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Abstract: In this paper we study the sequential strategic interactive setting of bilateral, two-stage, seller-offers bargain-
ing under uncertainty. We model the epistemology of the problem in a finite interactive decision-theoretic
framework and solve it for three types of agents of successively increasing (epistemological) sophistication
(i.e. capacity to represent and reason with higher orders of beliefs). We relax typical common knowledge
assumptions, which, if made, would be sufficient to imply the existence of a, possibly unique, game-theoretic
equilibrium solution. We observe and characterize a systematic monotonic relationship between an agent’s
beliefs and optimal behavior under a particular moment-based ordering of its beliefs. Based on this character-
ization, we present thespread-accumulatetechnique of sampling an agent’s higher order belief by generating
“evenly dispersed” beliefs for which we (pre)compute offline solutions. Higher order prior belief identifica-
tion is then approximated to arbitrary precision by identifying a (previously solved) belief “closest” to the true
belief. These methods immediately suggest a mechanism for achieving a balance between efficiency and the
quality of the approximation – either by generating a large number of offline solutions or by allowing the agent
to search online for a “closer” belief in the vicinity of best current solution.

1 INTRODUCTION

The central challenge that arises in the epistemolog-
ical deliberations in strategic multi agent interactions
under uncertainty, is representing and reasoning with
the infinite interactive epistemology – first referred to
in game-theoretic literature as “the infinite regress in
reciprocal expectations” (Harsanyi, 1968).

Beginning with Harsanyi’s seminal work on
Games under Incomplete Information(Harsanyi,
1968), there is a long tradition of work and literature
that has attempted to combine the game-theoretic no-
tion of an equilibrium solution (Nash, 1950),(Nash,
1951) with a formal (probabilistic) calculus for rep-
resenting and reasoning with the players’ (individual,
mutual or common) knowledge or, lack thereof. The
solution concepts that have been proposed through-
out the history of this research effort involve, (see
first (Selten, 1975), then esp. (Fudenberg and Levine,
1981) and (Kreps and Wilson, 1982)), the proposal of
a profile of strategies and contingent beliefs for each
agent such that, given its beliefs, no agent has the in-
centive to deviate unilaterally. Further, the agents’ be-
liefs about the objects of uncertainty (for e.g. the path

of play, incl. esp. the previous choices of the other
agents) have to be consistent with (i.e plausible) with
respect to the joint profile of strategies.

No attempt will be made here to survey the field.
It suffices to simply point out that usefulness (or, ap-
plicability) of game-theoretic solution concepts as a
control paradigm in strategic multi agent interactions
is unclear, regardless of their mathematical and ab-
stract elegance and, oftentimes, powerful explanatory
power. This is primarily due to the fact that there
may be a multiplicity of equilibria for a particular
game; although, there is a vast literature (see, for
e.g., (Kreps, 1985), (Banks and Sobel, 1987), (Cho,
1987) and (Cho and Kreps, 1987)) discussing how
one may refine the set of equilibria and select among
them. Game-theoretic solution concepts have also
been challenged on the basis of the fact that the com-
mon knowledge prerequisite (Aumann and Branden-
burger, 1995) required to arrive at an equilibrium so-
lutions may be unattainable.

Increasingly, (Bayesian) decision-theoretic and
utility-theoretic approaches are becoming the domi-
nant and normative paradigm for reasoning and de-
cision making in settings under uncertainty. Recent
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promising work extends this paradigm to interactive
(i.e. multi agent) settings (Gmytrasiewicz and Doshi,
2005), (Doshi and Gmytrasiewicz, 2005). In these
models, the recursive modeling of other agents’ be-
liefs and reasoning is made explicit in a framework
called the I-POMDP that extends classical POMDPs.
Computable (i.e. finitely nested) instances of these
models simply stop the recursive reflection after fi-
nite levels, allowing agents to make the best-possible
decision with the information they chose to repre-
sent. In essence, they are (expected utility maximiz-
ing) decision-theoretic models that represent and rea-
son with finite levels of the interactive belief hierar-
chy and make no (common knowledge) assumptions
regarding the levels that are not modeled.

This finite interactive decision theoretic model is
the assumed modeling framework throughout the cur-
rent work, where we study a particular interactive se-
quential game – namely, two-stage seller-offers bar-
gaining under incomplete information (Samuelson,
1984). It is known that this game has a unique Perfect
Bayesian Equilibrium (Sobel and Takahashi, 1983), if
it is asummed that the seller’s belief about the buyer’s
valuation is commonly known.

In this work, we do not make the assumption that
the seller’s (first-order) belief is commonly known.
Instead, we cast the problem in the finite interactive
decision theoretic framework for which we derive op-
timal strategies for three types of agents of succes-
sively increasing epistemological sophistication.

