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Abstract: For embodied agents that interact with people in time-sensitive applications, such as robot assistants or au-
tonomous characters in video games, effectiveness can depend on responsive and adaptive behavior in dynamic
environments. To support such behavior, agents’ cognitive and physical systems can be modeled in a single,
shared language of dynamical systems, an integrated design that supports performance with mechanisms not
readily available in other modeling approaches. In this paper, we discuss these general ideas and describe
how hybrid dynamical cognitive agents(HDCAs) employ such integrated modeling, resulting in dynamically
sensitive user interaction, task sequencing, and adaptive behavior. We also present results of the first user-
interactive applications of HDCAs: As demonstrations of this integrated cognitive-physical intelligence, we
implemented our HDCAs as autonomous players in an interactive animated Tag game; resulting HDCA be-
havior included dynamic task re-sequencing, interesting and sensible unscripted behavior, and learning of a
multi-faceted user-specified strategy for improving game play.

1 INTRODUCTION

In interactive applications such as video games or per-
sonal robotics, embodied agents should be adaptive
and responsive to users. In this paper, we present an
intelligence modeling framework that supports these
qualities: Influenced bydynamicistcognitive science
—the study of mind as a dynamical system rather
than a discrete, computational one (Port and van
Gelder, 1995; Spivey, 2007)— ourdynamicalintel-
ligence model integrates the physical and cognitive
sub-systems of an agent in a shared language of dif-
ferential equations, providing a unified, dynamically
sensitive substrate for behavior. In particular, we de-
scribe howhybrid dynamical cognitive agents(HD-
CAs) (Aaron and Admoni, 2009; Aaron and Admoni,
2010) can reflect these ideas ofintegrated dynamical
intelligence, and to illustrate these ideas, we present
the first user-interactive applications of HDCAs.

The design of HDCAs’ cognitive systems is influ-
enced unconventionally by thebelief-desire-intention
(BDI) theory of intention (Bratman, 1987) and its im-
plementations (e.g., (Georgeff and Lansky, 1987) and

successors), which established that BDI elements (be-
liefs, desires, intentions) are an effective foundation
for goal-directed intelligence. Unlike typical BDI
agents, HDCAs’ cognitive models interconnect BDI
elements in a continuously evolving system inspired
by spreading activationframeworks (Maes, 1989).
Each BDI element in an HDCA is represented by an
activation value, indicating its salience and intensity
“in mind” (e.g., intensity of commitment to an inten-
tion), and cognitive evolution is governed by differ-
ential equations, with activation values affecting rates
of change of other activations. HDCAs employ these
dynamical cognitive representations on bothreactive
anddeliberativelevels, distributing goal-directed in-
telligence over both levels. For example, HDCAs can
re-order task sequences simply by evolution ofdy-
namical intentions, without propositional deliberation
(Aaron and Admoni, 2009).

The physical systems of HDCAs —comprising
the elements pertinent for navigation, i.e.,xy-location,
velocity, and heading angle— are also modeled by
differential equations; for this paper, HDCAs’ nav-
igation intelligence is based on (Goldenstein et al.,
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2001). Thus, physical and cognitive systems in HD-
CAs are unified in the common language of differen-
tial equations, which is critical to the HDCA learning
demonstrations in section 3.3.

Along with the continuous evolutions of cog-
nitive activations and physical variables, discrete
changes —e.g., transitions from one task or behavior
to another— can occur when activations reach pre-
specified thresholds. Thus, we formally model an
HDCA as ahybrid dynamical system(hybrid system,
for short) (Alur et al., 2000). Discrete task transitions
also illuminate the roles of intentions andsequencing
intentions(see section 2.1) in our HDCAs: Conceptu-
ally, sequencing intentions have activations that rep-
resent intentions to perform tasks in a temporal rela-
tionship (e.g., to performX beforeY), as distinct from
standard intentions associated with individual tasks.
(In this paper, we consider only HDCAs with one
intention for each task.) Sequencing intentions are
critical elements ofguards—threshold conditions for
when discrete transitions occur— in agents’ hybrid
systems, so dynamical task re-sequencing emerges or-
ganically from continuous cognition.

