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Abstract: Clinical factors, such as patient age and histo-pathological state, are still the basis of day-to-day decision for 
cancer management. However, with the high throughput technology, gene expression profiling and 
proteomic sequences have known recently a widespread use for cancer and other diseases management. We 
aim through this work to assess the importance of using both types of data to improve the breast cancer 
prognosis. Nevertheless, two challenges are faced for the integration of both types of information: high-
dimensionality and heterogeneity of data. The first challenge is due to the presence of a large amount of 
irrelevant genes in microarray data whereas the second is related to the presence of mixed-type data 
(quantitative, qualitative and interval) in the clinical data. In this paper, an efficient fuzzy feature selection 
algorithm is used to alleviate simultaneously both challenges. The obtained results prove the effectiveness 
of the proposed approach. 

1 INTRODUCTION 

Breast cancer is one of the most common causes of 
death among women in the world. In 2009, an 
estimation of 192,370 new cases of invasive breast 
cancer was diagnosed, as well as 62,280 additional 
cases of in situ breast cancer in the United States 
alone. Along with 40,170 women are expected to die 
from breast cancer and 1,910 cases of breast cancer 
are expected to occur among men (data from the 
American Cancer Society, 2009). Consequently, an 
accurate cancer diagnosis and prognosis is needed to 
help physicians take the necessary treatment 
decisions and thereby reduce its related expensive 
medical costs. In the past decade microarray analysis 
has had a great interest in cancer management 
(Golub et al., 1999; Ramaswamy et al., 2001; Van’t 
Veer et al., 2002). This technology allowed a more 
accurate cancer management such as diagnosis 
(Ramaswamy et al., 2001), prognosis (Van’t Veer et 
al., 2002), treatment response prediction (Straver et 
al., 2009). Meanwhile, the introduction of this 

technology has brought with it also new challenges 
related to the high dimensionality of microarray data 
and the low signal-to-noise ratio. During the pre-
microarray era, cancer management was guided by 
the clinical and histo-pathological knowledge gained 
from many decades of cancer research. It has been 
established recently that the integration of both 
information may improve the cancer management 
(Sun et al., 2007; Gevaert et al., 2006). In (Sun, 
2007), a feature selection method (I-Relief) was 
used to perform markers selection. However, the 
used method works under the assumption that all the 
data are of quantitative type and therefore an 
arbitrary transformation of symbolic data to 
quantitative one was performed to cope with data 
heterogeneity. This transformation can be a source 
of distortion and information loss as it introduces a 
distance which was not present in the original data. 
In (Gevaert et al., 2006), a Bayesian network was 
used to perform breast cancer prognosis. The 
obtained results show only that their approach 
performs similarly to the 70-gene signature 
established by Van’t Veer and colleagues (Van’t 
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Veer et al., 2002) and claim that a variable selection 
is implicitly performed based on their (in) 
dependency through the Markov Blanket concept. 
These results do not mean necessarily that the 
clinical data contains no additional information to 
the genetic data; it only tells us that their approach 
does not fit well. In the present work, we use our 
recently developed method, referred to as MEMBAS 
for (MEmbership Margine Based FeAture Selection) 
(Hedjazi et al., 2010a), to prove the usefulness of the 
integration of both types of data by handling both 
challenges simultaneously: high-dimensionality and 
heterogeneity of data. The first challenge is one of 
the characteristic of microarray data related to the 
curse of dimensionality (Golub et al., 1999). To deal 
with this problem, MEMBAS method selects a small 
feature subset such that the performance of a 
learning algorithm is optimized. The second 
challenge concerns the problem of processing 
simultaneously different types of data (qualitative, 
quantitative, interval ...) present almost in all daily 
produced clinical datasets (Age, Sex, Tumour size, 
Tumour grade...). MEMBAS method answers also to 
this problem by a simultaneous mapping of all types 
of data on a homogeneous space in order to process 
them identically in this new resulted space.  

