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Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de Valencia
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Abstract: The last decades a large amount of research has been done in the genomics domain which has and is generating
terabytes, if not exabytes, of information stored globally in a very fragmented way. Different databases use
different ways of storing the same data, resulting in undesired redundancy and restrained information transfer.
Adding to this, keeping the existing databases consistent and data integrity maintained is mainly left to human
intervention which in turn is very costly, both in time and money as well as error prone. Identifying a fixed
conceptual dictionary in the form of a conceptual model thus seems crucial. This paper presents an effort
to integrating the mutational data from the established genomic data source HGMD into a conceptual model
driven database HGDB, thereby providing useful lessons to improve the already existing conceptual model of
the human genome.

1 INTRODUCTION

Looking from an information system point of view,
the human genome is an extremely complex system
in which exists a lot of ambiguity. For example, basic
concepts of what exactly defines a gene are still not
explicitly described by the domain. Biology largely
depends on domain experts interpreting data, in or-
der for knowledge to appear. Combining the lack of
proper data structure and the very large amounts of
data generated, a clear problem emerges. How can
domain experts dedicate their limited time to the right
pieces of information if these are buried in noise?
Computers excel at processing large amounts of data,
and thus a logical step would be to apply this excel-
lence to the present day problem in genetics, sifting
the noise from potentially useful information. For
this process to take place, a conceptual modeling ap-
proach is essential: it allows for an adequate represen-
tation of the domain. Present day solutions that pre-
tend to do exactly this (i.e. ontologies) usually pro-
vide controlled vocabularies instead of fixing a con-
ceptual gamut.

A proper conceptual model is expected to provide
a clear data structure, enabling efficient and effec-
tive access to genomic data, thereby offering ways
of reusing previously researched data by pharmaceu-
tic, medical and research institutes as mentioned by
(Pastor, 2008). Also, the paradigm shift implicated
by considering the genome as a complex information
system is expected to allow for exciting new views.
To present day, most bioinformatics research is lo-
cated in the solution space, by attempting to interpret
the data that comes out of ’the black box’. For in-
stance by applying powerful sequence alignment tools
like BLAST and BLAT. Another point of view is of-
fered by (Pastor, 2008), whose efforts are directed
at tracing and understanding the processes effectively
leading to these data. Essentially, seen from an in-
formatics point of view, finding the source-code, by
analyzing the object-code, of what may very well be
the most sophisticated software ever to be analyzed:
life itself.

In section 2 earlier work will be discussed. For a
detailed description of the conceptual model of the
Human Genome (CSHG) often referred to in this
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work please consult (Pastor et al., 2010a) and (van der
Kroon et al., 2009). Section 3 will discuss the results
of the extraction of data from the external sources,
listing the encountered problems and resulting adjust-
ments to the conceptual model. Ultimately, in section
4 conclusions will be drawn, along with suggestions
for further research.

2 RELATED WORK

Other solutions to the ambiguity problems associated
to the genetics domain include ontologies (Ashburner
et al., 2000). To understand why ontologies alone do
not fulfill the job of obtaining a full understanding of
any given domain, some background information is
necessary. Conceptual definitions exist on two levels:
conceptually and semantically. The semantic aspect
refers to instances of concepts; e.g. the BRCA2 gene,
which is an instance of the abstract ”gene” concept.
A problem here for example means ambiguity about
naming conventions, for instance the BRCA2 gene is
also known as: ”Fancd1” and ”RAB163”. The con-
ceptual aspect is more abstract and handles questions
like ”What is a gene?”. It is our strong belief that for
the proper and complete understanding of any given
domain, both are vital.

An information systems approach to this specific
problem space is not entirely new. (Okayama et al.,
1998) describes the conceptual schema of a DNA
database using an extended entity-relationship model.
(Paton et al., 2000) advanced on these efforts by pre-
senting a first attempt in conceptually modeling theS.
cerevisiaegenome by proposing a collection of con-
ceptual data models for genomic data. Among these
conceptual models are a basic schema diagram for
genomic data, a protein-protein interaction model, a
model for transcriptome data and a schema for allele
modeling.