As a motivating example for the ideas in this pa-
per, consider a child playing Tag, avoiding a player
designated asIt as well as other obstacles. She wants
to accomplish many things before the game ends: ac-
tively protect a friend in the game for a while; ac-
tively try to become It and tag an adversary; and
reach severalbases, locations where she cannot be
tagged by It. She can only do one of these tasks at
a time, so she begins with an intended task sequence
that achieves her goals, but as the game proceeds, she
re-sequences tasks in response to her environment.
Moreover, while playing, her behavior shows sensi-
ble subtleties, such as making decisions a bit more
quickly when she’s comfortably near her goal.

In demonstrations for this paper, such a player is
implemented as an HDCA in an interactive, animated
Tag game, illuminating the capabilities of integrated
dynamical intelligence. In conventional agents, for
example, task re-sequencing such as the child per-
forms is deliberative, but in HDCAs, it arises from
sub-deliberative cognitive evolution. Moreover, our
integrated modeling enables moment-by-moment in-
teractions among elements considered cognitive and
those considered physical, which evoke micro-scale
effects that can cascade into observable effects (see
section 3.2). We also demonstrate how an HDCA can
learn a multi-faceted Tag strategy, perhaps based on
user input during a game, extending previous HDCA
learning methods to this application domain.

2 HYBRID DYNAMICAL
COGNITIVE AGENTS

HDCAs can be viewed as havingphysicalandcogni-
tive sub-systems, composed of the differential equa-
tions and variables describing the behavior conven-
tionally considered physical or cognitive, respec-
tively; BDI elements are thus considered cognitive,
while xy-location and heading angleφ are physi-
cal. HDCAs are implemented by augmenting phys-
ical systems with cognitive BDI elements and their
activation values. For this paper, cognitive activa-
tions are within[−10,10], where near-zero values in-
dicate low salience and greater magnitudes indicate
greater intensity of associated concepts—e.g., more
active intentions represent more commitment to the
related tasks. Negative values indicate salience of the
opposing concept, so, e.g., a moderate desire to not
cycle the bases and strong commitment to protect a
friend could be encoded by value−3 on a desire for
runBases and value 9 on an intention forprotect.

Our HDCAs’ cognitive activations are intercon-
nected in differential equations. A partial cognitive
system —with many equations omitted and terms
elided in equations shown— is in equation 1, in which
beliefs, desires, and intentions are represented by
variables beginning withb, d, andi, and time deriva-
tive variables are on the left in each equation:

˙dRun = −c1 ·bAmIt+c3 · iRun+ . . . (1)
˙iTag = d1 ·bAmIt−d3 ·dRun+d4 · iTag+ . . .

˙iRun = −e1 ·bAmIt−e2 ·dTag+e5 · iRun+ . . .

This illustrates interconnectedness: Elements have
excitatoryor inhibitory influence on activations by in-
creasing or decreasing derivatives. In equation 1, vari-
ables stand for activations of cognitive elements such
as the desire to run around the bases (dRun) and the
belief that the agent is It (bAmIt); coefficients repre-
sent the impacts of the connections between elements.

2.1 Our HDCA Implementation

Because HDCA behavior consists of switching
among multiple, continuous behaviors, our HDCA
implementation is based on ahybrid automaton(Alur
et al., 2000), a state-transition model of hybrid sys-
tems. Each hybrid automaton has discretemodesrep-
resenting individual behaviors or tasks, each having
differential equations that govern variables’ evolution
in that mode, andguard constraints describing when
mode transitions occur (see Figure 2). We straight-
forwardly implemented and simulated our HDCAs as
hybrid systems in MATLAB, with modes as functions
containing guards for mode transitions and dynamical
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systems for agent evolution. Within the hybrid au-
tomaton structure, our HDCAs also include the struc-
tures described below for dynamical intelligence.

