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Abstract: Traditionally, a bottleneck preventing the development of more intelligent systems was the limited amount of
data available. However, nowadays in many domains of machine learning, the size of the datasets is so large
that the limiting factor is the inability of learning algorithms to use all the data to learn with in a reasonable
time. In order to handle this problem a new field in machine learning has emerged: large-scale learning,
where learning is limited by computational resources rather than by the availability of data. Moreover, in
many real applications, “very large” datasets are naturally distributed and it is necessary to learn locally in
each of the workstations in which the data are generated. However, the great majority of well-known learning
algorithms do not provide an admissible solution to both problems: learning from “very large” datasets and
learning from distributed data. In this context, distributed learning seems to be a promising line of research
with which to deal with both situations, since “very large” concentrated datasets can be partitioned among
several workstations. This paper provides some background regarding distributed environments as well as an
overview of distributed learning for dealing with “very large” datasets.

1 INTRODUCTION

In the year 2000, the total amount of information on
the Web varied somewhere between 25 and 50 ter-
abytes (School of Information and Management and
Systems, 2000). In 2003, in (School of Information
and Management and Systems, 2003) its size was es-
timated at 167 terabytes, i.e. it more than tripled in
just 3 years. By 2005, the total size was approx-
imately 600 terabytes (D-Lib Magazine, 2006), i.e.
another fourth times greater in two years. Nowa-
days, the total amount of information on the Web is
almost incalculable and, what is more, the “deep”
Web, which consists of specialized Web-accessible
databases and dynamic web sites, is anywhere from
400 to 550 times larger than the information on the
“surface” (School of Information and Management
and Systems, 2003). Furthermore, the unrestrainable
growth of data in fields such as bioinformatics, in-
trusion detection in computer networks, text classifi-
cation (spam, no-spam) or engineering problems in
which data are continuously recorded in a SCADA
system such as hydroelectric or nuclear power sta-
tions, opens the way for new applications of machine
learning as automatic data analyzers are needed since
a human, even an expert, cannot look at a “very large”

dataset and plausibly find a good solution for a given
problem based on those data. In this situation, new
challenges are raised regarding the scalability of cur-
rent learning algorithms in order to be able to effi-
ciently work with “very large” datasets.

1.1 Large-scale Learning

Users of “very large” datasets include researchers and
practitioners from diverse fields such as database sys-
tems or machine learning. This begs the question,
how large is “very large”? The answer is very dif-
ferent for each user in spite of sharing a research area
in some way related. In the first place, the database
community generally deals with gigabytes of data.
“Very large” to a database practitioner usually means
databases of 100 gigabytes or larger (Agrawal and
Srikant, 1994). On the other hand, researchers in ma-
chine learning generally deal with flat files and al-
gorithms that run in minutes or even seconds on a
reasonably priced computer. For them, 100,000 data
(instances× features) is the beginning for the range
of “very large” datasets (Provost and Kolluri, 1999).
Nevertheless, in order to provide a single answer, we
will take an algorithmic perspective on the issue of
“very large” since this work is focused on learning
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algorithms. So, for most published work on algo-
rithms, 1,000,000 data is considered to a be a “very
large” dataset (somewhere between 100 megabytes
and 1 gigabyte). Furthermore, this concurs with Hu-
ber’s assessment from a statistical perspective, given
in this KDD-97 invited talk (Huber, 1997): “Some-
where around data sizes of 100 megabytes or so, qual-
itatively new, very serious scaling problems begin to
arise, both on the human and on the algorithmic side”.
More recently, a sample of the increasing interest gen-
erated by “very large” datasets was revealed with the
organization of the workshopPASCAL Large Scale
Learning Challenge(Sonnenburg et al., 2009). This
workshop was concerned with the scalability and ef-
ficiency of existing learning algorithms with respect
to computational and memory resources. Thus, “very
large” datasets (more than 25 million data each) were
used during the challenge in order to assess the scala-
bility of learning algorithms. In this sense, most cur-
rent machine learning algorithms are able to deal with
medium-size datasets but they cannot be applied over
datasets with more than 1,000,000 data. In many
cases, learning algorithms are not able to process the
whole training dataset and, in practice, preprocessing
techniques are needed since frequently most of them
are limited to 200,000 data due to time or memory
restrictions. However, and that is the point, the need
for preprocessing techniques (e.g. subsampling) is a
constraint on learning algorithms by themselves and
is not a conceptual constraint for processing “very
large” datasets. Moreover, increasing the size of the
training set of learning algorithms often increases the
accuracy of the classification models (Catlett, 1991).

