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Abstract: We propose a new approach for teaching a humanoid-robot a task online without pre-set data provided in 
advance. In our approach, human acts as a collaborator and also as a teacher. The proposed approach 
enables the humanoid-robot to learn a task through multi-component interactive architecture. The 
components are designed with the respect to human methodology for learning a task through empirical 
interactions. For efficient performance, the components are isolated within one single API. Our approach 
can be divided into five main roles: perception, representation, state/knowledge-up-dating, decision making 
and expression. A conducted empirical experiment for the proposed approach is to be done by teaching a 
Fujitsu’s humanoid-robot "Hoap-3" an X-O game strategy and its results are to be done and explained. 
Important component such as observation, structured interview, knowledge integration and decision making 
are described for teaching the robot the game strategy while conducting the experiment. 

1 INTRODUCTION 

Learning from the environment through interaction 
is a skill well mastered by human beings. Humans 
adopt their learning algorithms according to the task 
in which they wish to learn. For example, learning 
how to drive cars is different from learning how to 
play chess. If we are learning chess through 
empirical teaching class, the teacher and the 
collaborator is only one person. The learner plays 
following naive game theories at the early stages of 
learning procedure. In order to improve these naive 
theories the collaborator performs an interruption to 
the game events through various forms according the 
situation. On the other hand, the learner needs to 
understand the context of such interrupted situations 
in order to update his knowledge, and make use of it 
whenever needed. Therefore, the learner starts 
expressing his misunderstanding through various 
multi-modals interactions. The interaction between 
the learner and his teacher improves the learner 
understanding level about these situations. In these 
cases, the learner’s brain processes these situations 
to store certain information about these situations, 
which improves the learner’s naive theories of the 
game. Theoretically based on many cognitive 
researches, human learning is assumed to be 
“storage of automated schema in long-term memory 

of human brain” (Sweller, J 2006). Schema is 
chunks of multiple individual units of memory that 
are linked into a system of understanding ( 
Bransford, J., Brown, A., 2001 ). However, the 
learner’s brain performs many processes to the input 
data at different places, such as short-term memory 
and working memory (Baddeley, A. D 1996). Then a 
certain extracted data is stored at its long-term 
memory. The short-term memory is assumed as the 
place where experiencing any aspect of the world. 
Working memory is a place where thinking gets 
done. It is actually more brain function than a 
location. The working memory is dual coded with a 
buffer for storage of verbal/text elements, and a 
second buffer for visual/spatial elements (Marois, R. 
2005). The main function of Long-term is storing the 
learned data as a schema to make use of it when ever 
needed, without the need of learning the subject 
from the first steps again. The main phases of the 
learner’s brain in learning such a task are 
observation of the task sequences, interviewing 
about what we do not understand, recording the 
concluded data from observation and interviewing, 
process tracking and making use of the recorded 
data to support a hypothetical scenarios for making 
decisions. In this paper, we describe an architecture 
through which a human teacher teaches a humanoid-
robot "Hoap-3" the game strategy through an 
interaction algorithm which humans follow in order 
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to learn a task for the first time. Many other 
architectures for teaching a robot by demonstration 
were introduced ( Kuniyoshi. Y., M. Inaba. M, and 
Inoue. H. 1994)(Voyles. R and Khosla P. 1998). 
However such approaches use demonstrations in 
order to optimize a predefined goal, and also the 
interactive behaviours follow human-machine 
(Reeves, B. & Nass, C. 1996) interaction, but does 
not follow human-human interaction, which come 
out of the strict paradigm that robots are following. 
A tutelage and socially guided approach for teaching 
the humanoid robot "Leo" a task (Lockerd A., 
Breazeal C. 2004) was proposed, where machine 
learning problem is framed into collaborative 
dialogue between the human teacher and the robot 
learner, however every task has a specific single 
goal. In our approach making decisions is based on 
accumulative learning that "Hoap-3" gains while 
interaction, additionally adaptive selections 
behaviour for each new situation in order to achieve 
individual goals based on the accumulative learning 
information. As an architecture about learning and 
interacting in human-robot domain and task learning 
through imitation and human-robot interaction 
(Nicolescu M. N., Mataric M. J 2001), a behaviour 
based (Barry Brian Werger, 2000) interactive 
architecture applied to a Pioneer 2-DX mobile robot 
is proposed. In these approaches the behaviours are 
mainly built from two components, abstract 
behaviour and primitive behaviours. However these 
two architectures are not suitable and flexible 
enough to be applied for teaching a robot various 
tasks through interaction. Also this method in 
various forms has been applied to robot-learning for 
different single-task such as hexapod walking (Maes 
P. and brooks R. A. 1990), and box-pushing 
(Mahadevan S. and Connell J. 1991). Many other 
single task navigation and human-robot instructive 
navigation (Lauria S., Bugmann G., 2002) have been 
proposed. In our proposed architecture there is no 
data provided in advance, and the goals of a task are 
being taught while interactions. 