2.1.1 Task Sequencing

In addition to standard intentions, our HDCAs have
sequencing intentionsfor dynamic task sequencing.
In this paper, we implement sequencing intentions as
pairs; the activation of sequencing intention(A,B) is
the difference in activations of corresponding inten-
tions, iA − iB, representing the commitment to per-
forming actionA before actionB. To determine task
sequence in an HDCA with actionsα1 . . .αk, for each
actionαi , we sum activations on thek sequencing in-
tentions withαi in the first position; the descending
order of these associated sums induces a sequence on
the actions. Sequencing intentions could in principle
encode other concepts, but this suffices to illustrate
integrated intelligence in HDCAs.

Activations on intentions and sequencing inten-
tions evolve over time, so at any time, a new actionαi
might attain maximum priority and re-sequence tasks.
When a task is finished, intentions and sequencing in-
tentions are altered to reflect that, and the agent con-
tinues in the new maximal-priority action.

2.1.2 Cognitive-physical Integration

Because of integrated intelligence in HDCAs, any
variable, cognitive or physical, could affect any other
variable. To illustrate how any physical element in
HDCAs could subtly affect any aspect of cognitive
state, we demonstrate an extreme case: physical el-
ements considered “involuntary” affecting cognitive
elements considered “subconscious.” In particular,
we encode that cognitive dynamics, as specified by
differential equations governing activation evolutions,
should accelerate slightly when the agent is more “re-
laxed,” i.e., near a target location and not turning
rapidly. To do this, we construct a physical-cognitive
multiplier pcmso that physical values can affect ac-
tivations of BDI elements: values ofpcmrange from
1 to 1+ p, wherep is a designer-specified parame-
ter, and intensify cognitive evolution by multiplica-
tion with time derivatives, e.g.,iTag = pcm· ˙iTag ·
timeStep+ . . ., instead ofiTag= ˙iTag· timeStep+ . . ..

The pcm function in our demonstrations begins
with functione−k1(|φ̇|+d) of angular velocitẏφ and cur-
rent distanced from the target, so that when(|φ̇|+d)
is close to 0, the function value is close to 1, and as
(|φ̇|+d) gets larger, the function value gets closer to
0. Designer-chosen constantk1 > 0 controls the rate
at which values approach 0 as(|φ̇|+d) grows. Build-
ing upon this, to get our desired effect, we chose:

pcm= 1+ p

(

2
π

sin−1(e−k1(|φ̇|+d))

)k2

(2)

This enables a boost as agents near targets and
stop turning, with much less effect outside of the de-
sired range for(|φ̇|+ d); it could be changed for dif-
ferent effects. (Parameter values for our demonstra-
tions are available at (Aaron et al., 2011).)

3 EXPERIMENTS

As a demonstration domain for our HDCAs, we im-
plemented animated interactive Tag games containing
a userplayer and two kinds of autonomous players:
simple Tagagents, HDCAs with limited intelligence;
and cognitive Tagagents, with more extensive dy-
namical intelligence. Agents intuitively interact with
other agents and the user: Each It agent pursues some
non-It player; each non-It agent avoids It players and
views non-It players as safe. To make the game more
adversarial, agents also have slight anti-user biases,
and two players at a time are It. The field of play
(Figure 1) is a square withbasesnear the corners,
obstacles between bases, and other players. Players
touching base cannot become It, but they cannot stay
on base too long before moving away. Players are pe-
nalized for touching an obstacle.

3.1 Autonomous Tag Players

A risk-averse non-It player could simply run clock-
wise from base to base, hoping not to be forced into
a position to get tagged. A simple Tag agent (STA)
executes that strategy. When an STAS becomes It,
it chooses from two possibleIt-actions: chasing the
user; or chasing an agent. If another It player is chas-
ing the user,S joins the chase; if not,S tries to tag
the closest non-It agent. In addition, ifS engages
in one of these It-actions for a long time, “boredom”
sets in, represented by attenuation on the correspond-
ing intention activation, soS will eventually switch
to the other It-action. Unlike a cognitive Tag agent
(CTA), an STA’s cognitive structure is a very simple
dynamical intention-based system, straightforwardly
supporting only the design and behavior noted above.

