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Abstract: We present the improvements made to and subsequent validation of an automated approach to detect 
neonatal seizures. The evaluation of the algorithm has been performed on a new and extensive data set of 
neonatal EEGs. Previously, we have classified neonatal seizures visually into two types: the spike train and 
oscillatory type of seizures and developed two separate algorithms that run in parallel for their automated 
detection. The first algorithm analyzes the correlation between high-energetic segments of the EEG, 
whereas the second one detects increases in low-frequency activity (<8 Hz) and then uses an 
autocorrelation. An improved version of our automated system (called ‘NeoGuard’) uses more informative 
features for classification and optimized parameters for thresholding. The validation was performed on 756 
hours of ‘unseen’ continuous EEG monitoring data from 24 neonates with encephalopathy and recorded 
seizures. The seizure detection system showed a median sensitivity of 86.9 % per patient, positive predictive 
value (PPV) of 89.5 % and false positive rate of 0.28 per hour. The modified algorithm has a high 
sensitivity combined with a good PPV whereas false positive rate is much lower compared to the previous 
version of the algorithm. 

1 INTRODUCTION 

Neonatal seizures occur in 1 to 3.5/1000 births and 
they represent a distinctive indicator of abnormality 
in the central nervous system – CNS (Volpe, 2001). 
The etiologies are varied, with the majority being 
caused by biochemical imbalances within the CNS, 
hypoxic ischemic encephalopathy, intracranial 
haemorrhages and infection, and developmental 
(structural) defects.  Neonatal seizures are associated 
with major dysfunction of the CNS and result in 
significant sequelae (Holmes, 1998; Miller, 2002). 
Therefore, there is a high need for early detection of 
the seizures. Seizures detected in the early stages of 
life can be treated with anticonvulsant drugs and in 
that way, hopefully, further damage to the brain can 
be limited. In clinical practice, detection of the 
seizures is accomplished by a combination of 
clinical observation and visual assessment of the 
EEG. However, clinical signs need not always 

accompany neonatal seizures. They can manifest as 
subtle (Connell, 1989; Malone, 2009) or subclinical 
seizures, being only detected by EEG monitoring.  

Many algorithms for detection of neonatal 
seizures have been published. The best known 
methods are based on computing a running 
autocorrelation function (Liu, 1992), rhythmic 
discharges detection (Gotman, 1994), modelling and 
complexity analysis (Celka, 2002). Other approaches 
have employed wavelets, frequency content, 
entropy, etc., for feature extraction. These features 
were then applied for supervised learning and 
training of classifiers (Greene, 2007; Zarjam, 2003; 
Aarabi, 2006).  

At the moment, however, there is no neonatal 
seizure detection algorithm which is widely accepted 
in clinical practice. The design of a reliable seizure 
detection system is a challenging task as neonatal 
EEG during seizures has as extremely complex and 
variable morphology. Moreover, great difference 
among the seizure patterns can be present even 
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within the same patient (Lombroso, 1996; 
Shewmon, 1990).  

We have previously published (Deburchgraeve, 
2008) an algorithm for automated neonatal seizure 
detection. It is designed with an approach which 
tries to mimic the decisions made by the clinical 
neurophysiologist while visually examining EEG. In 
order to detect a neonatal seizure, the human 
observer searches for a pattern which shows a 
visible change relative to the background EEG. An 
additional main characteristic of all seizures is 
repetitiveness, as there is always a recurrent pattern 
which describes the seizure. Both features were 
employed for the algorithm design.  

Due to the nature of the problem, the neonatal 
seizure detection system has to be very reliable and 
robust. Therefore, constant improvement, validation, 
and optimization of the algorithm are needed. The 
modified version of our detection system, called 
NeoGuard, was tested on a new, large set of unseen 
EEG data. We present here the results of the 
validation of our detection system.  