 

Figure 1: The robot interacts with its human teacher. 

Moreover, the interactive behaviours are 
resembled to those of human’s behaviours while 
learning. In this paper, the main features of our 
architecture and the developed behaviours are 
explained at the following sections. Following this 
section, the internal system structure is explained. 
Then decision making process is explained. At the 
last two sections, testing our architecture and results 
from an experiment are explained. This is followed 
by discussions about our architecture. 

2 OUR ARCHITECTURE 

In our approach we use an upper torso of a 
humanoid robot "Hoap-3", which has a total 28 
degree of freedom (DOFs), 6 flexibility degrees in 
each arm, and other 6 flexibility in each leg, 3 
flexibility degrees in the head, one degree in the 
body (see figure 1). 

In order to provide an interactive learning 
behaviour, the architecture must be flexible. This 
improves the internal processing strategy between 
the architecture components, which enables the 
robot to recognize and identify its environment 
correctly, which in return, improves the efficiency of 
mapping between the robot expression components. 
This flexible system provides perfect interactive 
behaviours in response to its environment changes. 
To achieve such an aim, we designate architecture 
which composed of multi-components within a 
single API root layer (see figure 2). 

Our architecture has components requiring 
information from the system, such as environment 
handling, knowledge updating and expressions, and 
other components which provide information to the 
system, such as streaming information from the 
environment through a vision sensor. In addition, it 
has intermediaries components that provide the 
necessary information within the system. In our 
design we isolated these components from each 
other. A proper combination of these components 
can perform fair specialized behaviours. The next 
subsection will describe and explain such interactive 
behaviours. 

2.1 Interactive Expressions  

The expressions performed by the robot must be 
influenced by the task at which the robot is 
interacting with, and of-course in addition to the 
internal final information that resulted from 
processing the task events. However, behaviours 
performed by the robot are mainly low level-
behaviours. 
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Figure 2: Hoap-3 mind-map. 

Main_Loop() // Where the work gets done 
{ 
Do-Processing (): feature detection-

observation,confirmation/representation, 
state/knowledge, decision-making.etc. 

}  
------------------------- 

Void Vision_sensor_component  
{ 
While: true 
Stream into the main processing loop 
} 

------------------------ 
Motor_expression(source, target) 
{ 
While: true 
Get-from-main-process-loop (source, 

target) 
 
Set trajectory  
Perform-low-level-interface 
} 

Figure 3: Main components of our architecture. 

The low-level robotic behaviours mainly include 
processing the streamed signals from the sensors, 
and performing low level interface to the robot 
actuators. A proper combination of such individual 
low-level behaviours enables the robot to produce a 
higher level behaviour. The robot expression may be 
motor-expression Μ or utterance-expressions U. 

Μ = { m1, m2, m3, … , mi} 
U ={ u1, u2, u3,…..…,  ui} 

(1)
 

Motor-expression is a component that provides the 
mapping from high-level commands to low-level 
motor commands that are physically realized as 
high-level behaviours while executing a task. It 
consists of collection of trajectory motor angle 
algorithms mi at any step of the task in low-level 
parameters that provide a task execution to be done. 

The utterance-expression is a collection of 
individual spoken words ui at any step of the task. A 
proper combination of the individual words ui 
produces high-level interactive behaviours while 
interacting with the robot. In our architecture, since 
the other components have the knowledge of 
contextual state information, the developer 
responsible for utterance-expressions does not need 
to worry about this contextual information. 

In the approach of learning and playing a game 
such as X-O game, the robot must have the 
capability of moving an object from one place to 
another. The source and the target of an object are 
specified by decision-making process. However, a 
source of an object at a situation may become a 
target at another situation. Therefore, and in order to 
avoid the duplicating the software code and inverse 
kinematics calculations, a software plug-in is to 
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override the system and handle such a conflict by 
controlling the robot gripper. Mapping and selecting 
the motor-expression Μ or utterance-expressions U 
are made by the Decision-making (will be explained 
later) based on the information stored at the long-
term memory; also the conclusion depends on the 
environment events computed by the perception 
component. In the next section we will describe the 
internal components strategy in processing the 
information while teaching the robot a task.       