A cognitive Tag agent more fully demonstrates
dynamical intelligence and cognitive-physical inte-
gration; see Figure 2 for its mode-level architecture
and BDI elements. When a CTAC is not It, it will
try to accomplish all of the following actions be-
fore the game ends:runBases, cycling the bases (as
STAs do); getMitten, retrieving its mitten (which
the poor agent drops in every game);protect, spend-
ing time protecting a friend from being tagged; and
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Figure 1: An annotated screen shot of our Tag game, illustrating field layout and players on the field, including simple Tag
agents (STAs) and cognitive Tag agents (CTAs). Color variations distinguish entities, as does the convention that players,
human-controlled or automated, are numbered, while bases and obstacles are not. The program indicates the base to which
the cognitive Tag agent is heading by drawing a light circle around that base. See supplementary website (Aaron et al., 2011)
for further details of color, notation, and function of elements in our animated Tag games.

Figure 2: The mode-level architecture and BDI elements of a cognitive Tag agent. Each mode also has self-transitions, omitted
by convention to avoid visual clutter.

readyToTag, trying to become It and tag an adver-
sary. ThegetMitten action is implemented by se-
lecting a time when, whereverC is, its mitten drops;
soon after,C finds the mitten’s location, and activa-
tions on BDI elements evolve until, in general, mitten-
retrieval becomesC’s highest priority. To enable
protect andreadyToTag, C has beliefs of affinities
for each player in the game, andC will protect a non-
It player with maximal affinity duringprotect, and
pursue a non-It player with minimal affinity during
readyToTag. These non-It actions are dynamically
re-sequenced, based on time pressure, affinities, and
proximity to locations (e.g., a base, an adversary).

When a CTA is It, it either follows through on a
readyToTag action or selects between pursuing the
user or an automated player, exactly as an STA would.

3.2 Experiments

We performed various demonstrations of HDCA in-
telligence. Some were proofs that our ideas work
as expected in sensible environments. One showed
that CTAs can follow instructions, e.g., that cogni-
tive evolution need not prevent them from completing
tasks in accord with initial intention activations. An-
other illustrated physical-cognitive multiplierpcm: In
a contrived situation, two cognitively identical CTAs
were equally near a target, one facing the target, the
other facing away; the CTAs then changed heading
angle as usual, but not position. As a result, the CTA
facing the target had higherpcmvalues and changed
task-modes faster than the other CTA. These are all
expected demonstrations of proper performance; for
more details, see (Aaron et al., 2011).
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In other experiments, specific values were var-
ied in controlled environments, to investigate partic-
ular effects. As examples, we simulated many game
segments with identical CTAC; initially, C’s inten-
tions implied task order [readyToTag, runBases,
protect, getMitten]. Across simulations, two fac-
tors varied —whenC dropped its mitten; and when
C was tagged by the user (which was automated,
for replicability)— to illuminate dynamicist effects in
game play. Asmitten-dropgrew later withget-tagged
held constant, for example, the time at whichC moved
from readyToTag into runBases was not affected,
but the time at whichC then enteredprotect tended
to get earlier. In addition, for particular values of
mitten-dropandget-tagged,C enteredprotect mode
—in which movement is not obstacle-avoidant— at
an inopportune moment and ran straight into an It
player. This sequence of events and ensuing cascade
of effects illustrates how engaging, unscripted behav-
ior can emerge from the continuous-level variations
supported by our HDCA framework.

For additional details and other results, including
natural game play, see (Aaron et al., 2011).

3.3 Learning

To support learning from unpredictable users,
cognitive-physical integration is maximally flexible:
All physical and cognitive variables can be intercon-
nected, and any connection can be modified by learn-
ing. For our demonstrations, HDCAs are trained by
reinforcement learning similar to that in (Aaron and
Admoni, 2010), which requires heuristics selecting
which connections to modify during learning and cri-
teria for when learning is complete. Learning occurs
without interrupting interactive applications.