In order to handle “very large” datasets, a new
and active research field emerges: large-scale learn-
ing (Bottou and Bousquet, 2008; Sonnenburg et al.,
2007). This new field, which is located within ma-
chine learning, intends to develop efficient and scal-
able algorithms with regard to requirements of com-
putation, memory, time and communications. Thus,
for scaling up learning algorithms, the issue is not so
much as one of speeding up a slow algorithm as one
of turning an impracticable algorithm into a practica-
ble one, i.e. the crucial issue is seldom “how fast” you
can run a particular problem, but rather “how large”
a problem you can deal with (Provost and Kolluri,
1999). However, practically all existing implemen-
tations of algorithms operate with the training set en-
tirely in main memory. If the computational complex-
ity of the algorithm exceeded the main memory then
the algorithm will not scale well or will be unfeasible
to run. Finally, even if the scalability of learning algo-
rithms is achieved, there is still the question of its im-
pact on the goal of learning. Evaluating and compar-

ing performance becomes complicated if a degrada-
tion in the quality of the learning is allowed. Thus, we
are mostly interested in methods that scale up without
a substantial decrease in the quality of learning.

1.2 Scaling Up Learning Algorithms

Large-scale learning has received considerable atten-
tion in the recent years and many successful tech-
niques have been proposed and implemented (Moretti
et al., 2008; Krishnan et al., 2008; Raina et al., 2009).
The different techniques proposed in the literature can
be categorized into three main approaches where, in
most cases, techniques from separate categories are
independent and can be applied simultaneously. The
three main approaches are: a) design a fast algorithm,
b) use a relational representation, and c) partition the
data (Provost and Kolluri, 1999).

1.2.1 Fast Algorithms

The most straightforward approach to scaling up
learning algorithms is to produce more efficient al-
gorithms or to increase the efficiency of the exist-
ing ones, including a wide variety of techniques for
reducing asymptotic complexity, for optimizing the
search and representation, or for finding approximate
solutions rather than an exact one. However, it is usu-
ally the case where a fast algorithm may not be suffi-
cient for dealing with “very large” problems.

1.2.2 Relational Representations of Data

Most existing learning algorithms were not designed
to handle “very large” datasets. In particular, the great
majority were designed under the assumption that the
dataset would be represented as a single memory-
resident table. Unfortunately, producing flat files
from real-world datasets is usually unrealistic, since
the data is usually stored in relational databases and
the flattening-out process may not be feasible due to
time or memory space restrictions. The relational
representation approach addresses data that cannot be
feasibly treated as a flat file by learning directly from
any relational database. Thus, the ability of relational
databases to compress data is critical in order to learn
from “very large” datasets. In this sense, the devel-
opment of methods able to learn from a database is
needed in order to deal with “very large” datasets.

1.2.3 Data Partitioning

Data partitioning involves breaking up the dataset into
subsets, learning from one or more of them and, fi-
nally, combining the results. Thus, running algo-
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rithms on “very large” datasets is avoided since the
size of the subsets is usually many times smaller than
the whole dataset. Data partitioning can be catego-
rized based on whether they separate the subsets by
instances or by features, being a particular case those
that choose a subset of instances or a subset of fea-
tures, i.e. instance selection and feature selection, re-
spectively. Equally, multiple subsets can be chosen
and they can be processed in sequence (incremental
learning) or concurrently (distributed learning).

