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Abstract: We consider a scenario where several agents express their preferences over a common set of variable assign-
ments, by means of a soft constraint problem for each agent, and we propose a procedure to compute a variable
assignment which satisfies the agents’ preferences at best. Such a procedure considers one variable at a time
and, at each step, asks all agents to express its preferences over the domain of that variable. Based on such
preferences, a voting rule is used to decide on which value is the best for that variable. At the end, the val-
ues chosen constitute the returned variable assignment. We study several properties of this procedure and we
show that the use of soft constraints allows for a great flexibility on the preferences of the agents, compared
to similar work in setting where agents model their preferences via CP-nets, where several restrictions on the
agents’ preferences need to be imposed to obtain similar properties.

1 INTRODUCTION

We consider scenarios in which a set of agents express
their preferences over a common set of objects, and
the aim is to choose one object which best satisfies
the preferences of the agents. We also assume that the
set of objects has a combinatorial structure. More pre-
cisely, each object is modelled as an elements of the
Cartesian product of a set of variable domains. This
is often the case in real life, since usually we express
preferenecs over objects that are characterized by a
set of features (the variables), each of which has some
possible instances (the variable domain).

Finally, we also assume that the agents express
their preferences over the objects in a compact way.
There are many formalisms suitable to do this; in this
paper we focus on soft constraints (Meseguer et al.,
2005). Thus each agent specifies a set of soft con-
straints over the variables. Another well-known for-
malism to do this is CP-nets (Boutilier et al., 2004).
The aim of such formalisms to allow one to express in
time and space polynomial in the number of variables
an ordering over the et of all objects, which may be
exponential in such a number.

To define a procedure to aggregate the preferences
of such agents, we consider voting theory (Arrow and
amd K. Suzumura, 2002), a very wide research area
between economy theory and operation research, that
deals with elections, where voters (that we would call
agents) vote by expressing their preferences over a set

of candidates (that we would call objects), and a vot-
ing rule decides who the winner candidate is. Voting
theory provides many rules to aggregate preferences,
that take in input (a part of) the preference orderings
of the agents and gives as output the ”winner” object,
that is, the object that is considered to be the best ac-
cording to the rule.

The most naive way to use voting rules in our con-
text consists of choosing a voting rule and giving to it
what it needs to know about the preference orderings
of the agents, then running the voting rule and see
what result comes out. This is however not feasible
in general. In fact, if the chosen voting rule needs to
know a large part of the preference ordering from the
agents, it may take exponential time only to give the
input to the rule. A valid alternative is to use the vot-
ing rule several times, on each feature of the object
set. This approach is certainly more attractive com-
putationally, since usually the number of instances of
each feature is small.

What can be done in this situation is to study
when, even in presence of dependencies among fea-
tures, voting can be performed on each single feature
at a time rather than on complete objects. We there-
fore define a sequential voting procedure that, at each
step, applies one voting rule to the preferences of the
agents over the domain of a single variable. We then
study the properties of this sequential voting proce-
dure. In particular, we consider properties such as
Condorcet consistency, anynomity, neutrality, consis-
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tency, participation, efficiency, and monotonicity, and
we relate their presence to the corresponding proper-
ties of the voting rules used at each step of the proce-
dure.

This study has been done already for CP-nets
(Lang and Xia, 2009), showing that a sequential
single-feature voting protocol can find a winner ob-
ject in polynomial time, and have several other desir-
able properties, when the CP-nets satisfy certain con-
ditions on their dependencies. We show that the use
of soft constraints allows us to avoid imposing many
restrictions on the preferences of the agents. In fact,
contrarily to CP-nets, soft constraints are not direc-
tional, and thus information can flow from one vari-
able of a constraint to another one without a prede-
fined ordering between them. This allows us to not
tie the variable ordering used by the sequential proce-
dure to the topology of the constraint graph of each
agent. This makes the approach much more generally
applicable. In fact, the tractability assumption over
the constraint graphs is similar to the assumptions that
CP-nets are acyclic. However, we do not need to im-
pose that the constraint graphs are compatible among
them and with a graph structure based on the variable
ordering.