2 METHODS 

2.1 EEG Data Set 

All EEG data were recorded at the Sophia Children's 
Hospital – part of Erasmus MC, the University 
Medical Center in Rotterdam, the Netherlands. The 
data base is formed from 24 consecutive newborns 
with presumed perinatal asphyxia who underwent 
video–EEG monitoring for at least 24 hours and had 
recorded seizures. The recordings mostly started 
within 24 hours of birth. Digital video–EEG with 
polygraphy, was registered continuously for 1-3 
days using a NervusTM monitor (Taugagreining hf, 
Reykjavik, Iceland). Seventeen scalp electrodes 
were placed according to the full 10-20 International 
System (Cherian, 2009). The sampling frequency 
was 256 Hz. It is important to stress that we have 
used a completely new data set for this study, with 
no overlap with the one that has been described 
previously (Deburchgraeve, 2008). All EEG data 
was reviewed by a clinical neurophysiologist and the 
seizures were visually scored for their onset, 
amplitude, frequency, duration, rhythmicity, location 
and spread. We defined as ‘definite seizures’ 
electrographic discharges that showed a clear 
variation from  background activity, displaying a 
repetitive pattern of oscillations or sharp waves or a 
mixture of both, lasting ≥10 seconds, with evolution 

in amplitude and frequency over time. We classified 
discharges as ‘dubious seizures’ when a) runs of 
sharp waves /oscillations or a mixture of both 
occurred arrhythmically (with marked variability in 
the interval and morphology between individual 
complexes for the major part of its duration) or b) 
rhythmic discharges of shorter (<10 sec) duration or 
periodically occurring sharp waves or mixed 
patterns. It was difficult to identify the onset and 
offset of such discharges and sometimes difficult to 
clearly identify them as a variation from ongoing 
EEG background. We chose to group them under 
‘seizures’ as they were seen to recur paroxysmally 
during the monitoring. 

2.2 Updates of the Automated Seizure 
Detection Algorithms 

During the visual analysis of the neonatal seizures 
we have identified two major morphological types. 
The first one represents the spike train seizures (Fig. 
1A), whereas the second one represents the 
oscillatory seizures (Fig. 1B). We were able to 
classify almost all neonatal seizures as one of the 
two types or as their combination (Fig. 1C).  

 
Figure 1: A. Spike train type seizure, B. Oscillatory type 
seizure, C. Combination of both morphologies. 

The most prominent difference between the two 
seizure types is that the oscillatory type is 
continuous in time, whereas the spike train type 
consists of distinct, isolated spikes. Additionally, the 
oscillatory type is characterized by low frequency 
content and spikes represent a highly dynamic 
signal. Therefore, two separate algorithms were 
developed and different stages are discussed in detail 
in our previous work (Deburchgraeve, 2008). The 
basic idea to detect a spike train seizure is to 
segment isolated spikes and to compare their 
morphology. We will regard spike train as a seizure 
if the overall similarity between spikes is sufficiently  
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Figure 2: Schematic overview of the complete neonatal seizure detection algorithm. 

 
Figure 3: Schematic overview of segmentation steps of the spike train detection. 

high. On the other hand, oscillatory seizures are 
continuous and have low frequency values. At first, 
we detect the oscillatory segments by filtering and 
monitoring the increase of the low frequency content 
(< 8 Hz). After that, we examine the presence of 
oscillatory seizures by analysis of the 
autocorrelation function of the corresponding signal 
segment. The updated stages of the detection 
algorithm are shaded in grey in Fig. 2. The most 
important improvement concerns a change in the 
segmentation strategy for the spike train type 
detection. As far as the detection of the oscillatory 
seizures is concerned, only the analysis of the 
autocorrelation function has been changed. Details 
on the other blocks can be found in the previous 
paper (Deburchgraeve, 2008).  

2.2.1 Segmentation of the Spike Train 
Signal 

The segmentation of the EEG sharp transients is 
important for the reliability of the spike train 
detection algorithm. This segmentation is performed 
separately on each channel of EEG, on a window of 
5 seconds duration. There is an overlap of 4 seconds 
between subsequent windows under analysis. Fig. 3 
shows a schematic overview of the updated 
algorithm. 