Our first main contribution is the observation of a
systematic regular (monotonic) relationship between
the epistemology of the problem and the agents’ op-
timal behavior. Secondly, this regularity is exploited
to devise a belief generation scheme that generates be-
liefs that are “evenly dispersed” across an entire space
of beliefs – equivalent to sampling the higher order
belief in “evenly dispersed” locations. And, thirdly,
solutions to these sample beliefs are precomputed of-
fline for later use in the online stage – which consists
of a binary search through the space of solved beliefs
to identify the closest sample belief in order to more
accurately approximately predict future behavior of
the opponent.

In the next section, we describe the model(s) used
throughout this paper and introduce necessary nota-
tions. In the following three sections, we describe, re-
spectively, the deliberative reasoning process for each
of the three strategy levels. Our main contributions
with respect to (higher order) belief sampling, identi-
fication and updating are presented in the context of
the discussion about the most sophisticated agent type
studies in this paper – the L3-Buyer (Section 5). In the
final section, we summarize our contributions, state

ongoing work and discuss relevant open questions.

2 PRELIMINARIES

Throughout this paper, it is assumed that the seller’s
valuationc= 0 and that the buyer’s valuationv is such
that 0≤ v≤ 1. These are assumed to be commonly
known; the exact value ofv is the buyer’s private in-
formation. The seller’s belief about the buyer’s val-
uation has the distributionF(v) = v;0≤ v≤ 1. We
assume also that trade is feasible, i.e. thatc≤ v. The
mechanism is simple – the seller makes a first offer
x1 which the buyer may chose to accept; if the buyer
rejects it, the seller makes a second and final offerx2.
The buyer strategic decision consists of choosing a
decision boundaryd(x1) – it accepts the first offerx1
if v≥ d(x1).

If agreement is arrived at on the first day, the pay-
offs arex1 andv− x1 to the seller and buyer, respec-
tively. If agreement is arrived at on the second day, the
payoffs areδ ·x2 andδ ·(v−x2), respectively. Else, the
payoffs are 0 to either player. A discount factor,δ, is
applied to the payoffs on the second day.

Agents may form other relevant beliefs and
higher-order beliefs; for e.g. the seller may form a be-
lief about the buyer’s valuation, the buyer may form
a second-order belief about the seller’s first-order be-
lief about its (i.e. the buyer’s) valuation, etc. None of
these beliefs are assumed to be commonly known.

2.1 Notations

The following notation will be used throughout.

BX(p). Belief maintained by agentX (either seller
S or buyerB) aboutp, wherep is the object of the
agent’s belief and may be a ground proposition or an-
other agent’s belief about something (this will be clear
from the context).

U(s). A uniform belief supported over a spaces,
wheres may be a (finite or countable) set of ground
propositions or a set of beliefs.

E[v]. Expected value of random variablev.

pAccept(x). The probability that offerx is accepted.

pReject(x). The probability that offerx is rejected
(equal to 1− pAccept(x)).

π1(·). The expected utility function for the entire
(2-stage) sequential bargaining game. We denote
argmaxπ1(·) by Π1(·).

π2(·). The expected utility function for the last (i.e.
second) stage of the bargaining game. We denote
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argmaxπ2(·) by Π2(·). The influence of an agent’s
belief on its objective function is indicated by append-
ing the belief as a superscript to the expected utility
function as well as to the probabilities of an offer be-
ing accepted or rejected.

2.2 The Epistemic Setup

Using the notations introduced above, we now de-
fine the three types of successively more sophisticated
agents that are studied in this paper along with the in-
teractive epistemology that arises due to interactions
between these agents. Please see Figure 1 for a graph-
ical illustration of the same.

L1-Buyer believes that the seller’s first offerx1 is
uniformly selected from(0,1) and that its sec-
ond offer is uniformly distributed between 0 (the
lowest possible) and the first offer, i.e.BB(x2) ∼
U(0,x1); in other words, that the seller’s second
offer is some arbitrary amount lesser than the first.

L2-Seller believes that the buyer’s belief aboutx2
given x1 is that it is supported on(0,x1) – al-
though, the seller does not “know” that this belief
is uniformly distributed. Therefore, it maintains a
higher (second) order belief that is supported on
some subset of all possible beliefs aboutx2 given
x1 that are supported on(0,x1), i.e. BS(BB(x2))∼
U(∆(0,x1)). The seller can express this higher-
order belief over a space of beliefs as a lower or-
der belief about the buyer’s expectation. Here we
say, for example, that the seller’s belief about the
buyer’s expectation ofx2 givenx1 – BS(EB[x2|x1])
– is uniformly distributed on(0,x1). Note that the
L2-Seller’s belief about the buyer’s type is char-
acterized here by its (second order) belief about
the buyer’s first order belief about the second of-
fer, or, equivalently, by its belief about the buyer’s
conditional expectation.

L3-Buyer The buyer believes that the seller’s belief
aboutEB[x2|x1] is supported on(0,x1) – although,
the buyer does not “know” that this belief is uni-
formly distributed; in other words, the buyer does
not “know” that the seller is uniformly uncertain
about the buyer’s belief aboutx2 givenx1. There-
fore, this buyer maintains a higher order belief
that is supported on some subset of all possible be-
liefs that the seller may maintain aboutEB[x2|x1].