3 SYSTEM ARCHITECTURE  

In this section, to show a theoretical instantiation of 
the architecture and procedure of interacting with a 
robot, X-O game developed between a human 
partner and "Hoap-3" is referred. X-O game consists 
of 3*3 square board, and six game pieces. Three for 
a human partner (h square parts and indexed as 2 
while processing) and the other three are for the 
robot ( r round parts and indexed as 15 while 
processing). Human plays first, and then the robot 
plays (see figure 1). Winning is achieved when one 
of the players assembles a complete line (row or 
column). Human partner should play only one of his 
own game pieces at his game turn, and then prompts 
the robot to play, and it is the same for the robot. It 
only should play one of its game pieces, and then 
prompts its human partner to play. We divided the 
X-O game into stages, when one of the players wins, 
or the robot learns a new idea; a new stage starts 
from the home position all over again. While 
playing, the robot indexes every step played by the 
indexer (see figure 2); and records it as a variable 
named no_of_steps_played, also indexes every stage 
and records it as a variable named no_of_stage. A 
new stage starts if no_of_steps_played is reset to 
one. no_of_stage is increased by one while the game 
going. In the approach of teaching a humanoid robot 
the game strategy, we aim to teach the robot a high 
level behaviour performed by a human partner.  
The final information from low-level signals of the 
vision sensors results in a matrix Χ(h,r) that includes 
the number of the human game pieces h, and the 
robot game pieces r  at every game step as shown in 
figure 4. 

2 2 2 
0 0 0 

15 15 15 

Figure 4: The final matrix resulted from vision sensors 
processing (home position matrix). 

While playing, this matrix X is stored as archive data 

Φ as in equation (3)(see figure 2). 
 

Φ = {X(1,1) ,X(2,1), X(3,1),….. ,XN}, (2)
 

where N is the index number (no_of_steps_played, 
no_of_stage). Another place to store matrix X is the 
sensory memory as in human brain, however, in the 
sensory memory register λ, we only store a single 
piece of data X and replace every game step, as 
explained in equation (3). 
 

λ= Xn (3)
 

Where X is piece of data that denotes the game 
matrix, however n denotes to the index coordinate 
(no_of_steps_played - 1, no_of_stage) of the game 
step. 

At every game step, human teacher performs 
action δ. These actions are general actions or have a 
specific purpose ğ as equation 4 shows. 
 

δ= { δ│ğ 1│N, δ│ğ 2│N, δ│ğ 3│N,  …. ., δ│ğ i│N } (4)

The preceding equation δ denotes the action made 
by human teacher along task playing and teaching 
(general action), and δ│ğ denotes to the actions such 
that a specific purpose ğ  is achieved at game step N. 
In our task we have specific goals, such as teaching 
the robot a winning or defence movements 
(is_winning or is_defence) for the human teacher or 
for the robot (my_wining, my_defence) as explained 
in the next equation(5) which denotes that, for every 
special action δ a specific  purposes ğN at N index. 
 

ğ│iN = {is_winning, my_wining , is_defence my_defence} (5)

3.1 Observation of Human Behaviour 

In many proposed approaches (Brian S, Gonzalez J. 
2008), templates were provided in advance in order 
to assist the system to recognize the context an 
action. Also in another proposed approach 
(Mahnmoud, R. A., Ueno. A., Tatsumi, S., 2008), a 
knowledge data are provided in advance. However, 
in our architecture we extract the individual low-
level behaviour context which leads the robot to the 
high-level behaviour learning by applying the 
following algorithm. 

