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Abstract: In this paper, we present a new heuristic search algorithm for solving contingent planning problems with the 
partial initial condition and nondeterministic actions. The algorithm efficiently searches through a cyclic 
AND-OR graph with dynamic updates of heuristic values, and generates a contingent plan that is guaranteed 
to achieve the goal despite of the uncertainty in the initial state and the uncertain effects of actions. Through 
several experiments, we demonstrate the efficiency of this algorithm. 

1 INTRODUCTION 

Classical AI planning has the assumption that the 
entire initial state is known at planning time, and 
each action should deterministically produce an 
exact one outcome. A more realistic assumption is 
that the planner only knows part of this information 
at planning time, the rest must be acquired at plan-
execution time through observations, and each 
action may nondeterministically produce any of 
several outcomes. Several planning algorithms have 
been formulated to address these partially 
observable, nondeterministic planning problems 
(Ghallab, et al., 2004). Contingent planning 
algorithms construct a plan that includes both 
sensing actions and conditional execution of the 
actions in the plan. In general, contingent planning 
can be considered as search in a belief space to find 
a solution plan of which all possible different 
execution paths beginning from the initial belief 
state should end at one of goal belief states. In this 
paper, we present a new heuristic search algorithm 
for solving contingent planning problems with the 
partial initial condition and nondeterministic actions. 
The algorithm efficiently searches through a 
possibly cyclic AND-OR graph with dynamic 
updates of heuristic values, and generates a 
contingent plan that is guaranteed to achieve the 
goal despite of the uncertainty in the initial state and 
the uncertain effects of actions. Through several 
experiments, we demonstrate the efficiency of this 
algorithm.  
 
 

(:action sense_door_open 
:parameters (?R – robot  ?L1 ?L2 - location) 
:precondition (and (robot_in ?R ?L1) 
                              (unknown_door_open_between ?L1 ?L2)) 
:effect (or  
        (and (not (unknown_door_open_between ?L1 ?L2)) 
                (door_open_between ?L1 ?L2)) 
        (and (not (unknown_door_open_between ?L1 ?L2)) 
                (door_closed_between ?L1 ?L2)))) 
(:action carry 
:parameters (?R - robot ?L1 ?L2 - location ?O - object) 
:precondition (and (robot_in ?R ?L1) 

(door_open_between ?L1 ?L2) 
                              (object_in ?O ?L1) ) 
:effect (or  (and (not (robot_in ?R ?L1)) (robot_in ?R ?L2)) 

                        (grap_object ?R ?O) (not 
(object_in ?O ?L1))) 
                  (and (robot_in ?R ?L1)))) 
(:action move 
 :parameters (?R - robot ?L1 ?L2 - location) 
 :precondition (and (robot_in ?R ?L1) 

(door_open_between ?L1 ?L2)) 
 :effect (and (not (robot_in ?R ?L1)) (robot_in ?R ?L2))) 
(:action put_down 
 :parameters (?R - robot ?L1 - location  ?O - Object) 
 :precondition (and (robot_in ?R ?L1) (grap_object ?R ?O)) 
:effect (and (not (grap_object ?R ?O)) (object_in ?O ?L1)))

Figure 1: Domain actions. 

2 CONTINGENT PROBLEMS 

Planning with incomplete information can be 
formulated as a problem of search in belief space, 
where belief states can be sets of states.  

In this paper, we use the corresponding meta-
predicate formula, (unknown_predicate term1, .., 
termn) to represent that we do not know whether the 
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fact (predicate term1, …, termn) is true or not. A 
belief state b is represented as a set of literals, 
including some unknown meta-predicate literals. A 
deterministic action ad is described by a precondition 
and an effect. However, a nondeterministic action 
and may have more than one effect.  A sensing action 
as-l has at least one unknown literal lunknown in the 
precondition and two different effects including ltrue 
and lfalse respectively. Figure 1 shows some action 
descriptions of the Robot Navigation domain.  

The contingent planning problem with both 
partial initial condition and nondeterministic actions 
is Ppond = (D, bI, bG) and the domain is D = (L, B, A), 
where L is the set of all known and unknown literals, 
B is the set of all belief states, and A=Ad∪And∪As is 
the set of actions, that includes deterministic, 
nondeterministic, and sensing actions. bI, bG are the 
respective initial and goal belief states. Figure 2 
shows an example of contingent planning problem 
with partial initial condition. 