2 BACKGROUND

Soft Constraints. A soft constraint (Meseguer
et al., 2005) involves a set of variables and associates
a value from a (totally or partially ordered) set to each
instantiation of its variables. Such a value is taken
from a c-semiring, which is defined by〈A,+,×,0,1〉,
whereA is the set of preference values,+ is a com-
mutative, associative, and idempotent operator,× is
used to combine preference values and is associative,
commutative, and distributes over+, 0 is the worst
element, and 1 is the best element. A c-semiringS
induces a partial or total order≤S over the preference
values, wherea≤S b iff a+b = b. A Soft Constraint
Satisfaction Problem (SCSP) is a tuple〈V,D,C,A〉
whereV is a set of variables,D is the domain of the
variables andC is a set of soft constraints overV as-
sociating values from c-semiringA.

An instance of the SCSP framework is obtained
by choosing a c-semiring. For instance, in classical
constraints we want all constraints to be satisfies, thus
we may choose the semiringSCSP= 〈{ f alse, true},
∨,∧, f alse,true〉. If instead we want to maximize
the minimum preference, we may choose the semir-
ing SFCSP= 〈[0,1], max,min, 0, 1〉 and consider the
so-called fuzzy CSPs. As an example, consider the
following fuzzy CSP whereV = {X,Y}, D = {a,b}

andC = {cY,cxy}. Soft constraintcY is defined over
Y and associates preference 0.4 toa and to 0.7 tob.
Constraintcxy, instead, is defined overX andY and
associates 0.9, 0.8, 0.7, 0.6 to, respectively, tuples
(X = a,Y = a), (X = a,Y = b), (X = b,Y = a) and
(X = b,Y = b).

Two main operations are defined on soft con-
straints: combination, denoted with⊗, and projec-
tion, denoted with⇓. Combining two constraints
means building a new constraint involving all the
variables of the original ones, and which associates
to each tuple of domain values for such variables
a semiring element which is obtained by combining
(via ×) the elements associated by the original con-
straints to the appropriate subtuples. In the example
of the fuzzy CSP above,cY ⊗cXY is a constraint onX
andY associating 0.4, 0.7, 0.4 and 0.6 to, respectively,
tuples(X = a,Y = a), (X = a,Y = b), (X = b,Y = a)
and(X = b,Y = b).

Projecting a constraint on a subset variables means
eliminating the other variables by associating to each
tuple over the remaining variables a semiring element
which is the sum (via +) of the elements associated by
the original constraint to all the extensions of this tu-
ple over the eliminated variables. In the example, con-
straintcY⊗cXY ⇓X is a constraint defined only overX,
which associates 0.7 toa and 0.6 tob.

To solve an SCSP, we just combine all constraints,
inducing an ordering over the set of all complete as-
signments. In the case of fuzzy CSPs, such and order-
ing is a total order with ties. In the example above, the
induced ordering has(X = a,Y = b) at the top with a
preference of 0.7,(X = b,Y = b) just below with 0.6
and(X = b,Y = a) and(X = b,Y = b) tied at the bot-
tom with 0.4. An optimal solution of an SCSP is then
a complete assignment with an undominated prefer-
ence. Finding an optimal solution in a set of soft con-
straints is an NP-hard problem.

Constraint propagation in SCSPs may be very
helpful in For some classes of constraints, con-
straint propagation is enough to solve the problem
(Dechter, 2005). This is the case for tree-shaped fuzzy
CSPs, where directional arc-consistency (DAC), ap-
plied bottom-up on the tree shape of the problem, is
enough to make the search for an optimal solution
backtrack-free. DAC is also enough to compute the
preferences over the values of the root variable, in de-
pendence of the rest of the problem. That is, DAC is
equivalent to combining all constraints and projecting
over the root variable.

If we project the solution of a SCSP over a single
variable, we obtain a total order with ties over the val-
ues of that variable, where each value is associated to
the preference of the best solution of the SCSP hav-
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ing such variable instantiated to such a value. Given
an SCSPP and one of its variablesv, we will denote
astop(v,P) the set of values ofv that are assigned the
highest preference in such an ordering. We note that
such a preference coincides with the optimal prefer-
ence value ofP. In our running example, if we con-
sidercY ⊗cXY ⇓X, the induced ordering over the val-
ues of the domain ofX is a > b.

Voting Theory. In classical voting theory (Arrow
and amd K. Suzumura, 2002), given a set of candi-
datesC, aprofile is a sequence of Usually, such order-
ings are total orders, however several extensions have
been studied such as when the orderings are partial
orders or total orders with ties. Given a profile, avot-
ing rule, also known as social choice function, maps
it onto a single winning candidate. In this paper, we
will often use a terminology which is more familiar to
multi-agent settings, and we will therefore sometimes
call ”agents” the voters, ”solutions” the candidates,
and ”decision” or ”best solution” the winning candi-
date.