3 L1-BUYER

The L1-Buyer accepts the first offerx1 if the imem-
diate profit is not lesser than the expected profit from

about ∼ s.t.,∈ etc.
BB(x1) U(0,1) ∈ ∆(0,1)
BB(x2) U(0,x1) ∈ ∆(0,x1)

L1-Buyer

about ∼ s.t.,∈ etc.
BS(v) F(v) = v

BSBB(x1) P1(∆(0,1)) ∈ ∆(∆(0,1))
BSBB(x2) P2(∆(0,x1)) ∈ ∆(∆(0,x1))

BS(EB[x2|x1]) U(0,x1) = px1 p∼U(0,1]

BS(d) x1−δ(U(0,x1))
1−δ
l

x1−δ(px1)
1−δ p∼U(0,1]

L2-Seller

about ∼ s.t.,∈ etc.
BBBS(v) F(v) = v

BB(BS(EB[x2|x1])) P3(∆(0,x1)) ∈ ∆(∆(0,x1))
L3-Buyer

Figure 1: An interactive epistemology for bilateral bargain-
ing.

the next turn, i.e. if

v−x1≥ δ(v−E[x2|x1])

⇒ v−x1≥ δ(v−x1/2)

i.e. if

v≥
x1− δ 1

2x1

1− δ
=: d, the decision cutoff

4 L2-SELLER

Note that the L1-Buyer believes that the second of-
fer x2 is selected from some distribution in∆(0,x1)
– namely, the space of all distributions supported on
(0,x1). Therefore, givenx1, it can calculate the ex-
pected value of the second offerEB[x2|x1] – which is
all it needs to compute the optimal decison boundary.
For e.g., if the L1-Buyer believes thatx2 ∼U(0,x1)
(as is actually the case as shown in the previous sec-
tion), thenEB[x2|x1] = 1

2 · x1. In general,EB[x2|x1]
has the formp · x1 (for 0≤ p≤ 1). Therefore, from
the L2-Seller’s perspective, onlyBS(EB[x2|x1]) – i.e.
its beliefs aboutEB[x2|x1] – matter when it reasons
about the buyer’s reasoning process following the re-
jection of the first offer. In the epistemics considered
here (see Figure 1), the seller believes thatEB[x2|x1]∼
U(0,x1) (or, EB[x2|x1] = p ·x1 wherep∼ (0,1]). The
seller’s best-response consists of the computation of
x∗1 such that

x∗1 ∈argmax
x1

πBS(EB[x2|x1])
1 (x1)

= argmax
x1

πU(0,x1)
1 (x1)
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= argmax
x1

(

pU(0,x1)
Accept (x1) ·x1

+ δ · pU(0,x1)
Re ject (x1) ·Π

U(0,x1)
2 (x1)

)

The influence of the seller’s belief aboutEB[x2|x1] on
the values of the obective function at each stage and
on the probabilities of acceptance is indicated by in-
cluding the belief as the superscript of such values.

4.1 Uniform Belief with Finite Support

We now focus our attention on a specific epistemic
setup to fix intuition. Assume thatBS(EB[x2|x1]) has
a distributionU3 s.t.:

BS(EB[x2|x1])∼U3∼U

(

x1

4
,
x1

2
,
3x1

4

)

The purpose of this setup is two-fold – first, it may
be seen as a simplified approximate version of the
seller’s actual belief and, second, it may also be
thought of as a means of gaining useful insight into
the epistemic deliberative and computational chal-
lenges inherent in the original problem.

Denote the corresponding values of the buyer’s
decision boundaryd asd1, d2 andd3, where

d1 =
x1− δ 1

4x1

1− δ
, d2 =

x1− δ 1
2x1

1− δ
& d3 =

x1− δ 3
4x1

1− δ
If a particular offerx1 is rejected, the resultant

posterior density from the seller’s belief update is a
weighted sum of three densities, represented pictori-
ally as:

d1

f (d1)

1
3· +

1
d1

d2

f (d2)

1
3· +

1
d2

d3

f (d3)

1
3·

=

1
d3

d

f (d)

1
3

1
d1

+ 1
3

1
d2

+ 1
3

1
d31

3
1
d2

+ 1
3

1
d31

3
1
d3

The probability thatx1 will be accepted can be ex-
pressed as:

pU3
Accept(x1) =

1
3

[

F(1)−F(d1)

F(1)

]

+
1
3

[

F(1)−F(d2)

F(1)

]

+
1
3

[

F(1)−F(d3)

F(1)

]

=
1
3
(1−d1)+

1
3
(1−d2)+

1
3
(1−d3)

Now, the the seller assigns the following probabil-
ity to the buyer accepting the second offer:

pU3
Accept(x2) =























































1
3

F(d1)−F(x2)
F(d1)

+ 1
3

F(d2)−F(x2)
F(d2)

+ 1
3

F(d3)−F(x2)
F(d3)

if x2 ≤ d1

1
3

F(d2)−F(x2)
F(d2)