Starting from low-level processing, at which the 
robot is able to identify the game pieces coordinates 
according the 2-D camera frame and obtain the 
game matrix Χ(h,r). This contains the three pieces of 
the human teacher h and the other three pieces for 
the robot r. The robot should have the ability to 
recognize the high-level behaviour performed by 
human teacher. To do so, the observation component 
in our architecture performs the following processes. 
First the human game pieces are replaced with zeros, 
which  results in a matrix X׀N- Hoap-3"-Part that includes  
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only the robot game pieces as follows; 
 

X׀N- Hoap-3"-Part (h0=׀, r) 
 

Then the robot’s game pieces are replaced ones in 
which X  becomes a logical matrix X׀N-"Hoap-3"-Part, 
and includes only the spatial coordinates of robot’s 
game pieces at N step as follows;  
 

X׀N-"Hoap-3"-Part (h0=׀, r  (1= ׀
 

On the other hand the same processes are performed 
to the same matrix Χ(h,r) but for the teacher’s game 
pieces, and produces a logical matrix X׀N-Teacher-Part 
which includes the spatial coordinates of the 
teacher’s game pieces at the same N, as follows; 

X׀N-Teacher-Part (h1=׀, r  (0= ׀
 

Also the same processes are being performed to the 
data λ= Xn in equation (3) resulting two matrixes, 
the first one is logical matrix X׀n-"Hoap-3"-Part, includes 
only the spatial coordinates of robot’s game pieces 
at n step, and another logical matrix X׀n-Teacher-Part  
and includes only the spatial coordinates of teacher’s 
game pieces at the same step n as follows; 

X׀n-"Hoap-3"-Part (h0=׀, r  (1= ׀

and 

X׀n-Teacher-Part (h1=׀, r  (0= ׀
 

In order to obtain the context of the low level 
behaviour performed to the task is compare the both 
the data in XN and Xn in a special manner using Ex-
or logic gate as in the syntax followed in the two 
equations (6)(7);  

 

Ð׀ Teacher-Part = (X׀N-Teacher-Part(h1=׀, r  EX-OR (0= ׀
X׀n-Teacher-Part (h1=׀,r 0=׀)) (6)

 

and 
 

Ð׀ "Hoap-3"-Part= (X׀N-"Hoap-3"-Part (h0=׀,r  EX-OR (1= ׀
X׀n-"Hoap-3"-Part (h0=׀, r 1=׀)) (7)

 

The resultant data of this procedure is called an 
observation data β as shown in equation (8); 
 

β=< Ð׀ Teacher-Part , Ð׀ "Hoap-3"-Part > (8)
 

The resultant information from the observation is 
one of three cases directives statuses, status one < 
status=No pieces have been moved >, if 

β =<0, 0> 

Status two indicates <status= the robot game piece 
has been moved>, if 

β =<0, 1> 

And finally status three <status="User-Teacher" 
piece has been moved>, if  

β=<1, 0> 
In addition to this, the observation component at our 
architecture is able to identify the spatial coordinates 

of the game piece which has been moved. These 
bundles of data are submitted to the Decision-
making process as will be explained at the next 
section, in which the appropriate action is to be 
selected. 

4 DECISION MAKING 
PROCEDURES 

During the interaction procedure, the human teacher 
sometimes plays random steps. In this case the 
concluded information from the observation process 
β, are sent to the Decision-making process ψ as. 
 

Ψ (X, Φ, β, δ, τ, σ, ρ)│N =∑ iq= 1  B (9)
 

In the proceeding equation, the Decision-making 
main frame Ψ produces a number q for an individual 
behaviours B orchestrated by the robot at any step N 
while interacting with the human teacher. The 
behaviour B is a combination of the motor-
expressions M and/or utterance-expressions U. 

B =    < M, U   > 

In order to orchestrate a suitable behaviour in 
response to the interaction situation, the decision-
making process Ψ, subscribes to the information 
resulted from the observation component β, and also 
the decision-making process subscribes to the 
archive Φ by performing a process tracking 
procedure τ shown in equation (10); 

τ = XN∩ Φ (10)
 

This resulted information from the process tracking τ 
provides Ψ the necessary information in order to 
perform hypothetical scenario σ, which is the 
resultant data from the union of process tracking 
information τ and knowledge data ρ as shown in 
equation (11). This enables the robot to predict and 
decide the new step of the task which as follows; 

σ = τ∪ ρ (11)
 

The knowledge ρ which the robot obtains through 
interacting with its human teacher which as follows; 
 

ρ = {X׀m│δ│1 , X׀m│δ│2, X׀m│δ│3,..,X׀m│δ│i } (12)
 

Where X is the matrix resulted from the interacting 
with the human teacher, at the ith situation which the 
human teacher teaches the robot a specific action δ. 
This matrix is stored at the long-term memory, m is 
the index as in ((no_of_steps_played, no_of_stage, 
max_no_of_steps_played) where 
max_no_of_steps_played is the end step played for 
the same stage index no_of_stage.  
As explained the robot is able to interact with the 
human while learning the task through different 
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expressions. Let us consider the following 
interactive situations that occurred while teaching 
the robot the X-O game. 