Some examples of widely used voting rules are:
Plurality: where each voter states who the preferred
candidate is, and the candidate who is preferred by the
largest number of voters wins;Borda: where givenm
candidates, each voter gives a ranking of all candi-
dates and theith ranked candidate scoresm− i; the
candidate with the greatest sum of scores wins;Ap-
proval: where each voter approves between 1 and
m−1 candidates onm total candidates; the candidate
with most votes of approval wins;Copeland: where
the winner is the candidate that wins the most pair-
wise competitions against all the other candidates.

The research on voting theory has mainly been
concerned with the definition of desirable properties
of voting systems. Among them, we recall:

• Condorcet-consistency: every other in pairwise
elections (namely, a Condorcet winner) exists,
that candidate is always elected; Condorcet win-
ners are unique and may not exist.

• Anonymity: When the results of an election are
the same even if it occurs a permutation on the
voters’ set.

• Neutrality: When it is anonymous w.r.t. the can-
didates.

• Monotonicity: voter improves his vote in favor of
this candidate, then the same candidate still wins.

• Consistency: If, when considering preferences of
2 disjoint sets of voters - who decide over the
same issues and have identical final results - the
result obtained by a vote of the joint set of voters
is the same as the ones obtained by the disjoint set
of voters.

• Participation: If, given any profile, and given a
new vote over a set of issues by a new voter, the
result obtained from the new profile is equally or
more preferred by the new voter, who, thus, has
an incentive to participate. If, given a winner over
an election, there’s no candidate who is preferred
to the winner by all voters.

All the rules cited above are anonymous and
neutral,all but Cup are efficient, only Cup and
Copeland are Condorcet consistent, and all but Cup
and Copeland are consistent and participative.

3 SEQUENTIAL PREFERENCE
AGGREGATION

In the fuzzy scenario, each variable assignment is
given a preference between 0 and 1, and assignments
with a higher preference value are more preferred.

Assume to have a set of agents, each one express-
ing his preferences over a common set of objects via
some soft constraints. as well as different preferences
over the variable domains. We will call asoft pro-
file the preference of a set ofm agents, identified by
a triple (V,D,P): a set of variablesV, a sequenceD
of |V| domains, and a sequenceP of msoft constraint
problems over variables inV with domains inD. A
fuzzy profileis a soft profile where the preferences of
the agents are fuzzy constraints.

The idea is to sequentially vote on each variable
via a voting rule. We do not restrict to use always the
same voting rule for all variables, so we will have a
sequence of as many voting rules as the variables.

Given a profile(V,D,P), assume|V|= n, and con-
sider an ordering of such variablesO = 〈v1, . . . ,vn}
and a sequence of voting rulesR= 〈r1, . . . , rn〉. The
sequential voting procedure we propose is a sequence
of n steps, where at each stepi:

1. We ask all agents to report their preference order-
ing over the domain of variablevi . If we have
m agents, let us call such preference orderings
〈poi , . . . , pom〉.

2. We apply voting ruler i to this profile, returning
a winning assignment for variablevi , saydi . If
there are ties in the result, the first one following
a lexicographical order will be taken.

3. We add the constraintvi = di to the preferences of
each agent.

After all n steps have been executed, the tuple
〈d1, . . . ,dn〉 is reported as the chosen assignment for
the variables inV. We write SeqO,R(V,D,P) =
〈d1, . . . ,dn〉.
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This short description of the sequential voting pro-
cedure does not say what it means for an agent to re-
port their preference ordering over the domain of vari-
ablevi . In general, since we do not make any assump-
tion on the voting rulesr i , the agent needs to provide
the rule with a preference ordering over the whole do-
main of vi . Since this variable can be connected to
other parts of the agent’s soft constraint problem, in
order to report the correct preferences over the do-
main ofvi , the agent needs to consider the influence
of the rest of the problem overvi . This means that,
in general, the agent needs to compute the projection
overvi of its whole soft constraint problem. This task
is in general difficult, so it may require exponential
time to accomplish it, unless the class of constraint
problems used by the agent is tractable. This is for
example the case of tree-like shaped soft constraint
problems, which are polynomial to solve.