This paper is organized as follows:  the second 
section explains the fuzzy feature selection approach 
based on feature fuzzification and the MEMBAS 
selection procedure. An application is given in 
section 3 to prove the usefulness of the adopted 
approach through the derivation of a hybrid 
signature for breast cancer prognosis.  

2 FUZZY FEATURE SELECTION 

During the past decades, feature selection has played 
a crucial role in order to improve the learning 
algorithms performance by selecting only the most 
relevant features for the problem under 
investigation. Here, we use the term feature to refer 
to a marker. Existing feature selection algorithms are 
traditionally characterized as wrappers and filters 
according to the criterion used to search the relevant 
features (Kohavi and John, 1997; Guyon and 
Elisseeff, 2003). Wrapper algorithms optimize the 
performance of a specified machine-learning 
algorithm to assess the usefulness of the selected 
feature subset; whereas filter algorithms use an 
independent evaluation function based generally on 
a measure of information content (entropy, t-test,…) 
(Kohavi and John, 1997; Guyon and Elisseeff, 
2003). Filter algorithms are computationally more 

efficient but perform worse than wrapper algorithms 
(Kohavi and John, 1997; Guyon and Elisseeff, 
2003). Thereby, with filter algorithms the features 
are evaluated individually without taking into 
account the correlation information and redundancy 
problems. Hence, this can deteriorate drastically the 
classifier performance (Kohavi and John, 1997). On 
the other hand, daily produced medical datasets may 
contain mixed feature-types (numerical, symbolic 
data) as well as large number of irrelevant features. 
This also poses a great challenge for the existing 
machine-learning algorithms. Up to now, most 
classical feature selection algorithms are suitable for 
numerical features but their efficiency decreases 
significantly whenever a mixed-type dataset problem 
is encountered. The second problem is assessed in 
emergent fields such as bioinformatics, where 
datasets may hold a huge number of irrelevant 
features. 

 
Figure 1: MEMBAS general principle. 

We have recently proposed a new feature 
selection algorithm, referred to as MEMBAS 
(Hedjazi et al., 2010a), which alleviates the 
previously mentioned problems. MEMBAS enables 
to process in the same way the three types of data 
(numerical, qualitative and interval) based on an 
appropriate and simultaneous mapping using fuzzy 
logic concepts (Figure 1.). To avoid the heuristic 
search during the feature selection procedure, 
MEMBAS optimizes an objective function using 
classical optimization techniques. The feature’s 
importance is therefore evaluated within a 
membership margin framework. As we address a 
problem with two classes (Recurrence or No 
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Recurrence), only a description of MEMBAS for 
binary class problems is given in this paper. 
Let CCn ×Χ∈=

N

1nn  ],[x =D  be the training dataset, 
where xn = [xn1, xn2, ..., xnm] is the n-th data sample 
containing m features, and Cn its corresponding class 
label. In the first step the features subset is fuzzified 
using the empirical data based on the appropriate 
learning process according to each feature type. The 
resulting fuzzy sets represent the feature 
memberships to the two existing classes. Then, when 
a new representation of data in a homogeneous 
space “membership space” is obtained, a single 
processing can be performed whatever the initial 
type of data. 

2.1 Feature Fuzzification 

The feature fuzzification can be performed 
according to each feature type as follows: 

2.1.1 Quantitative Type Features 

The quantitative feature value is first normalized 
into the interval [0,1] by using the formula:  

 min max minˆ ˆ ˆ ˆ /i i i ix x x x xi= − −
 

(1) 

Where ˆ ix  is the measured value of the ith feature 

and ix  is its normalized value, ximin and ximax are the 
bounds of the ith feature given by the context or 
imposed by the expert. 

