

stereo  sequence,
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Figure 6: Detection of 3D motion patterns, yellow MVs
represent the translation in tkelirection which represents
a possible collision with the robot.

(b)
Figure 5: 3D Representation of MVFs generated from the
DIPLODOC road stereo sequence. (a) Left, an acquired im-
age from the mounted stereo camera. Right, the generated 2
depth map. (b) The result of the 3D MVF representation of
the proposed approach.

T T
—— Salient Based Alg
Depth Integrated Alg

formation from the generated depth maps as shownin | o
fig. 5. s w
The proposed approach for 3D MVFs represen- 2 e
tation is very important to the 3D motion segmen- 2
tation process, especially where the scene ground is ]
heavily textured which results on generating reason-
able amounts of MVs. Such MVs of the scene ground o5p
should not interfere with other MVs in the 3D mo- e o
tion segmentation process, otherwise false results will
be generated. The accurate positioning of such MVS g e 7. progression of the root mean square error

gives the ability to easily detect and eliminate them g, (c(py,)) over the total iteration stepk of the previ-

before starting the process of 3D motion segmenta- ously represented synthetic MVF for the proposed depth-

tion. integrated algorithm compared to the segmentation ap-
Furthermore, detecting a predefined motion pat- Proach in (Shafik and Mertsching, 2008).

tern as shown in fig. 6 has been achieved where the

cone is moving to the left while the robot is slowly Stepsk of the previously represented synthetic MVF

moving forward and the ball size is increasing, and for the proposed algorithm compared to the segmen-

also in fig. 5 where the mounted stereo system is mov- tation approach in (Shafik and Mertsching, 2008).

ing forward. The MVs that present the translation in

the z direction (which describes possible upcoming

object movement) are represented in yellow. Inthe 5 CONCLUSIONS

first data set, the MVs representing the expanding size

of the ball have been detected as a possible CO“iSiOﬂ,We have presented a fast depth_integrated 3D motion

while in the second data set, the detected possible CO|-parameter estimation approach which enhanced the

lision were the upcoming car as well as the tree behind overall computation time of a 3D salient-based mo-

it and some part of the background scene. tion segmentation algorithm. In addition, the pre-
On the other hand, the proposed approach hassented 3D motion parameters representation algo-

a significant reduction of the total number of itera- rithm has taken into consideration the perspective

tions required for the 3D motion segmentation pro- transformation and the depth information to accu-

cess which leads to a noticeable computational time rately position motion vectors of the generated depth

improvement. Fig. 7 shows the progression of the root sequence in the 3D space using the geometrical in-

mean square errdgc(c(pm)) over the total iteration ~ formation of the stereo camera head. Moreover, the

10
Total Iterations No
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