Whereas (Paton et al., 2000) provides a broader
view by presenting conceptual models for describing
both genome sequences and related functional data
sets, (Pastor, 2008) converged on the basic schema
diagram for genomic data adapting it to the human
genome and eventually produced a database, the hu-
man genome database (HGDB) corresponding to this
model and following the standard rules of logical de-
sign. This database is now in the prototype phase and
the first 2 genes, NF1 and BRCA1, have been partially
loaded. (Pastor et al., 2009) describes the evolution
HGDB went through during the process of conceptu-
ally mapping HGDB and HGMD to each other. (Pas-
tor, 2008) describes the evolution of the model more
in general and provides a descriptive overview of how

the model came to be, and from where it evolved to
what it is now.

3 RESULTS

(Pastor et al., 2010b) reports a study of comparing the
HGMD to the CSHG, in order to identify a concep-
tual mapping between the two. It is this mapping
that is followed in this document, and the following
section will report the encountered problems for ac-
tually loading the information from the HGMD into
the HGDB for the BRCA1 gene. Roughly the prob-
lems can be separated in two categories; intrinsic data
properties and data representation. Verifiably incor-
rect, inconsistent or incomplete data (tuples) are ex-
amples of these encountered mishaps with the actual
data, or intrinsic data properties. Difficulties associ-
ated to the process of extracting the data from the ex-
ternal source and ambiguous descriptions of mutation
properties are typical examples of data representation
problems. Naturally, the division between the two cat-
egories is not strict and thus some overlap exists, it
is however useful to keep in mind that intrinsic data
property problems tend to affect the entire genetics
domain, while the data representation difficulties are
restricted to HGMD.

3.1 Data Loading Problems

HGMD distinguishes 10 mutation types: Mis-
sense/nonsense, Splicing, Regulatory, Small Dele-
tions, Small Insertions, Small Indels, Gross Dele-
tions, Gross Insertions, Complex Rearrangements and
Repeat Variations. Roughly all the types can be
mapped to theVariation andPreciseconcepts of the
CSHG, except for the Gross Deletions, Gross Inser-
tions, Complex Rearrangements and Repeat Varia-
tions. These latter are described in a very unstructured
manner, almost natural language, and are thus consid-
ered impossible to process automatically. The CSHG
facilitates these tuples asImprecise, which merely
stores a description of the mutation.

3.1.1 Intrinsic Data Properties

In some cases the HGMD mutational data lacks en-
tries. For instance, the splicing mutations overview
provided by HGMD mentions 5 mutations in intron
22, while (Panguluri et al., 1999) states at least 2 other
mutations; IVS22+67(T>C) and IVS22+8 (T>A).
Three concrete examples of this problem were en-
countered, all three in Splicing mutations. However,
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this particular type of problem is very difficult to de-
tect, since finding them involves rereading the articles
HGMD provides which is hard to automate. Thus, al-
though only three concrete occurrences of this prob-
lem have been encountered, it is likely more exist.

Splicing mutation CS961492 describes a C>T
mutation, as a possible phenotype HGMD indicates
Breast cancer. However, having the read the cor-
responding article (Langston et al., 1996), not once
breast cancer is mentioned in combination with this
mutation. The article does mention the mutation as
being affiliated with men suffering from prostate can-
cer. Thus, deducing from the rather limited informa-
tion made available by HGMD on this specific mu-
tation, it is concluded HGMD made an error during
data entry.

Splicing mutations CS063247 and CS011027
should be located near intron 4. According to the
splice junctions overview HGMD provides, there ex-
ists no intron 4, nor an exon 4. However, literature
explains the ambiguity as a result of misidentification
of an inserted Alu element (Smith et al., 1996).

3.1.2 Data Representation

Some data is provided in natural language. For in-
stance the fact that the first two BRCA1 exons are al-
ternative non-coding exons is only mentioned in the
header of the Splice Junctions overview. Adding to
this, in Small Deletions (2 instances) and in Small
Insertions (3 instances) some mutations are located
through mouse-over tags, the information communi-
cated by these tags is highly unstructured to a degree
that we might call it natural language as well. Also,
in the case of imprecise mutations (Gross Deletions,
Gross Insertions, Complex Rearrangements and Re-
peat Variations), the greater part of the information
presented by HGMD is in natural language, impeding
an automated approach severely in the affected cases.