In the case of quantitative features, several 
membership functions proposed by (Aguado and 
Aguilar, 1999) can be used for µk

i. In this work we 
use the centred binomial membership function (2): 

[ ] ( ) i
ki

i
ki xi

k
xi

k
i
k

i
ki

i
k x ρρ

ϕϕϕρμ
−−−

−= 1, 1

 
(2) 

where kρ  is the ith feature prototype for class Ck, 
and parameter kϕ  measures the proximity of the 
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2.1.2 Interval Type Features 

The membership function for interval type variables 

is chosen as the similarity (Hedjazi et al., 2010b) 
between the symbolic interval value of the ith 
variable xi and the interval ,i

k

i i
k kρ ρ ρ− +=⎡ ⎤⎣ ⎦ representing 

the class Ck as: 
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Where the measure ϖ  of an interval X is given by:   

[ ] ( ) ( )XboundlowerXboundupperX .. −=ϖ  
Let consider that mk individuals have been assigned 
to class Ck, this class will have as prototype a vector 
whose components are the intervals obtained by the 
mean bounds: 
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Where j
ix −  is the ith variable lower bound of the jth 

sample and j
ix +  is its upper bound. Consequently, 

the resulted class prototype for the r interval 
variables is given by the vector of intervals:  

[ ]Tr
kkkk ρρρρ ,...,, 21=  (6) 

For a better conditioning of magnitudes and 
processing time minimization, normalization within 
the interval [0,1] is proposed: 
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where ],[x +−= iii xx  is the normalized value; 
consequently, the domain Ui  of any interval variable 
xi becomes the unit interval [0,1].  

2.1.3 Qualitative Type Features 

For qualitative variables, the possible values of the 
ith variable form a set of modalities: 

IMPROVED BREAST CANCER PROGNOSIS BASED ON A HYBRID MARKER SELECTION APPROACH

161



 

{ }1 , ,i i i
i j MiD Q Q Q= … …

 
(8) 

The membership function for a qualitative variable xi 
is specified as:  
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2.2 Homogeneous Space of Features 

It results from the previous step that, in the binary 
class problems, a sample xn from dataset D can be 
associated to two Membership Degree Vectors 
(MDVs) of dimension m given as follows: 
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Where µk
i(xni) (i.e. µk

i(xi= xni) ), is the membership 
function of class Ck evaluated at the given value xni  
of the ith feature for sample xn .  It is worthwhile to recall that the resulted MDVs 
contain the membership values relative to all 
features whatever their initial type. This guaranties 
the mapping of different feature types from 
completely heterogeneous spaces into a common 
space which is the membership space (Figure 1). 
Once all features are simultaneously mapped into a 
common space, they can be henceforth processed 
similarly either for a classification or feature 
selection task. Our focus in this work is the feature 
selection task. A membership margin has been 
introduced in (Hedjazi et al., 2010a) to estimate the 
features importance in the membership space 
whatever their type and number. We assume that the 
nth data sample 1 2

nx , , m
n n nx x x= ⎡ ⎤⎣ ⎦" is labelled 

by class c . Let c~ be the alternative class. We define 
a membership margin for sample xn by: 

( ) ( )nβ = ψ U -ψ Unc nc�  (11) 

where U n c and U n c�  are respectively the 
membership degree vectors of sample xn to classes 
cand c~ , ψ(.) is an aggregation function defined as 

∑=Ψ
i

iY (Y)  computing the global contribution of a 

subset of features to each class. Note that a sample 
xn is correctly classified if βn >0. The basic idea to 
calculate the fuzzy feature weight is to scale the 
feature memberships in the membership space such 
that the leave-one-out error is minimized: 

( ) ( ) Max β (w ) { }1 n f 1 1 1
wf

N N m i m i
w x w xn n i fi c ni i fi c niμ μ∑ = ∑ ∑ − ∑= = = = �

 

0 w1,=|| w|| t   S. f
2
2f ≥

(12) 

Where βn(wf) is the margin of xn computed with 
respect to wf. The first constraint is the normalized 
bound for the modulus of wf so that the 
maximization ends up with non infinite values, 
whereas the second guarantees the nonnegative 
property of the obtained weight vector. The classical 
Lagrangian optimization approach was used to solve 
the above problem and the following closed-form 
solution was obtained: 
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With s+= [max(s1,0), …, max(sm,0)]T. 