 

Figure 5: Teaching "Hoap-3" how to achieve winning. 

5 TESTING AND EVALUTING 
OUR ARCHITECTURE 

In order to evaluate the proposed architecture, we 
have performed an experiment in which various 
interactive situations have been taken place, and 
among these situations, a situation at which a 
winning chance is available for the robot as in figure 
(5-a). However as there is no any data provided in 
advance, the robot will not be able to recognize it. 
Human teacher, at his playing turn, performs an 
interrupting step by moving the robot’s game piece 
instead of his game pieces to set the winning row as 
in figure (5-b), then prompts the robot to play. The 
robot applies low-level identification, starting from 
analysing the data streams from the vision sensors, 
and obtains the resultant matrix Χ (h,r), which is 
stored as a archived data Φ (see equation 2 ). On the 
other hand a single piece of data λ (see equation 3) 
(see figure 2) which in our present situation is the 
matrix in figure 5-a. After applying the observation 
algorithm in equations (6) and (7) which leads to 
higher level observation β at equation (8), the 
following β is obtained; 

β =<0, 1> 

This information is submitted to the Decision-
making procedure Ψ, which orchestrates number q 
of individual behaviour B such as moving the 
robot’s upper-torso in addition to its arm through the 
arm motor-expressions motor-expressions M, in 
addition to this, the Ψ orchestrates an utterance-
expressions U as in figure 2. 

The utterance-expression provides the necessary 
information as 

ğN={ ğN│is_winning=1, ğN│my_wining=1, 
ğN│is_defence  =0,  ğN│ my_defence =0}, 

which purify the purpose of the human-teacher 
action δ. 

 

Figure 6: Teaching "Hoap-3" how to make a defence step. 

As the structured interview shows, the robot asks 
the human teacher to reset the game set in order to 
restart a new stage. 

On the other hand the knowledge ρ of the robot 
must be updated. Therefore the structured interview 
result ğN and the two matrixes as in figure (5-a, 5-b), 
are stored at a different register as a long term 
memory as a knowledge data ρ at index m (see 
figure 2). Noting that the index N is turned into m 
which holds the index N in addition to storing 
no_of_steps_played as max_no_of_steps_played   
which is useful for the robot whenever using the 
knowledge ρ data for making a decision.  

Another situation that is a chance to teach the 
robot how make a defence step is available as shown 
in figure (6). For the pesent situition the same 
procces starting from Χ (h,r), until updating the 
knowledge ρ takes place.  The only different is the 
structured interview resultant data ğN.. Which is 
follows; 

ğNX={ ğN│is_winning =0,   ğN│my_wining = 0,   
ğN│is_defence  =1,  ğN│ my_defence =1} 

 

This leads to inform the robot the high level context 
of the teacher’s action δ. Also an updating the 
knowledge data ρ is being performed. 

In a different situation, at which the human 
teacher aims to teach the robot the form of his 
winning as shown in figure (7-a). Human plays and 
gets the available winning chance as in figure (7-b), 
and then he prompts the robot to start playing. Now 
we should start a new playing stage due to the 
wining that was achieved for human partner. 

As there is no data provided in advance, the 
robot will not recognize it and starts to play 
randomly and may be as in figure (7-c), and then it 
prompts its human partner to play. In order to teach 
"Hoap-3" how human wining is achieved, human 
partner will not move any of the game pieces then it 
prompts the robot to play.  In this situation high-
level observation β and results as follows; 

β =<0, 0> 
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Figure 7: Teaching "Hoap-3" how human winning is 
achieved. 

This means there is no any of the game pieces 
have been moved. This data is submitted to decision 
making main frame Ψ which orchestrates a new 
structure interview based on the real-time interaction 
as figure 7 shows. Also the same procedure is 
followed by the robot. However the resultant data 
from the structured interview ğN is different for the 
previous two situations, which as follows; 

ğNX={ ğN│is_winning =1,   ğN│my_wining = 0,   
ğN│is_defence  =0,  ğN│ my_defence =0}      

 

Also another different in this situation is that the 
data X׀m   that submitted to knowledge updating ρ 
includes the matrix figure 5-a. 