+ 1
3

F(d3)−F(x2)
F(d3)

if d1 ≤ x2 ≤ d2

1
3

F(d3)−F(x2)
F(d3)

if d2 ≤ x2 ≤ d3

Accordingly, the seller’s second stage objective func-
tion (i.e. expected profit from offering somex2 after
x1 has been rejected) becomes:

π2(x2) =























































1
3

F(d1)−F(x2)
F(d1)

x2 + 1
3

F(d2)−F(x2)
F(d2)

x2 + 1
3

F(d3)−F(x2)
F(d3)

x2

if x2≤ d1

1
3

F(d2)−F(x2)
F(d2)

x2 + 1
3

F(d3)−F(x2)
F(d3)

x2

if d1≤ x2≤ d2

1
3

F(d3)−F(x2)
F(d3)

x2

if d2≤ x2≤ d3

Let X2(x1) = argmax
x2

π2(x2)

and Π2(x1) = max
x2

π2(x2)

respectively.
We first obtain both of these as functions ofx1

from the piecewise first-order conditions forπ2(x2).
Then, we express the seller’s main (first stage) objec-
tive function as:

π1(x1) =

(

1
3
(1−d1)+

1
3
(1−d2)+

1
3
(1−d3)

)

·x1

+ δ ·
(

1
3

d1 +
1
3

d2 +
1
3

d3

)

·Π2(x1)

The first-order conditions forπ1(x1) provide us
the seller’s optimal first offer X1 as 0.3831693366
(from which we can easily compute the the optimal
second offer X2 and the expected optimal profitΠ1).

The algorithm for the general case (for evenly
distributed uniform discretized beliefs of finite
support) is provided by Procedure X1X2Pi1.
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Procedure: X1X2Pi1(N,δ,p).

Input : N← the number of samples,δ← the
discount factor and p← an array (of
size N) of probabilities

Output : X1← argmaxx1π1(x1),
X2(X1)← X2(x1 = X1) and
Π1(X1)← π1(x1 = X1)

// Given the number of samples, the
discount factor and a prior belief
sampling, returns the seller’s
optimal offer schedule and
expected optimal profit for the
case where BS(v) := F(v) = v

begin
// D ← decision cutoffs
D[0]← 0
for i from 1 to N−1 do

D[i]←
x1−δ( N−i

N )x1

1−δ
// Cπ2← piecewise constrain

intervals
Cπ2[i]← D[i−1] < x2 and x2 ≤D[i]
// π2← final stage piecewise

objective function

π2[i]←
N−1

∑
j=i

p[N− j ]
D[ j ]−x2

D[ j ]
x2

// ∂π2
∂x2
← piecewise partial

derivative of π2 w.r.t x2
∂π2
∂x2

[i] = ∂π2[i]
∂x2

end
// Initializations
X2← 0; Π2← 0
// Compute X2(x1) ← argmaxx2π2(x2) and

Π2(x1) ← maxx2π2(x2)
for i from 1 to N−1 do

x2[i]←
solve

( ∂π2
∂x2

[i],x2
)

assuming Cπ2[i]
Let x1 > 0 andx2← x2[i]
if Cπ2[i] and π2[i] > Π2 then

X2← x2
Π2← π2[i](X2)

end
end
// π1← the main (first stage)

objective function

π1(x1)←

(N−1

∑
j=1

p[N− j ](1−D[ j ])

)

x1

+ δ
(N−1

∑
j=1

p[N− j ]D[ j ]

)

Π2

X1← solve
( ∂π1(x1)

∂x1
,x1

)

return X1, X2(x1 = X1), π1(x1 = X1)

end

We now highlight a few insights gained:
1. The optimal offers and optimal expected profits

for the cases when each of the sample points con-
sidered here is the certain case (i.e. w.p. 1), is
shown in Table 1.

Table 1: Optimal offers and expected profits when seller
“knows” EB[x2|x1].

β† xβ,∗
1 = argmax

x1
Πβ

1(x1) Πβ
1

(

xβ,∗
1

)

x1
4 0.3453858608 0.1726929304
x1
2 0.3874092010 0.1937046005

3x1
4 0.4581245526 0.2290622763

†β denotesBS(EB[x2|x1])

From this table, we notice, in particular, that

x
x1
2 ,∗

1 6= xU3,∗
1 (thoughE[U3] =

x1
2 ), i.e. that

x
x1
2 ,∗

1 = 0.3874092010
6=

xU3,∗
1 = 0.3831693366

though they are “very close”. This indicates at
least that, thoughE[U(0,x1)] = x1

2 ,it is not neces-
sarily the case that

xU(0,x1),∗
1 = x

x1
2 ,∗

1

In other words, the solution to an optimization
problem parametrized by a random variable may,
at best, only be approximated by the solution to
the related optimization problem parametrized by
the expected value of the parameter.

Table 2: Optimal offers and expected profits for uniform
discrete seller beliefs.