Therefore, MEMBAS is considered as one of the 
first feature selection algorithms that enable 
processing similarly mixed feature-type data. In 
addition, the objective function optimized by 
MEMBAS approximates the leave-one-out cross 
validation error. Therefore, MEMBAS chooses only 
the features if they contribute to the overall 
performance. Hence, it addresses the issues of 
features correlation and redundancy. Moreover, 
MEMBAS avoids the heuristic combinatorial search 
by using classical optimization approaches to 
achieve an analytical solution. In (Hedjazi et al., 
2010a) an extensive experimental study was 
performed on large number of datasets presenting 
both challenges (mixed-type and high-dimensional 
data) to demonstrate the effectiveness of the 
algorithm. The novelty of the present study is the 
application of this method to derive a hybrid 
signature integrating simultaneously genes 
expression and heterogeneous clinical data 
(quantitative, qualitative, interval).  Moreover, an 
extension of MEMBAS method has been also 
proposed for multiclass problems (Hedjazi et al., 
2010a). Subsequently, the effectiveness of 
MEMBAS method is illustrated on a real-world 
problem of crucial importance: marker selection for 
breast cancer prognosis. The main aim for 
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performing this study is to improve cancer prognosis 
based on the dimensionality reduction principle 
when the data are possibly of mixed types. As it was 
mentioned in the previous section, MEMBAS 
enables a simultaneous selection of mixed-feature 
types by avoiding any related numerical and 
heuristic search complexities. 

3 EXPERIMENTS AND RESULTS 

3.1 Dataset and Experiment Setup 

The data set used in this study consists of 295 breast 
cancer patients, divided into 2 classes according to 
the appearance of distant subclinical metastases: 88 
patients with and 207 patients without distant 
metastases (Van de Vijver et al., 2002). 29 patients 
with missing data have been removed. The 
microarray data set contained 24188 gene expression 
values. The clinical data contained 11 variables:  

• Age (quantitative) 
• Tumour grade (interval: [3,5]; [6,7]; [8,9]) 
• Tumour size = T (qualitative: ≤2cm; >2cm) 
• Nodal status = N (qualitative : pN0; ‘1-3’; ≥4) 
• Mastectomy (qualitative : Yes, No)  
• Estrogen Receptor expression (qualitative: Yes, 

No)  
• Chemotherapy (qualitative: Yes, No) 
• Hormonotherapy (qualitative: Yes, No) 
• St. Gallen - European criteria (qualitative: 

Chemo, No Chemo) 
• NIH –US criteria (qualitative: Chemo, No 

Chemo 
• Risk NIH (qualitative: low, intermediate, high) 

The complete data set (clinical and microarray data) 
was divided, similarly as in (Chang et al., 2005), 
into a training set (132 patients) to perform feature 
selection and learn classifier parameters, and a 
validation set (134 patients) to assess the 
performance of the algorithm on data not used for 
training. The classification task was performed by 
using the fuzzy classification algorithm LAMDA 
(Learning Algorithm of Multivariate Data Analysis) 
(Aguado and Aguilar-Martin, 1999). LAMDA is a 
fuzzy methodology of conceptual clustering and 
classification. It is based on finding the global 
membership degree of a sample to an existing class, 
considering all the contributions of each of its 
features. This contribution is called the marginal 
adequacy degree (MAD). The MADs are combined 
using "fuzzy mixed connectives" as aggregation 
operators in order to obtain the global adequacy 