We use the non-linear energy operator (NLEO) 
again to detect the local presence of a high 
frequency activity. In its discrete form it is given by:  

( ) ( ) ( ) ( )2 1 1kaiser x n x n x n x nψ ⎡ ⎤ = − − ⋅ +⎣ ⎦  (1) 

The key property of the NLEO can be derived if we 
apply it on the discrete sinusoidal signal (Li, 2007): 
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When applied to spike train type seizure EEG, the 
NLEO effectively amplifies the high-frequency 
spikes while, on the other hand, attenuates the 
background EEG. The NLEO calculates the local 
energy of the signal using only a few samples. 
However, the spikes of a neonatal spike train type 
seizure vary in duration and can be of 50 ms length 
up to 500 ms. In order to adjust the sensitivity of the 
NLEO to the duration of the spikes, its output needs 
to be smoothed. However, it is not possible to find a 
single smoothing filter length that is adequate for 
both short (50 ms) and long (500 ms) duration 
spikes. This problem is solved by using a smoothing 
filter bank with 6 Moving Average (MA) filters with 
filter lengths of 2, 4, 8, 16, 32, and 64 samples 
respectively. The output signal of one filter is the 
input of the filter with next increasing MA filter 
length. The output of the filter bank is the 
summation of the outputs of each filter. This 
generates a smooth signal in which short as well as 
long spikes can easily be discriminated. Fig. 4C 
displays the smoothing effect on a spike train type 
seizure with spikes of >500 ms duration. The arrows 
in Fig. 4B and C indicate that short peaks in the 
NLEO output are conserved by the smoothing: only 
variations of the NLEO output on a large time scale 
are smoothed out. This is exactly the desired 
behaviour of the algorithm: to be sensitive to spikes 
of both short and long duration. 

The goal of the next step is to find an adaptive 
threshold to discriminate between high and low 
energy values. After thresholding, the parts of the 
signal with high energy are transformed to isolated  
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Figure 4: Illustration of the steps of the segmentation. 

segments with a certain position and length. The 
threshold must be at a level that detects the 
transients in the EEG without segmenting small, 
insignificant variations in the energy signal. For this 
purpose, segmentation is performed for a set of 
thresholds between 0 and 1 with a step size of 0.02. 
For each threshold, the number of segments above 
the threshold is counted. The threshold that leads to 
the maximum number of segments is kept as the 
definite threshold. If several threshold levels lead to 
the same number of segments, the lowest one is 
taken. 

2.2.2 Detection of the Oscillatory Seizure 
Type – Autocorrelation Analysis 

As described previously (Deburchgraeve, 2008), 
algorithm for the oscillatory seizure type, has to 
detect segments with significant increase in the 
frequency band of 1–8 Hz. Autocorrelation function 
is computed for these segments and new features are 
extracted from it in this modified approach. In the 
updated version, three features are used to 
distinguish quasi–periodic segments: 

- Regularity of the distances between the zero 
crossings (Fig. 5A), defined as 'errorZeros'. 

- Regularity of the distances between the peaks 
(Fig. 5B), defined as 'errorPeaks'. 

- Regularity of the normalized RMS values of 
the peaks which are delimited by the zero crossings 
(Fig. 5C), defined as 'errorRMS'. 

We have selected these features due to the fact 
that for an oscillatory signal, the phases of the 
autocorrelation function are regular. Hence, for 
oscillatory seizure activity, we may expect that the 
defined errors have relatively small values.  

 
Figure 5: Illustration of the extracted features of the 
autocorrelation function. 

Regularity was measured by means of a pair wise 
comparison of all the distances or RMS values 
involved. For this purpose, each difference between 
an element indicated with a dark grey bar compared 
with that indicated by a light grey bars is expressed 
as a percentage of their difference in length or area. 
(Fig. 5). For seizure detection, the thresholds on the 
features were defined as: 

- median([errorZeros,errorPeaks]) < 7% and, 
- median(errorRMS) < 10% 
The comparisons for the zero crossings and the 

distances between the peaks can be grouped together 
as both represent measures of distance. The 
comparisons for the RMS values are treated 
separately. All segments with properties below these 
thresholds are regarded as a part of an oscillatory 
seizure. 

2.3 Validation of the Improved 
Algorithm 

Different approaches for the quantification of the 
performance of neonatal seizure detection 
algorithms have been proposed by various 
researchers. Due to variations in patient population 
and methods of data collection, it is difficult to 
compare the results of the performance of various 
algorithms in a fair way. Therefore, we have decided 
to use several parameters to analyze the performance 
of the neonatal seizure detector.  