2 DISTRIBUTED LEARNING

One of the most promising research lines for large-
scale learning is distributed learning since allocating
the learning process among several workstations is a
natural way of scaling up learning algorithms. Fur-
thermore, the current trend of reducing the speed of
processor in favor of computer clusters and multi-core
processors leads to a suitable context for distributed
learning.

2.1 A Distributed Environment

A distributed computing environment can be defined
as a set of workstations physically separated but mu-
tually connected by a communications network, in-
cluding in this definition multi-core processors. In
this context, if the data is distributed across the work-
stations there are at least three possible kinds of frag-
mentation of the dataset: a) horizontal fragmentation,
whereby subsets of instances are stored at different
workstations; b) vertical fragmentation, whereby sub-
sets of features are stored at different workstations;
c) a combination of both (Caragea et al., 2001). In
this context, if subsets of data are denoted byD1, D2,
. . . ,Dn, and the corresponding complete dataset byD,
then a horizontally fragmented dataset has the follow-
ing property:

D1∪D2∪·· ·∪Dn = D (1)

where∪ denotes the set union. Hence,L being a
non-distributed algorithm, the challenge is to develop
a distributed learning algorithmLd which guarantees
the following property:

Ld(D1,D2, . . . ,Dn) = L(D1∪D2∪·· ·∪Dn) (2)

Similarly, a vertically fragmented dataset has the fol-
lowing property:

D1×D2×·· ·×Dn = D (3)

where× denotes the join operation. In a similar man-
ner, the challenge is to develop a distributed learning

algorithm Ld which guarantees the following prop-
erty:

Ld(D1,D2, . . . ,Dn) = L(D1×D2×·· ·×Dn) (4)

The great majority of distributed datasets are horizon-
tally fragmented since it constitutes the most suitable
approach for most applications. Vertical fragmenta-
tion is solely useful where the representation of data
could vary by adding new features, e.g. novel labora-
tory experiments.

While machine learning applications are now
most often distributed, most existing learning algo-
rithms cannot handle this circumstance. Thus, gather-
ing the distributed datasets in a single node for central
processing is required for the great majority of them.
However, this is usually either inefficient or unfeasi-
ble for the following reasons (Tsoumakas, 2009):

• Storage cost: the cost of storing a central dataset
is much larger than the sum of the cost of storing
smaller parts of the dataset. For example, con-
sidering a multinational corporation, with thou-
sands of establishments throughout the world,
who wants to store data regarding all purchases
of all its customers. The central storage of this
data would require a huge database at an enor-
mous monetary cost.

• Computational cost: in some way related to the
storage cost, the cost of learning on a “very large”
dataset is much larger than the sum of the cost of
learning on smaller parts of the dataset, that could
also be done in parallel. Following the example
above, the best way to quickly develop a success-
ful business strategy is to analyze the data in a dis-
tributed way, since analyzing the data in a central-
ized way takes too long due to the “very large”
number of instances.

• Communication cost: the exchange of a huge vol-
ume of data over a network could take a very long
time and also could require a enormous mone-
tary cost. Note also that it is common to have
frequently updated databases and communication
could be a continuous overhead. For example, fol-
lowing the above example and even when the stor-
age and computational costs were not too high, the
communication of a “very large” volume of data
takes too long for quickly developing a successful
business strategy.

• Private and sensitive data: there are many real-
world applications that deal with sensitive data
such as medical or financial records. Thus, even
if the communication cost is not so high, the ex-
change of raw data might not be desirable since
its privacy could be at risk. For example, finan-
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cial corporations who want to cooperate in pre-
venting fraudulent intrusion into their computing
systems (Kargupta et al., 2000). The data stored
by financial corporations is sensitive and cannot
be exchanged with outsiders. Moreover, even if
it were possible, the corporations could be rivals
and they may want to only exchange knowledge
without the exchange of raw data.