N xUN,∗
1 = argmax

x1
ΠUN

1 (x1) ΠUN
1

(

xUN,∗
1

)

5 0.3822887563 0.1911443782
10 0.3805058597 0.1902529299
20 0.3796076053 0.1898038026
50 0.3790678491 0.1895339246
100 0.3788879236 0.1894439618
200 0.3787979719 0.1893989860
400 0.3787529981 0.1893764991

2. The solutions for evenly distributed uniform dis-
cretized beliefs of varying supports is collected in
Table 2. As we increase the support of the seller’s
belief (i.e. as N grows), we observe a Cauchy-
like behavior in the corresponding optimal (first)
offers. In ongoing work, we are attempting to es-
tablish whether these values do indeed converge
(as they seem to) and whether they converge to

xU(0,x1),∗
1 (as hoped for).
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Beliefs,Bp Objective
Functions,Dp,π

EXPECTATION

(INTEGRATION)

∈(0,1]

∈(0,1]

∈(0,1]
∈(0,1]

∈(0,1]

Optimal
Offers,X ∗p,π

ARGMAX

Figure 2: The mapping from beliefs to objective functions
to optimal actions.

5 L3-BUYER

The L3-type buyer’s best response, i.e. either to reject
or accept the first offerx1, consists of computing the
optimal decision boundaryd∗.

From the L3-Buyer’s perspective, its belief about
the seller’s belief aboutEB[x2|x1] (or, equivalently
its belief about the seller’s belief aboutp) – namely,
BBBS(EB[x2|x1]) (or, BBBS(p)) – constitutes the cru-
cial epistemic component that influences the compu-
tation of the optimal decision boundary.

In the simplest case, the L3-Buyer “knows”BS(p)
with certainty. In this case, it can solve the seller’s
optimization problem (for e.g., just like the seller
does, through sampling) to form expectations about
x2 which, in turn, it uses to computed∗.

In the general case, the buyer needs a method
whereby it can use the seller’s first offer as aninfor-
mative signalto updateBBBS(p) – i.e. to compute
BBBS(p|x1). The buyer deems a particular seller be-
lief implausible if a seller with such a belief would
have never sent the recieved (i.e. actual) first offer.
This constitutes the central contribution of the current
work and is discussed in detail next.

5.1 Higher Order Belief Identification
and Refinement (Update)

Figure 2 represents the mapping from the seller’s be-
lief to the objective function to the optimal (first) off-
fer. The L3-Buyer is interested in the inverses of these
mappings in order to refine the support of its belief
about the seller’s belief.

The L2-Seller’s objective function is parametrized
by its belief aboutEB[x2|x1] – which it expresses as a
belief aboutp (recall thatEB[x2|x1] = p · x1). It ob-
tains the appropriate form of the objective function
by computing its expected value, i.e. byintegrating
over its belief about p(see Figure 2).

Let Bp be the class of all possible beliefs aboutp.
The seller’s objective functionπ is characterized by

parameterp (and, henceforth, will be written asπp).
Let Dp,πp be the class of all objective functions gen-
erated by integratingπ over p for all possible beliefs
about p (i.e., over all elements ofBp). The seller ob-
tains the optimal (first) offer from the first-order con-
ditions for the objective function.

In general, it is true that there are an uncountable
number of functions that share the sameargmaxin a
given interval. But, for the buyer, the relevant ques-
tion is
Question 1.Is the mapping from the seller’spossible
objective functions,Dp,π, to the optimal offers,X ∗p,πp

,
injective?

A related and important question is
Question 2. Is the mapping from the seller’s beliefs
to objective functions injective?

Note that the buyer’s update process consists of
contingent-factual reasoning which may involve in-
verting the two discussed mappings (Figure 2). Such
inversions necessitate that the maps be injective.

Unfortunately, these maps arenot injective; an ob-
servation which can be established by a few examples.
So, then, how does the buyer update its belief?

It is in the context of this problem that we present
the main contribution of this paper. Our approach in-
volves looking at the buyer’s belief update problem
in the other (i.e. the forward) direction – i.e. from
the seller’ beliefs to its actions. Establishing that the
optimal offers (schedules) are monotonic w.r.t. some
suitable ordering of the seller’s beliefs would point
to a means of identifying the seller’s next offer (with
arbitrary precision) by searching for aclose-enough
belief that would explain the seller’s first offer. We
now proceed to expound this idea in depth.

5.2 (µ,σ)-Ordered D.F.s

Consider the seller’s objective functionπp : [0,1]→
R +. πp is continuous and differentiable in[0,1] and
attains its maximum value at the only saddle-point in
the same interval.πp is parametrized by a random
variablep (where 0≤ p≤ 1). If the distributionF of
p is known, one can calculate the expectation of the
functionπp :

EF(πp) =

∫ 1

0
πpdF

Since the buyer does not, in general, knowF , we as-
sume that the distribution function ofp comes from a
family of distribution functionsFp. Here, we define a
particular ordering for classes of distributions.