As preparation, we first determinedcontrol condi-
tion behavior by letting a game play extensively (for
more than 8000 simulated seconds), with an auto-
mated user for replicability. In this game setup, when
a cognitive Tag agentCctrl became It,Cctrl would al-
most always tag some other player in less than 25 sim-
ulated seconds (average: 12.85 seconds). In addition,
the valueactrl of the average number of bases reached
per execution of therunBases behavior, over the full
game, wasactrl = 4.01 (see Figure 3).

Based on this, we demonstrated a CTAC learning
from a simulated user request to change one aspect
of game play without affecting another; it exempli-
fies an arbitrary user choice, unrelated to agent de-
sign and substantively changing control behavior. The
goal had two components:speed change, requiring
speed-onlylearning; andbase-running maintenance,
requiringspeed-and-bases (SB)learning.

• Speed change: After becoming It,C should opti-
mally tag some other player between 25 and 45
seconds later. Speed-only training (and thus par-
tial SB training, see below) occurs whenC tran-
sitions out ofchase mode. If the timeC was It
is outside of the desired range (25–45 seconds),C
is trained to become slower or faster, as appropri-
ate, by a factor that depends on exactly how far
outside of the desired rangeC was It.

• Base-running maintenance: Despite the effects
of speed-only learning,C should only minimally
change the valueaC of the average number of
bases reached during eachrunBases behavior.
SB training occurs whenC transitions out of
runBases mode: aC is updated, and coefficients
in cognitive differential equations are altered to
train C to approach the desired, control value
of 4.01 in the future. As a partial example, if
aC < 4.01, coefficients in the differential equation
governingiRun are altered so thatC tends to re-
main longer inrunBases, encouraging greateraC
in the future. The amounts altered depend on val-
ues such as the velocity ofC when training occurs,
exemplifying cognitive-physical integration: Val-
ues of physical variables affect cognitive adjust-
ments.

To focus our demonstrations, the connections mod-
ified during training were pre-selected, though the
adjustments were autonomous. More details on the
learning process are available at supplementary web-
site (Aaron et al., 2011).

Our tests demonstrateC successfully learning
integrated cognitive-physical behavior during game
play: C slowed to spend more time as It before tag-
ging another player (average time: 32.62) while also
maintaining a bases average ofaC = 4.21, very close
to 4.01. Figure 3 illustrates the effects of SB learning
on aC and base-running performance. Additionally,
Figure 3 shows that speed-only learning without full
SB learning resulted in a value ofaC = 2.19 in other-
wise identical game play, suggesting the importance
of integrated learning for the desired goal.

4 CONCLUSIONS

This paper describes the integrated cognitive-physical
intelligence underlying our HDCAs, and it presents
the first applications of HDCAs in interactive scenar-
ios. Agent cognition in our HDCAs is based on con-
tinuously evolving activations of BDI-based cognitive
elements, enabling a model that unites cognitive and
physical intelligences in a single system; as a result,
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Figure 3: Results of learning. Lines correspond to thecontrol condition agent (in dark blue, dotted line; circle data points), a
speed-onlyagent trained only to change its speed to meet criteria for time spent as It (mid-dark orange; diamond points), and
a speed-and-basesagent trained to both change its speed and change its cognitive system, to have a desired amount of time
spent as It and arunBases bases-average close to that in the control condition (lightgreen line; triangle points).

HDCAs extend conventional reactivity without sacri-
ficing real-time responsiveness. Demonstrations in an
animated Tag game suggest that integrated dynami-
cal intelligence supports reactive task sequencing and
sensible unscripted behavior that could improve game
play, and that HDCAs can exploit cognitive-physical
integration to learn multi-faceted strategies during
play. These examples illustrate general principles that
could apply to unpredictable learning requirements
during games or other interactive applications, for vir-
tual or physical agents.
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