The development of distributed learning algorithms
seems necessary and for this it is receiving consid-
erable attention. In recent years, several distributed
learning algorithms were proposed in the literature
(Wolpert, 1992; Chan and Stolfo, 1993; Tsoumakas
and Vlahavas, 2002; Lazarevic and Obradovic, 2002;
Guijarro-Berdiñas et al., 2009) in order to learn from
distributed datasets in an effective and efficient way.
However, none of them so far have achieved wide
popularity since distributed learning is a relatively
new field and many solutions are implemented ad hoc.

2.2 Learning from Subsets of Data

Most distributed learning algorithms have their foun-
dations in ensemble learning (Dietterich, 2000). En-
semble learning builds a set of classifiers in a central-
ized way in order to enhance the accuracy of a single
classifier. Although there are other methods, the most
common one builds the set of classifiers by training
each one on different subsets of data. Afterwards, the
classifiers are combined in a concrete way defined by
the ensemble algorithm. Thus, the ensemble approach
is almost directly applicable to a distributed environ-
ment since a classifier can be trained at each work-
station, which stores a subset of data, and then the
classifiers can be eventually aggregated using ensem-
ble strategies. In this sense, the following advantages
of distributed learning come from the advantages of
ensemble learning (Guo and Sutiwaraphun, 1999):

• Learning accuracy: using different learning pro-
cesses to train several classifiers from distributed
datasets increases the possibility of achieving
higher accuracy especially on a large-size domain.
This is because the integration of such classifiers
can represent an integration of different learning
biases which possibly compensate one another for
their inefficient characteristics. Hansen & Sala-
mon (Hansen and Salamon, 1990) have shown
that, for an ensemble of artificial neural networks,
if all classifiers have the same probability of mak-
ing error of less than 0.5 and if all of them make
errors independently, then the overall error must
decrease as a function of the number of classifiers.

• Execution time and memory limitations: learning
in a distributed way provides a natural solution for

large-scale learning where algorithm complexity
and memory limitation are always the main obsta-
cles. If several workstations or a multi-core pro-
cessor are available, then each workstation or pro-
cessor, respectively, can work on a different par-
tition of data in order to independently derive a
classifier. Therefore, the memory requirements as
well as the execution time (assuming some minor
communication overhead) become smaller since
the computational cost of training several classi-
fiers on subsets of data is lower than training one
classifier on the whole dataset (see Section 2.1).

• Scalability: distributed learning is inherently scal-
able since the growing amount of data may be off-
set by increasing the number of workstations. In
this manner, scalability of distributed learning is
in some way related to execution time and mem-
ory limitations.

Since several classifiers are trained during the dis-
tributed learning process, the last outstanding issue is
related to the way in which they can be combined. In
distributed learning as well as in ensemble learning,
there are in general two types of information to be
combined: on the one hand, the classifiers by them-
selves and, on the other hand, the predictions of the
classifiers. In the first case, most learning algorithms
are concerned with learning concept descriptions in
the form of a decision tree or a set of rules, among
others, expressed in terms of the originally given at-
tributes. Nevertheless, the type of learning technique
employed at one workstation might be different from
the one employed at another, since there is no restric-
tion on this aspect. Consequently, the learning algo-
rithms could have different representations and, in or-
der to combine the classifiers by themselves, we need
to define a uniform representation to which the differ-
ent classifiers are translated. It is difficult to define
such a representation to encapsulate all other repre-
sentations without losing a significant amount of in-
formation during the translation. Furthermore, due to
this difficulty, one could restrict, to a large degree,
the information supported by the classifier. For exam-
ple, it is difficult to define a uniform representation
to merge a distance-based learning algorithm with a
rule-based learning algorithm and, even if it were pos-
sible, the amount of information lost during transla-
tion might be unacceptable.