degree (GAD) of an element to a class. We have 
chosen this classifier because it handles in a unified 
way the three types of data (quantitative, qualitative 
and interval) without the need of any transformation. 
More details on this fuzzy classification method can 
be found in (Hedjazi et al., 2010b) which did not 
address the feature selection problem. MEMBAS is 
used here to derive a hybrid prognostic marker 
without resorting to any data transformation. To 
demonstrate the predictive power of the hybrid 
prognostic signature derived from the genetic and 
clinical markers, its performance was compared with 
those of clinical markers and the well known 
Amsterdam 70-genes signature (Van’t Veer, 2002). 
Then, another comparison with purely clinical 
indices (NIH, St Gallen) was also performed.   

3.2 Results 

Table 1 shows the obtained comparative results 
between the hybrid markers approach and other 
approaches. It can be observed that the best 
prediction accuracy is obtained by the proposed 
approach which achieves more than 70%, whereas 
only 66% is achieved using the 70-genes  
Amsterdam signature (Van’t Veer, 2002). It must be 
noticed here that MEMBAS chooses only 15 hybrid 
markers, among them three are mixed-type clinical 
markers (Number of positive lymph nodes 
“qualitative” , Estrogen Receptor “qualitative” and 
Grade “interval”), added to them 12 genes. This fact 
was established in many previous studies (Deepa 
and Claudine, 2005), where it was noted that these 
three clinical features still to date are considered as 
important prognostic factors. Therefore, MEMBAS 
chooses meaningful markers and allows reducing 
significantly the number of needed markers to 
perform a prognosis (12 genes compared to the 70 
genes of the Amsterdam signature).  

Table 1: Comparatives results between hybrid, clinical and 
genetic signatures. 

 TP FP FN TN Sens Spec Acc 

Hybrid 13 12 28 81 0.32 0.87 94/134 
(70.15%) 

70-genes 25 29 16 64 0.61 0.69 89/134 
(66.42%) 

Clinical 23 37 18 56 0.56 0.60 79/134 
(58.96%) 

To further demonstrate the effectiveness of the 
proposed approach, we compare in Table 2 our 
results with the following clinical conventional 
prognostic factors: the St. Gallen’s European 
consensus and the NIH index. The St. Gallen and the 
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NIH prognostics were taken from the clinical dataset 
as given by (Chang et al., 2005).  

Table 2: Comparative results between hybrid markers and 
pure clinical indices (NIH, St Gallen). 

 TP FP FN TN Sens Spec Acc 

Hybrid 13 12 28 81 0.32 0.87 94/134 
(70.15%) 

NIH 41 91 0 2 1 0.02 41/134 
(32.09%) 

St 
Gallen 38 85 3 8 0.93 0.09 46/134 

(34.33%) 

Both indices have a very high sensitivity, but an 
intolerable low specificity which would lead to give 
unnecessary adjuvant systematic treatment to many 
patients. Thus the obtained hybrid markers 
outperforms also the pure clinically indices.      

4 CONCLUSIONS 

In this paper a new approach to perform cancer 
prognosis is proposed based on a hybrid marker 
selection. We evaluated our approach on a public 
available breast cancer prognosis dataset. Patients 
included in this dataset are classified into two groups 
according to whether a distant subclinical metastasis 
was occurred or not. This dataset represents two 
challenges: high-dimensionality (microarray data) 
and mixed-type data (clinical data). To cope 
appropriately with this, a marker selection was 
performed based on a fuzzy feature selection 
approach which handles both challenges. It has been 
shown that the obtained hybrid markers, composed 
of clinical markers and genes, can improve the 
prediction accuracy and outperform both genetic 
based approaches (i.e. the well-known Amsterdam 
70-genes signature) and pure clinical indices (St 
Gallen and NIH). Moreover, the proposed approach 
reduces significantly the number of markers needed 
to perform a cancer prognosis task. 
Future work will be devoted to test this algorithm on 
other public available datasets and integrate other 
sources of information than clinical and microarray 
data. 
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