During the interaction procedure, the human 
teacher sometimes plays random steps. In this case 
the observation data is obtained as follows; 

β =< 1,0 > 

This informs "Hoap-3" that the movement made by 
its human teacher is a regular step. In this case 
decision making process Ψ performs a different 
procedure from the previously explained situation. 

The first procedure is performing process 
tracking τ by matching the present matrix XN with 
the archive data Φ as explained in equation 10 (see 
figure 2) if τ = < empty>   the robot plays randomly 
(see figure 2). However, if τ ≠ < empty> the robot 
unites the resultant data from τ with the knowledge 
data ρ. 

The knowledge data ρ includes the high level 
context of every interactive action δ│ğN made by its 
teacher. Based on this union, the robot performs a 
hypothetical scenario σ in order to make a rational 
choice. However, if the process tracking is τ > 1 then 
the hypothetical scenario’s σ main priority is given 
to choose knowledge as follows; 

ğNX={ ğN│is_winning =1, ğN│my_wining = 1,   
ğN│is_defence  =0,  ğN│ my_defence =0} 

 

Table 1: Statistics of teaching experiment. 

Order of the tenth sample space "Hoap-3" 
Winning 

Achievement 

"Hoap-3" 
Interviewing its 
Human-teacher

First 10th  sample space  0 10 
Second 10th  sample space 1 9 

Third 10th  sample space 4 6 
Fourth 10th  sample space 4 6 
Fifth 10th  sample space 4 6 
Sixth 10th  sample space 1 9 

Seventh 10th  sample space 3 7 
Eighth  10th  sample space 5 5 
Ninth 10th  sample space 8 2 
Tenth 10th  sample space 9 1 

 
If the hypothetical scenario σ > 1, then the robot’s 
final decision Ψ is by choosing an action resembles 
the stage which has the minimum difference 
between max_no_of_steps_played and 
no_of_steps_played of the XN at which its main 
priority is achieved. 

∆│min=max_no_of_steps_played - no_of_steps_played 
 

The second priority is given to 

ğNX={ ğN│is_winning =0,   ğN│my_wining = 0,   
ğN│is_defence  =1,  ğN│ my_defence =1} 

 

Also if the hypothetical scenario σ > 1 "Hoap-3" 
final decision Ψ is by choosing an action resembles 
the stage which has the minimum difference 
between max_no_of_steps_played and 
no_of_steps_played of the XN. 

From these combinations, the robot is able to 
select only rational choice, then the robot says as 
follow: 

Hoap-3: I think I can win. 
Among the individual B (see equation 9) expression 
which the robot performs various motor expressions 
are made such as upper-torso, hip movements, head 
movements, and arms movement. These expressions  
improve and imply the human-human behaviour. 

6 RESULTS 

In order to show the efficiency of our proposed 
architecture, we performed an experimental test 
composed of 100 stages and its sample space is as 
shown in Table 1. New stage occurs if the robot 
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learns new idea about the winning or defence for 
itself or for the human. Also if a winning case of the 
taught ones to the robot is performed by the robot 
itself. The results at the table are indicated at the 
graph, shows that the rate of winning achieved by 
the robot is increased gradually, which indicates that 
robot learning level is increased by the increasing 
the number of interactive stages. This is a clue for 
improving robot knowledge of the game strategy. 

7 DISCUSSION 

We will now reflect some design issues on our robot 
architecture from two perspectives: component 
design and communication of information between 
components. 

7.1 Information Generation 

An important requirement is the need of building an 
approach that is able to generate new valuable 
information to be based and resulted from the 
available information. For example, in the X-O 
game, observation component is able to detect the 
spatial positions of the moved game piece with 
respect to the camera frame in terms of 2-D. This 
coordinates information is processed by position 
component and transformed into 3-D, and 
transferred to knowledge-updating, allowing "Hoap-
3" to use when executing knowledge based 
decisions. 

7.2 Information Flow 

In order to improve the overall system 
responsiveness, we have found that one-to-many 
information flow structure is very useful. Where, the 
information is produced by one component and 
published to the system, where, other components 
process this information for their own purposes. For 
example, during the X-O game, the human partner 
performs interruptive movements to the game; 
observation component detects these interruptive 
events. The resultant detected information is 
published to the rest of the system. Simultaneously, 
the published information is handled by other 
component. The decision-making process uses this 
information in order to decide the proper choice of 
wording of the structured interviews. Meanwhile, 
the detected information in addition to the resultant 
interviewing flags are used to update "Hoap-3" 
knowledge. 
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