Order(µ,σ)(F ). Given a class of distribution functions
F , Order(µ,σ)(F ) is a (total) ordering ofF based on
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the expectation (i.e. mean value) of the member dis-
tributions, where, if possible, ties are broken by fur-
ther (totally) ordering based on the variance of the
member distributions. In symbols,

F ≺Order(µ,σ)(F ) G

if µ(F) < µ(G) or

µ(F) = µ(G) andσ(F) > σ(G)

∀ F,G∈ F

Now consider a sequence of distribution functions
F1,F2,F3, ... from Fp that respectsOrder(µ,σ)(Fp) in
addition to satisfying an additional technical require-
ment that theFn are “not too close”.

We obtain empirical evidence that indicates that,
under such an ordering, the distribution functionsFn
have a monotonic influence on the saddle-point of
EFn(πp), i.e.:

argmax EFn(πp) =

∫ 1

0
πpdFn

≤

argmax EFm(πp) =

∫ 1

0
πpdFm

whenever 1≤ n < m.

This seems to be the case because of the fact that
p exerts a monotonic influence onargmax πp (see
Table 1). Clearly, this observation is specific to the
problem and the mechanism under consideration and
it is not immediate whether it is true in general. The
statement and proof of a general result of this type is
a subject of current work.

In any case, the empirically established monotonic
behavior observed in the current settings provides suf-
ficient grounds for the development of the higher or-
der belief identification method that is outlined in the
next subsection.

5.3 (µ,σ)-ordered Spread-Accumulate
Sample Generation Method for
Higher Order Belief Sampling

Based on the observations of the previous section,
the buyer can pre-compute the seller’s optimal first
offer for various seller belief settings1 that are “ap-
propriately evenly dispersed” according to the (µ,σ)-
ordering. Then, when it recieves a particular first of-
fer from the seller, it can first find the nearest pre-
computed belief setting that explains this offer and,

1For convenience, we only consider discrete beliefs

if necessary, search in the (µ,σ)-vicinity of this belief
for a “better explanation”.

First, we need a systematic method of sampling to
choose and solve for a set of beliefs that are “appro-
priately evenly dispersed” across the entire space of
possible beliefs (in the buyer’s support). At the least,
the method has to select a set of distributions with
mean values that range from one extreme end of the
support interval to the other. Further, for a particu-
lar mean, it has to select distributions with a range of
variances – from low to medium to high.

We have devised exactly such a method – and
we call it thespread-accumulatesample generation
method. It consists of the following steps:

1. Discretize the support of the seller’s belief (about
p) uniformly into N intervals. Herep ∈ (0,1];
therefore, the discretized beliefs will be supported
on

{

1
N , 2

N , ..., N−1
N

}

.

2. Generate discrete distributions each of which has
a mean exactly equal to one of the support points
(for all values from

{ 1
N

}

to
{

N−1
N

}

), for differ-
ent settings of the variance (from low to high).
Two distinct kinds of cases can be identified:Ex-
treme points (2 cases).The entire mass of the
distribution (= 1) is concentrated on one of the
extreme points of the supporing set. The variance
setting cannot be changed (i.e. decreased) any fur-
ther without shifting the mean.Interior points
((N−3)(N−1) cases).For a particular mean, we
first choose and solve for the discrete belief which
concentrates all its mass on the mean value. Then,
this being the key step of thespread-accumulate
method, we select distributions by alternatively
successively spreading out the probability mass
from the previous distributions to neighbouring
points and then accumulating some probability
mass from the interior points to the most extreme
points with positive mass. An example will illu-
minate: LetN = 7. Let the desired mean be47.
Then, thespread-accumulatemethod generates
discrete distributions on the support

{

1
7, 2

7, ..., 6
7

}

in the following order (only probability masses
are specified for the points in the support in the
natural order):

0, 0, 0, 1, 0, 0

0, 0, 1
3, 1

3, 1
3, 0

0, 0, 1
2, 0 1

2, 0

0, 1
4, 1

4, 0, 1
4, 1

4

0, 1
2, 0, 0, 0, 1

2
2
5, 0, 0, 0, 0, 3

5

The buyer solves the seller’s optimization prob-
lem for each of the generated sample beliefs and
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stores the corresponding optimal schedules (the first
and second offers) in 2D arrays. The whole pro-
cess –spread-accumulatesample generation and op-
timal schedule computation – is described in Proce-
dure L3BuyerOfflineX1X2Pi1. Rowi corresponds to
beliefs with mean= i

N . The column entries corre-
spond to different settings of the variance – from low
(entry 1) to high (entryn−1).

5.4 Online Computation ofd∗

The offline pre-computation of the seller’s optimal
schedule for various seller belief settings, described in
the previous section, enables the buyer to identify the
“closest” belief in the (µ,σ)-ordering to the seller’s ac-
tual belief (this is exactly the belief that is associated
with the optimal first offer closest to the seller’s ac-
tual first offer). In the offline step, the buyer stores re-
sults into the 2D array in the naturally available mono-
tonic ordering – this is exploited here to implement
the buyer’s closest-belief-identification procedure as
a binary search. The buyer can then also, optionally,
perform a refined search (through further sampling
and computation) in this vicinity to identify a “closer”
belief. Once the buyer finds a “close enough” solution
(to arbitrary precision), it uses the associated optimal
second offer to computed∗. This process is formally
outlined in Procedure L3BuyerGetX1RetD*.