In some cases, the HGMD database uses differ-
ent ways of locating mutations, within the same type
of mutations. For instance, Small Insertion mutations
CI030168, CI962219 and CI022582 happen in non-
coding areas of the gene, just like the Small Dele-
tions mutations CD991644 and CD994433. Since
HGMD generally uses a cDNA codon referenced way
of locating these types of mutations, and given that
non-coding sequences simply not exist in the cDNA,
HGMD locates these earlier mentioned mutations in a
different way. In the case of Small Insertions, HGMD
provides a Splice Junction reference, very much like
the method used to locate Splicing mutations. In
this case the CI030168, CI962219 and CI022582
mutations are located at IVS20+21, IVS20+48 and
IVS20+64 respectively. So IVS20 indicates the in-

tron number, where +21 indicates the offset, however
since no acceptor/ donor information is provided, it
is unclear from which side of the intron the offset
should be referenced. In the case of Small Deletion
mutations CD991644 and CD994433 at first sight, no
indication of how to locate them is provided. How-
ever, this information is provided through mouse-
over tags in the Splice Junctions referenced form, de-
scribed earlier. CD991644 is thus located by ”I7E8-
24, aka IVS7 -15 del10” and CD994433 is located by
”I12+34 / polymorphism ?”. This problem was en-
countered 3 times in Small Insertions and 2 times in
Small Deletions, making a total of 5 occurrences.

In splicing mutations, HGMD uses a different way
of locating mutations. Here mutations are located by
referring to splice-junctions. An offset is given, to
indicate the amount of nucleotides between the in-
dicated splice junction and the actual mutation. In
a so-called splicing mutations overview HGMD then
provides a sample sequence for each intron/exon-
junction contained in the gene. This method of lo-
cating mutations is used primarily in splicing muta-
tions (80 instances), but in some exceptional cases
HGMD also uses this notation to provide locational
data for other types of mutations. For instance, In
Small Deletions (2 instances) and in Small Insertions
(3 instances).

In the HGMD phenotype ambiguity exist, i.e. mu-
tations may or may not result in a certain phenotype.
This is indicated by a question mark following the
supposed phenotype. However, no probability scores
are stated and a mutation without a (noticeable) phe-
notype is considered to be a variation with neutral ef-
fect. Since variations and mutations are considered to
be two different concepts in the conceptual model of
the human genome, this poses problems with loading
the database correctly. 94 instances of this problem
have been identified: missense/nonsense mutations
account for the most instances (73), splicing muta-
tions contains another 16, small deletion mutations 2
and small insertion mutations account for 3 instances.

4 CONCLUSIONS

In this document we have confirmed the primary rea-
son of existence for conceptual modeling techniques.
The HGMD is considered an extremely useful source
of data about genetic mutations in the field. For be-
ing curated, it is also considered to be highly reliable.
However, this document shows that a lot remains to be
wished for. The apparent lack of a thorough concep-
tual modeling approach seems to bear it’s traces on
the service. Every tuple in the HGMD is supposed to
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represent a genetic variation, known to be associated
to disease. This quite rigorous definition becomes en-
dangered in cases where indicated variations ’might’
be associated to disease, as indicated in the HGMD
by the question mark. Indeed, a variation that is not
associated to disease should not be considered a mu-
tation and thus not enter the dataset as is. The CSHG
handles these cases nicely by providing theneutral
polymorphismdimension, for theVariation concept.
Another point of improvement is the lack of a proper
way of facilitating the various reference sequence in
common use by research papers. For illustration, a
certain mutation might be located in position 131 in
reference sequence X, but correspond to position 125
in reference sequence Y. The HGMD provides it’s
own cDNA sequence, from which it locates the ma-
jority of it’s mutations. However this cDNA sequence
is ’based’ on an NCBI sequence, and can thus differ
from it.

For an optimal use of the data provided by
HGMD, the above means an expert in many cases still
needs to evaluate and interpret the data. This is expen-
sive in both time and money. Aligning the HGMD set
of mutations to the NCBI reference sequence, that is
considered to be the ’golden standard’ thus seems a
logic step. Concretely, we suggest two major changes
to the HGMD: (i) facilitate a more elaborate way of
handling associated phenotype, perhaps link directly
to the Online Mendelian Inheritance in Man (OMIM)
database. And (ii) add a new column, in which the
reference sequence indicated by the source paper is
also stored. This will allow for a much easier, and
more efficient use of the HGMD data set. Consider-
ing data is acquired manually from the papers, adding
this element of extracted data seems to be relatively
low cost.

When we look at the HGMD we can not help but
notice that although very useful, a lot is still to be
wished for from an information systems point of view.
It is our strong belief that the only way of accurately
representing any data, and perhaps genetic data in par-
ticular, can only be done by means of careful analysis
of the domain. The CSHG aims to do exactly this, by
applying a conceptual modeling approach.
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