An alternative strategy to combine classifiers is to
merge their predictions instead of the classifiers them-
selves. In this way, the representation of the clas-
sifiers and their internal organization is completely
transparent since the type of information is based on
the predictions which are the outputs of the classifiers
for a particular dataset, i.e. a hypothesized class for
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each instance. The predictions can be categorical or
non-categorical (associated with some numeric mea-
sure like probabilities or distances) but, in this case,
the difficulty to define a uniform framework is much
less severe. Thus, non-categorical predictions can be
treated as categorical by simply choosing the class
where the measure reaches the highest value. The
opposite is not considered, since converting categor-
ical predictions into predictions with numeric mea-
sures is undesirable or impossible. The great majority
of learning algorithms published in the literature fo-
cus their development on combining the predictions
of the classifiers, since any classifier can be employed
in this case, avoiding potential problems with concept
descriptions and knowledge representation.

2.3 Distributed Learning Algorithms

In recent years, distributed learning has received con-
siderable attention in the literature. However, few dis-
tributed algorithms have been proposed so far since
distributed learning is a relatively new field of re-
search. To date, distributed algorithms have not yet
achieved as high a level of popularity as artificial
neural networks or support vector machines in cen-
tralized learning. Moreover, some of the distributed
learning algorithms proposed focus only on distribut-
ing a dataset into multiple processors to exploit par-
allel processing to speed up learning. Only a few of
them take into account issues related to naturally dis-
tributed datasets as privacy-preserving computation
or communication costs.

The aim of this work is not to provide a deep re-
view of existing distributed learning algorithms but
to discuss some relevant issues in distributed learn-
ing. However, in order to facilitate the work for inter-
ested readers, some references regarding distributed
learning algorithms are detailed below. Some of
them were originally developed for ensemble learn-
ing, but they can be used as distributed learning with
a few modifications (basically, communication issues
have to be taken into account):Fixed rules (Kit-
tler, 1998),Stacked generalization(Wolpert, 1992),
Meta-learning(Chan and Stolfo, 1993),Knowledge
probing(Guo and Sutiwaraphun, 1999),Pasting votes
(Chawla et al., 2002),DAGGER(Davies et al., 2000),
Effective stacking(Tsoumakas and Vlahavas, 2002),
Effective voting(Tsoumakas et al., 2004b),Dis-
tributed boosting(Lazarevic and Obradovic, 2002),
Distributed clustering(Tsoumakas et al., 2004a), and
DEvoNet(Guijarro-Berdiñas et al., 2009).

3 DISCUSSION

Although some progress was achieved regarding dis-
tributed learning, many of the algorithms presented
in the literature perform simulated experiments on a
single computer and do not take into account restric-
tions regarding some distributed environments, e.g.
data privacy or communication costs. Moreover, usu-
ally the assessment of these algorithms is performed
on public machine learning datasets that are parti-
tioned in order to simulate a distributed environment.
This does not represent the singularities showed in
naturally distributed datasets where the data distri-
butions among partitions may not be identical. The
performance of the algorithms is affected by this fact
but most algorithms cannot handle it. Finally, com-
parisons among distributed learning algorithms pre-
sented in the literature are usually focused on assess-
ing a few algorithms on a few datasets and, what is
worse, they usually involve different evaluation cri-
teria. As a result, it is difficult to determine how a
method behaves and compare with others in terms of
accuracy, spatial and time complexity, or scalability.

4 CONCLUSIONS

An overview of distributed learning was presented in
this work. Distributed learning seems essential in or-
der to provide solutions for learning from both “very
large” datasets (large-scale learning) and distributed
datasets. On the one hand, “very large” datasets can
be scattered among distributed workstations, turning
an impracticable algorithm into a practicable one. In
this sense, distributed learning provides a scalable so-
lution to deal with “very large” datasets since the
growing volume of data may be offset by increas-
ing the number of workstations. On the other hand,
distributed learning avoids the necessity of gathering
distributed data into a single workstation for central
processing, saving time and money. Moreover, situ-
ations where learning was not possible become pos-
sible by keeping intact the privacy of the data. For
future work, a deep study of distributed learning al-
gorithms appears necessary.
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