5.5 An Example

We consider the case of an L2Seller, Sam bargain-
ing with an L3Buyer, Bob. (We also assume that
δ = 0.6 throughout this example). Sam models the
buyer as an L1-type buyer (cf. Section ) and has the
following belief about the buyer’s expectation of the
second offer given the first:BS(EB[x2|x1]) = p · x1
where p is supported on[2/5,4/5] with respective
probabilites[2/3,1/3]. This may be interpreted as
Sam’s belief that Bob is twice as likely to expect a
huge decrease in the second offer, corresponding to
PBS(EB[x2|x1])(p = 2/5) = 2/3, than not. Sam’s prob-
lem may be solved to obtain the optimal offers as:

x1∗Sam= 0.39 andx2∗Sam= 0.32

Now, we consider Bob’s offline step. Say that Bob
chooses discretization paramater, N, to be 6. Bob’s
solution for all the 17 (= 2+ (N− 3)(N− 1)) sam-
pled belief points are recorded in Table 3 where
each entry (i, j) is a 2-tuple (X1[i, j],X2[i, j]), such
thatX1[i, j] andX2[i, j] comprise the solution corre-
sponding to the belief sample with meani

N and vari-
ance corresponding to the jth smallest for that par-
ticular mean value (generated according tospread-
accumulatesampling).

Procedure: L3BuyerOfflineX1X2Pi1(N,δ).
Input : N← the number of discretization intervals

andδ← the discount factor
Output : X1, X2 andΠ1← (N−1)× (N−1) 2D

arrays representing, respectively, the
optimal schedule and optimal expected
profit to the seller for different settings of
seller beliefs

// Procedure X1X2Pi1 will be invoked
throughout

begin
// a ← a size (N−1) probability

vector
a←{1,0, ...,0}
(X1[1,1],X2[1,1],Pi1[1,1]) = X1X2Pi1(N,δ,a)
for m from2 to N−2 do

a←{0,0, ...,0}, a[m] = 1
(X1[m,1],X2[m,1],Pi1[m,1]) =
X1X2Pi1(N,δ,a)
a←{0,0, ...,0},
a[m−1] = a[m] = a[m+1] = 1

3
(X1[m,2],X2[m,2],Pi1[m,2]) =
X1X2Pi1(N,δ,a)

a←{0,0, ...,0}, a[m−1] = a[m+1] = 1
2

(X1[m,3],X2[m,3],Pi1[m,3]) =
X1X2Pi1(N,δ,a)
c = min(m−2,N−2−m)
for n from1 to c do

a←{0,0, ...,0}, a[m+n+1] =

a[m+n] = a[m−n] = a[m−n−1] = 1
4

(X1[m,2n+2],X2[m,2n+
2],Pi1[m,2n+2]) = X1X2Pi1(N,δ,a)
a←{0,0, ...,0},
a[m+n+1] = a[m−n−1] = 1

2
(X1[m,2n+3],X2[m,2n+
3],Pi1[m,2n+3]) = X1X2Pi1(N,δ,a)

end
if m< N

2 then
for l from 2m to N−1 do

a← {0,0, ...,0}, a[1] = m−l
1−l and

a[l ] = 1−a[1]
(X1[m, l ],X2[m, l ],Pi1[m, l ]) =
X1X2Pi1(N,δ,a)

end
else

for l from 1 to 2m−N do
a← {0,0, ...,0},
a[2m−N− l +1] = m−N+l

2m−2N−l+2
and
a[N−1] = 1−a[2m−N− l +1]
(X1[m,2N−2m+ l−1],X2[m,2N−
2m+ l −1],Pi1[m,2N−2m+ l −
1]) = X1X2Pi1(N,δ,a)

end
end

end
a←{0,0, ...,1}
(X1[N−1,1],X2[N−1,1],Pi1[N−1,1]) =
X1X2Pi1(N,δ,a)
return X1, X2, Π1

end
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Table 3: Output of Procedure L3BuyerOfflineX1X2Pi1 for Bob.

i ↓ , j → 1 2 3 4 5
1 0.3354,0.3773 – – – –
2 0.3571,0.3571 0.3555,0.3518 0.3547,0.3492 0.3517,0.3391 0.3478,0.3260
3 0.3874,0.3389 0.3855,0.3327 0.3846,0.3296 0.3803,0.3155 0.3764,0.3025
4 0.4301,0.3225 0.4277,0.3148 0.4266,0.3111 0.4242,0.3030 0.4224,0.2970
5 0.4923,0.3076 – – – –

Procedure: L3BuyerGetX1RetD*(x1,N,X1,X2,δ).
Input : x1← the (L2-type) seller’s first offer, N←

the dimension of the precomputed 2D arrays,
X1 andX2 andδ← the discount factor

Output : s∗← the (L3-type) buyer’s decision
boundary

// The set of beliefs with the closest
mean value if first identified using
binary search; then, the belief with
the closest variance is identified
using linear search through this class

begin
l ← 1
u← N−1
for i from 1 to ceil(ln(N)+1) do

if x1≥ X1
[

ceil
( l+u

2

)