4 CONDORCET CONSISTENCY

It is natural to ask ourselves if the result returned
by the sequential voting procedure has some relation
with what is considered to be most preferred by the
agents.

A Condorcet winner (CW) is a candidate which
is preferred to any other candidate by a majority of
agents. Given a totally ordered profile, as in clas-
sical voting theory, there can be zero or exactly one
Condorcet winner. In our context, since we may have
ties in the preference orderings of the agents, there
could be more than one Condorcet winner, since sev-
eral variable instantiations could be considered opti-
mal for a majority of agents.

First, we define the notion of sequential Con-
dorcet winner (SCW). Given an SCSPQ, we will
denote asQ|v1=d1,··· ,vh=dh the problem obtained from
Q by fixing variablesv1, · · · ,vh to the correspond-
ing values. LetPi denote the fuzzy constraint prob-
lem of agenti. Given a soft profile(V,D,P) with
m agents andn variables, and an orderingO overV,
〈d1, . . . ,dn〉 is a SCW iff, for all j = 1, . . . ,n, |{i|d j ∈
top(v j ,Pi |v1=d1,...,vj−1=d j−1)}|> m/2. In words, a se-
quential Condorcet winner is the combination of local
Condorcet winners.

If all the local rules are Condorcet consistent, the
sequential voting procedure returns a SCW by defi-
nition. However, to conclude that Seq is Condorcet
consistent, we need to prove that SCW = CW. The
following results shows that a CW is always an SCW,
but unfortunately the opposite does not hold.

Theorem 1. Given a soft profile(V,D,P) and an or-
dering O over V, if d is a CW for(V,D,P), it is a SCW

for (V,D,P). Thus, if Seq is Condorcet consistent, all
local voting rules are so.

If d = (d1, . . . ,dn) is a CW, then a majority of vot-
ers prefers it to all other candidates. Thus, at each step
i of the sequential voting procedure, the same major-
ity prefersdi to all other values in the domain ofvi
given the values already chosen.

The opposite does not hold in general, even if all
voting rules are Condorcet consistent.

Theorem 2. If all local voting rules are Condorcet
consistent, the sequential voting procedure may be not
Condorcet consistent.

Consider a fuzzy profile(V,D,P) where: V =
{X,Y}, DX = DY = {a,b} and there are 5 agents.
The fuzzy SCSPs of all agents have a single constraint
over{X,Y}. For two agents we have:de f(X = a,Y =
b) = 0.9, de f(X = b,Y = b) = 0.8, de f(X = a,Y =
a) = 0.7, de f(X = b,Y = a) = 0.6; for one agent:
de f(X = a,Y = a) = 0.9, de f(X = a,Y = b) = 0.8,
de f(X = b,Y = a) = 0.7, de f(X = b,Y = b) = 0.6;
for the other two agents:de f(X = b,Y = a) = 0.9,
de f(X = b,Y = b) = 0.8, de f(X = a,Y = a) = 0.7,
de f(X = a,Y = b) = 0.6. When each agent solves the
problem and projects on variableX, for the first two
agents we havepre fX(a) = 0.9 andpre fX(b) = 0.8;
for the third agentpre fX(a) = 0.9 and pre fX(b) =
0.7; and for the last two agentspre fX(a) = 0.7 and
pre fX(b) = 0.9. Thus, 3 over 5 agents agree thatX =
a is optimal. Since the voting rulerX is Condorcet-
consistent, this value will be chosen forX. GivenX =
a, the preferences of the agents forY are: for the first
two agentspre fY(a) = 0.7 and pre fY(b) = 0.9; for
the third agentpre fY(a) = 0.9 and pre fY(b) = 0.7;
for the last two agentspre fY(a) = 0.7 andpre fY(b) =
0.6. ThusY = a will be chosen, sincerY is Condorcet
consistent, and(X = a,Y = a) will be the SCW. How-
ever,(X = a,Y = a) is not a CW, since the majority
of the agents prefers(X = b,Y = b).