 
(:init 
   (robot_in robot l_corridor)  
   (object_in cup office1) 

(unknown_door_open_between conf1 r_corridor) 
(unknown_door_open_between lounge r_corridor)  

   (door_open_between l_corridor office1) 
   (door_open_between office1 conf1) 
    . . . 
   (door_open_between reception r_corridor)) 
(:goal 
   (and (robot_in robot reception) (object_in cup reception) ))

Figure 2: A planning problem. 

A solution of the given contingent planning 
problem Ppond can be represented as a policy π, the 
set of (belief state, actions) pairs, as shown in Table 
1. 

Table 1: A solution policy. 

Belief State Action 

(robot_in robot l_corridor) (object_in 
cup office1) 

(unknown_door_open_between lounge 
r_corridor) ... 

(move robot l_corridor 
office1) 

(robot_in robot office1) (object_in cup 
office1) (unknown_door_open_between 

lounge r_corridor) ... 

(carry robot office1 
l_corridor cup) 

. . . . . . 

(robot_in robot lounge) (grap_object 
robot cup) 

(unknown_door_open_between lounge 
r_corridor) ... 

(sense_door_open 
lounge r_corridor) 

. . . . . . 

3 HEURISTIC SEARCH 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

AND-OR-Search-Trial(b0)  
Begin 
  stateStack.CLEAR();  
  policyTable.CLEAR(); 
  localHistory.CLEAR();  
  stateStack.PUSH(b0); 
  While ￢stateStack.EMPTY() do  
  /* if there remain any unexplored branches */ 
    b = stateStack.POP(); 
    If b.GOAL() then  
      /* b is a goal state on the end of one branch */  
      solved = true; 
      b.VALUE = 0; 
      valueTable.UPDATE(b, b.VALUE); 
      localHistory.CLEAR(); 
      continue; 
    If localHistory.CONTAINS(b) then  
      /* b is a cycle state, not be included in a solution */ 
      solved = false; 
      break; 
    else 
      localHistory.PUT(b); 
   If policyTable.CONTAINS(b) then 
      /* b is already in a partial solution */ 
      localHistory.CLEAR(); 
      continue; 

a = b.GREEDY_ACTION();  
    If a = NULL then  
      /* b is a dead-end state */  
      solved = false;  
      b.VALUE = MAX_VALUE 
      valueTable.UPDATE(b, b.VALUE); 
      break; 
    policyTable.PUT(b, a);  
    If a is one of sensing actions then 
      b' = b.P_NEXTSTATE(a);  /*a positive state*/ 
      b" = b.N_NEXTSTATE(a); /*a negative state*/ 
      localHistory.CLEAR(); 
      stateStack.PUSH(b');  
      stateStack.PUSH(b");  
      b.VALUE = cost(b,a) + 0.5*valueTable.GET(b') 
                 + 0.5*valueTable.GET(b") 
      valueTable.UPDATE(b, b.VALUE); 
    else if a is one of non-deterministic actions then 
      next_states = b.ND_NEXTSTATE(a);  
      localHistory.CLEAR(); 
      For each b’ in next_states do 
          stateStack.PUSH(b’); 
      b.VALUE = cost(b,a) + 
         ∑b'∈next_states valueTable.GET(b') / |next_states| 
      valueTable.UPDATE(b, b.VALUE); 
    else if a is one of deterministic actions then 
      b' = b.NEXTSTATE(a);  
      stateStack.PUSH(b');  
      b.VALUE = cost(b,a) + valueTable.GET(b') 
      valueTable.UPDATE(b, b.VALUE); 
End 

Figure 3: AND-OR-Search-Trial. 
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We propose a heuristic search algorithm for solving 
contingent planning problems, called HSCP 
(Heuristic Search for Contingent Planning). It 
repeats multiple AND-OR-search trials beginning 
from the initial belief state until it obtains a complete 
solution (i.e., until solved becomes true), as shown 
in Figure 4. 
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HSCP(bs0 : initial belief state)  
Begin  
   valueTable.CLEAR(); 
   solved = false;  
   While solved = false do  
      AND-OR-Search-Trial(bs0);  
   return (policyTable.GET_POLICY());  
End 

Figure 4: The HSCP algorithm. 