,1
]

then
l ← f loor

( l+u
2

)

else
u← ceil

( l+u
2

)

end
end
i1← l
i2← 1
ε← |x2−X1[i1, i2]|
for i from 1 to N−1 do

if |X1[u, i]−x1| ≤ ε then
i1← u
i2← i
ε← |X1[u, i]−x1|

end
end

d∗← x1−δX2[i1,i2]
1−δ

return d∗
end

Procedure L3BuyerGetX1RetD*’s trace with respect
to Table 3 shows that, after three binary search
steps and five linear search steps, the “closest” pre-
computed first offer given the actual value of 0.39 is
0.3874, corresponding toX1[3,1]. The corresponding
best estimate of the second offer,X2[3,1], is 0.3389,
which is very close to the actual second offer, 0.32.
The cutoff that is computed is

x1− δ ·X2[3,1]

1− δ
=

0.39−0.6 ·0.3389
1−0.6

= 0.46665

while the optimal cutoff is

x1− δ ·x2
1− δ

=
0.39−0.6 ·0.32

1−0.6
= 0.495

Notice, importantly, that only asignificantly small
fraction of buyers, those with valuations in the range
[0.46665,0.495], make thewrong decision to accept
the first offer. In particular, for e.g., in the assumed
commonly known epistemology analysed here, the
bueyrs are uniformly distributed in[0,1], implying
that 97.165%of the buyers make the right decision.

6 CONTRIBUTIONS AND
ONGOING WORK

In the course of analyzing the L2-Seller (cf. Section
4), we graphically illustrated the step-function shape
of a (Bayesian) updated belief density for an agent
that maintains a discrete uniform prior belief and uses
the opponent’s signal as a screening device. In ongo-
ing work, we are working on ageneralized belief up-
datemethod for computing posterior densities using
a screening signal for general (i.e. non-uniform) dis-
crete prior beliefs. In addition, we are investigating
whether the optimal strategies of the L2-Seller con-
verge when we increase the number of samples used
to represent its discrete uniform prior belief.

In Section 5, we analyzed the L3-Buyer and
presented the central contributions of this paper.
We made an important observation about the reg-
ular (monotonic) influence of a particular ordering,
namely, the(µ,σ)-ordering, of distribution functions
of a random variable on the (maximal) saddle-point of
an objective function that is paramatrized by that vari-
able. In this context, we presented a question that will
be the subject of future work:Does the observed reg-
ular (monotonic) influence occur because the random
variable itself exerts a similar monotonic influence?
A second question that is a foundational to extend-
ing these results is,In general, when do the (central)
moments suffice in completely characterizing the in-
fluence of the epistemology of the problem on optimal
behavior? And, when they do, how many (central)
moments suffice?
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Next, we motivated and developed thespread-
accumulate (belief) sample generation method. This
method enables the generation of “evenly dispersed”
samples from the higher order belief space. These
samples are then pre-solved offline to facilitate on-
line binary-search for the “closest” belief instead of
doing exact belief update (which may be analyticaly
unachievable and numerically intractable). In this
manner, we are able to realize (approximate) higher-
order belief update. The monotonicity property of the
(µ,σ)-ordering is exploited to implement the binary
search through the space of (sampled and pre-solved)
beliefs to identify the closest representative.

We then proposed that this higher-order belief
update (or, approximate identification) scheme may
be seen as an online-refinement based realization of
bounded rationality. If the precomputed solutions are
not “close enough” (within some desired precision),
the agent can perform further online computations
and fine-grained search within the(µ,σ)-vicinity of
the current best solution. The agent can increase the
quality of itsofflinesolutions during its down-time as
well as seek a better approximationsonline.

6.1 Conclusions

In conclusion, we have demonstrated the usefulness
and epistemological modeling power of theframe-
work of multi-agent decision-theoretic reasoning and
sequential planning with finite interactive epistemol-
gies (Gmytrasiewicz and Doshi, 2005) for the real-
world problem of bilateral bargaining. We focussed
on the problem of higher-order belief update in this
context and presented some regularity results that
connected beliefs (epistemology) and behavior (opti-
mal strategies). Based on this, we developed a novel
evenly-dispersed higher order belief sample genera-
tion scheme (thespread-accumulatemethod) for ap-
proximating higher-order belief identification in order
to (approximately) realize higher-order belief update.

Our methods are potentially generalizable to other
problem domains that involve strategic multiagent in-
teractions – all that needs to be done is to check
whether the epistemology-optimal behaviour regular-
ity phenomenon holds for a given problem. A com-
plete characterization of general epistemological and
strategic conditions under which this phenomenon
arises is crucial for advancing the finite epistemolog-
ical decision-theoretic framework and for completing
the theory of intelligent and autonomous behavior in
multiagent settings.
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