5 ANONYMITY, NEUTRALITY
AND CONSISTENCY

It is also important to make sure that a preference ag-
gregation system does not depend on the names or the
order of the agents. This corresponds to saying that
the rule is anonymous. In our setting, a permutation
of voter set corresponds, basically, to a permutation
of the soft constraint problems. It is easy to see that
if the sequential voting rule respects anonymity, then
also all the local voting rules do so, and, vice versa,
if all the local voting rules are anonymous, so is the
resulting sequential rule.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

280



Neutrality, on the other hand, is a property that
requires for a rule to be insensitive to permutations of
the candidates. This means that the result does not de-
pend on the names of the candidates, but only on their
position in the preference orderings. We note that the
candidates of the local voting rules are the values in
the variable domains, while the candidates of the se-
quential voting rule are the complete assignments to
all variables. While a permutation of the values in
the domains always corresponds to a permutation of
the variable assignments, not all of the permutations
of variable assignments can be obtained via permuta-
tions of domain values. Thus neutrality of the local
voting rules does not imply neutrality of the sequen-
tial voting rule, while neutrality of the sequential vot-
ing rule implies neutrality of each local voting rule.

As defined above, a voting ruler is consistent if,
when considering two profilesP1 andP2 with disjoint
sets of voters, who vote over the same candidates,
such thatr(P1) = r(P2), we haver(P1∪P2) = r(P1).

Theorem 3. If all the local voting rules in R< The
opposite holds as well: if SeqO,R is consistent, then
all the local voting rules in R are consistent.

In fact, if all the local rules are consistent, at every
stepi of the sequential procedure, applied to profile
P1∪P2, the result for variablevi is the same as the re-
sult in profileP1 (and also in profileP2), so the overall
result (d1, . . . ,dn) will be the same as the result ob-
tained by the sequential procedure in profileP1 and in
profileP2. On the other hand, if one of the local rules

6 PARTICIPATION

Theorem 4. If the sequential voting procedure is par-
ticipative, then each local voting rule is so.

This means that there is a profile over the val-
ues of variablevi , say pi , and an agenth with pref-
erencepi,h over the values ofvi , such that agenth
strictly prefersr i(pi) to r i(pi ∪ pi,h). for each agent
j = 1, . . . ,m, the preferences over the values ofvi are
as in pi ; all other unary constraints are the same for
all agents and associate preference 1 to exactly one
value per variable and 0 to all other variables; there
are no other constraints. Assume the SCSPPh of
agenth is defined as follows: his preference over vari-
able vi is pi,h, all other unary constraints associate
preference 1 to exactly one value per variable and 0
to all other variables; there are no other constraints.
Since we have thatSeqO,R(V,D,P) ↓ vi = r i(pi) and
SeqO,R(V,D,(P∪ Ph)) ↓ vi = r i(pi ∪ pi,h), agent h
strictly prefersSeqO,R(V,D,P) to SeqO,R(V,D,(P∪
Ph)).

On the other hand, it is possible that all local vot-
ing rules are participative, but the sequential voting
procedure is not so.
Theorem 5. If all the local voting rules are partic-
ipative, the sequential voting procedure may not be
participative.

To see this, consider the profile whereV = {x,y},
D = ({a,b,c},{a,b}), and P is a sequence of two
fuzzy SCSPs which coincide and contain a unary con-
straint onx (associating preference 1 toa, 0.8 to b,
and 0.6 to c), a binary constraint onx and y (as-
sociating preference 1 to(a,b), 0.9 to (a,a), 0.8 to
(b,a), 0.7 to (b,b), 0.6 to (c,a), and 0.5 to (c,b)),
and a unary constraint overy (associating preference
1 to botha and b). It is easy to see that this SC-
SPs are DAC. Assume also that variables are ordered
x≺O y and thatr1 is the scoring rule with score vec-
tor (3,2,0) andr2 is the majority rule. In this profile,
SeqO,R(V,D,P) = (x = a,y = b). We now consider a
third voter, with a fuzzy SCSP with a unary constraint
onx (associating preference 0.8 toa, 1 tob, and 0.9 to
c), a binary constraint onx andy (associating prefer-
ence 0.8 to(a,b), 0.5 to(a,a), 0.7 to(b,a), 1 to(b,b),
0.6 to (c,a), and 0.5 to (c,b)), and a unary constraint
overy (associating preference 1 to botha andb). In
this new profileP′, SeqO,R(V,D,P′) = (x = b,y = a).
However, the third voter prefers(x = a,y = b) to
(x = b,y = a). Thus the third voter would be better
off not participating to the sequential voting process.

7 EFFICIENCY

Theorem 6. If the sequential voting procedure is ef-
ficient, then each local voting rule is so.