Figure 3 summarizes the AND-OR search trial of 
the HSCP algorithm. During AND-OR search trial, 
just one candidate of solution subgraphs keeps to be 
expanded until its every tip node successfully arrives 
at one of goal belief states. Therefore, the AND-OR 
search trial is like the heuristic depth-first search that 
traverses along every AND branch of the solution 
subgraph. The initial value of a belief state b is 
assumed to be its heuristic value, h(b). Whenever a 
node is selected to be expanded, the value of the 
belief state in the node is updated with the values of 
its successors. However, HSCP does not 
backpropagate value updates over the entire 
subgraph. So the AND-OR search trial proceeds fast. 
When it meets a dead end state that has no 
successors, it sets the value of the state to the infinite 
number ∞. If the candidate subgraph is no longer 
expanded to be a complete solution, the search trial 
fails. And then a new search trial begins again with 
the updated value table. With the help of updated 
values of the states, the new search trial is able to 
expand another part of the AND-OR graph. As the 
number of search trials increases, the possibility to 
obtain a complete solution also increases.  In this 
way, HSCP can find a suboptimal solution of the 
given contingent planning problem very efficiently. 

 
Figure 5: Open and closed cycles. 

Our HSCP algorithm can distinguish open cycles 
from closed ones. The former has the possibility to 
arrive one of goal belief states, but the latter does not. 
(A) and (B) in Figure 5 show an open cycle and a 
closed cycle, respectively.  

 
Figure 6: Search space expanded by HSCP. 

Figure 6 shows the part of search space expanded by 
HSCP for solving the example problem of Figure 2. 

4 RELATED WORK 

There are several different algorithms for contingent 
planning problems: LAO*, RTDP, CondFCP, and 
ND-FCP. LAO*(Hansen and Zliberstein, 2001) is an 
extended version of AO*, the heuristic AND-OR 
search algorithm, so that it can find a solution 
subgraph containing open cycles. This algorithm 
obtains an optimal solution with just one search trial. 
However, during the search trial, it evaluates and 
expands multiple candidates of solution subgraphs 
simultaneously, and backpropagates value updates 
over the entire solution subgraph whenever it gets a 
new heuristic value of a tip node. Moreover, 
whenever it meets an open cycle, it continues tracing 
and value updating along the cycle until every state 
nodes in the cycle gets a converged value. 

RTDP (Bonet and Geffner, 2003) is a well-
known dynamic programming algorithm for solving 
nondeterministic contingent planning problems. It 
has two key advantages comparing with other DP 
algorithms: first, it obtains an optimal policy without 
computing the whole space, second, it has a good 
anytime behavior. However, RTDP usually requires a 
lot of search trials and value updates, so its 
convergence is slow. CondFCP(Kuter, et al, 2007) is 
an extended version of the classical forward-
chaining algorithm for solving planning problems 
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with partial initial condition. On the other hand, ND-
FCP(Kuter and Nau, 2004) is an extended one for 
solving nondeterministic planning problems. Both 
algorithms do just one search trial and expand only 
one candidate of solution subgraph during the search 
trial. They do not try to update heuristic values with 
new information. Therefore, they do not guarantee to 
find a solution and cannot be used for solving 
contingent planning problems with both partial 
observations and nondeterministic actions. 

5 EXPERIMENTS 

 
Figure 7: The number of search trials. 

 
Figure 8: The number of value updates. 

 
Figure 9: The number of generated states. 

We implemented the HSCP algorithm, and 
compared it with LAO* and RTDP on two partially-
observable, nondeterministic planning domains that 
are well-known from previous experimental studies: 
Robot Navigation and Blocks World. Three random 
problems were generated from each domain for 
experiments. We compared three different search 

algorithms in terms of the number of search trials, 
the number of value updates, and the number of 
generated states. Figure 7 ~ Figure 9 show the 
experimental results. While RTDP has performed 
lots of search trials to get the optimal values of states, 
our HSCP and LAO* have done just one or two trials 
for each problem. Out of three search algorithms, 
RTDP has tried value updates the most, but HSCP 
has done the least. Considering the number of 
generated states, we find out HSCP has explored 
much smaller search space than the other two 
algorithms. 

6 CONCLUSIONS 

We have presented a new heuristic search algorithm 
for solving contingent planning problems with the 
partial initial condition and nondeterministic actions. 
Through several experiments, we have evaluated the 
efficiency of this algorithm. 
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