Let us assume that there is a local rule, sayr i that
is not efficient. This means that there is a profile over
the values of variablevi , pi , such thatr i(pi) = d but
all agents prefer another valued′. Let us now con-
sider the soft profile(V,D,P), where for each agent
j the preferences over the values ofvi are as inpi ;
all other unary constraints are the same for all agents
and associate preference 1 to exactly one value per
variable and 0 to all other variables and there are no
other constraints. We will have thatSeqO,R(V,D,P) =
(d1,d2, . . . ,di−1,d, . . . ,dn). For each agentj his pref-
erence forSeqO,R(V,D,P) corresponds with his lo-
cal preference ford. Thus each agent will prefer
(d1,d2, . . . ,di−1,d′, . . . ,dn) to SeqO,R(V,D,P).

On the other hand, it is possible that all local vot-
ing rules are efficient, but the sequential voting proce-
dure is not so. However, if we add the condition that
there is a single optimal candidate for all agents, then
the sequential voting procedure is efficient.
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Theorem 7. If all the local voting rules are efficient,
and there is a single candidate which is strictly pre-
ferred to all other candidates for all voters, then the
sequential voting procedure is efficient.

In fact, if there is a single candidate, sayd =
(d1, . . . ,dn) that is optimal for all agents, then we have
that, after DAC, for each agenti and for each variable
j, top(v j ,Pi |v1=d1,...,vj−1=d j−1) = d j . Thus since each
rule is efficient it will elect the value ofd assigned to
its variable. ThusSeqO,R(V,D,P) = d.

We note that for profiles where there is a unique
candidate that is optimal for all agents, efficiency co-
incides with Condorcet consistency. Thus, given such
profiles, the Condorcet consistency of the local rules
implies that of the the sequential rule.

8 MONOTONICITY

As defined above, a voting rule is monotonic if, when
a candidate wins, and one or more voters improve
their vote in favor of this candidate, then the same
candidate still wins.

Theorem 8. If the sequential voting procedure is
monotonic, then each local voting rule is so.

Let us assume that there is a local rule, sayr i
that is not monotonic. This means that there are
two profiles over the values of variablevi , say pi
and p′i , such thatr i(pi) = di, p′i is as pi except that
some agents have moveddi up in their orderings, and
r ′i(pi) = d′

i 6= di .
Let us now consider the fuzzy profile(V,D,P)

where: for each agent, the preferences over the values
of vi are as inpi ; all other unary constraints are the
same for all agents and associate preference 1 to ex-
actly one value per variable and 0 to all other variables
and there are no other constraints. Assume the result
of applying the sequential rule isSeqO,R(V,D,P) =
(d1,d2, . . . ,di , . . . ,dn).

Now let us consider the fuzzy profile(V,D,P′)
whereP′ differs from P only on the preferences on
variablevi that, for each agent, are as inp′i . We note
that in each agent’s SCSP, both inP andP′, there are
as many solutions as the values in the domain ofvi
and that their preference coincides with the one of the
corresponding value ofvi . ThusP′ differs fromP only
on the preference of the only solution involving value
di , i.e. SeqO,R(V,D,P), that has been moved up in the
ordering of some of the agents. However, the result
SeqO,R(V,D,P′) will be (d1,d2, . . . ,d′

i , . . . ,dn). Thus
Seqis not monotonic.

Theorem 9. If each local rule is monotonic, so is the
sequential rule.

Let us assume that the sequential rule is not mono-
tonic. This means that there is at least one soft pro-
file (V,D,P) such thatSeqO,R(V,D,P) = d and an-
other soft profile(V,D,P′), whered has been moved
up in the preference orderings of some agents, but
SeqO,R(V,D,P′) = d′ 6= d. Let us denote withdi , resp.
d′

i , the value assigned to variablevi in d, resp.d′. We
note that there must be at least one value on which
they differ. For each SCSP inP′ and for each variable
vi , di has either improved w.r.t.d′

i or remained as in
P. Let v j be any of the variables such thatd j 6= d′

j .
Thenr j is not monotonic.

The same results can be proven for strong mono-
tonicity, that is, all local voting rules are strongly
monotonic iff the sequential tule is so.

9 FUTURE WORK

We just considered a few properties of the sequential
voting procedure. We plan to study many others in or-
der to better characterize the result of the procedure in
terms of the preferences of the agents. We also plan to
develop heuristics for an efficient computing of such a
result even when the soft constraint problems are not
from a tractable class.
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