We defined the sensitivity per patient (SensPP), 
as the percentage of the number of seizures marked 
by the clinical neurophysiologist that are detected: 

BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing

34



 

( )det / 100%SensPP SZ PP SZtotPP= ⋅  (3) 

with SZtotPP representing the number of seizures 
marked by the neurophysiologist for each patient, 
and SZdetPP representing the number of 
automatically detected seizures for that patient. A 
seizure was considered detected when there was a 
temporal overlap between the marked seizure and 
the detection. The overall sensitivity (for all 
patients) was calculated using 2 methods. The first 
one, simply averages all sensitivities per patient 
(SensT_PP). The second method (SensT) measures 
the percentage of seizures detected of all seizures 
present in the complete 756 hours dataset. That is, 
SensT_PP represents the sensitivity at the patient 
level, whereas SensT represents sensitivity at the 
seizure level. The importance of the difference is 
that in SensT_PP, a patient with only a few seizures 
is considered to be equally important as a patient 
with many seizures. On the other hand, SensT 
considers all seizures equally important regardless of 
the patient they occurred in. 

In addition, we used Positive Predictive Value 
(PPV). that is defined as the percentage of detected 
events that match seizures:  

( )/ 100%PPV EV SZ EV tot= ⋅  (4) 

with EV_tot the total number of detected events and 
EV_sz the total number of detected seizures (i.e., 
events that overlapped with a seizure marked by the 
clinical neurophysiologist). Occasionally, a single 
seizure was detected several times by the algorithm. 
All such events were combined into a single EV_sz 
detection. In practical terms, PPV gives the 
probability that the detector has detected a true 
seizure for each detection. The duration of the event 
is not taken into account. PPV is event-based and, 
therefore, depends on the a priori likelihood of 
seizures (‘prevalence’) in the dataset. Hence this 
measure is difficult to compare between different 
data sets. Nevertheless, it is an interesting 
performance measure of the detector.  

Last but not least, we have quantified a measure 
of the number of False Positive detections per hour 
(FP/h). This measure directly represents the 
practical usability of the algorithm, because each FP 
implies that somebody in the neonatal intensive care 
unit (NICU) will have to check the patient and the 
raw EEG recording unnecessarily.  

3 RESULTS 

During the analysis, we have examined 756 hours of 
EEG data. Median duration of EEG recording was 
25 h (range 17 to 78) per patient. The algorithm 
gives an output of the number of events detected, the 
position in time where the event was detected and 
the duration of the detected events. A total of 2103 
seizures were scored visually (median 67 per patient, 
range 7-236). Detailed results of the validation are 
presented in Table 1. 

In four patients with severely abnormal EEG 
background activity and predominantly dubious 
seizures, the algorithm performed very poorly. As it 
was doubtful whether this recurring paroxysmal 
activity constituted genuine seizures, we excluded 
these patients. These were the patients 12, 13, 21, 23 
in Table 1. Examples of dubious seizure patterns are 
presented in Fig. 6 and 7. In the remaining 20 
patients, the algorithm showed a SensPP of 86.9%, 
PPV of 89.5% and Fp/h of 0.28/h (in total 643 hours 
of EEG data, 1263/1538 seizures detected, SensT 
82.1%). 

Table 1: Seizure detection results. 

N0 Sz det Sens Fp PPV Fp/h 
1 52/53 98 21 84 0.88 
2 10/18 56 1 92 0.04 
3 28/48 58 19 60 0.42 
4 30/34 88 34 47 2.00 
5 56/63 89 0 100 0 
6 12/13 92 4 75 0.17 
7 104/109 95 0 100 0 
8 8/8 100 0 100 0 
9 93/98 95 0 100 0 

10 6/7 86 6 50 0.26 
11 110/112 98 6 95 0.29 
12 0/210 0 45 0 0.09 
13 1/70 1 8 11 0.33 
14 47/50 94 3 94 0.13 
15 30/72 42 7 81 0.17 
16 18/33 55 15 55 0.65 
17 95/113 84 1 99 0.04 
18 169/200 97 10 94 0.42 
19 14/44 32 12 54 0.41 
20 10/27 37 69 13 3.45 
21 12/156 7 0 100 0 
22 170/200 85 10 94 0.42 
23 9/129 7 80 10 3.2 
24 201/236 85 31 87 0.47 

4 DISCUSSION  
AND CONCLUSIONS 

In this paper, we have presented an improved 
version of the previously designed neonatal seizure 

IMPROVEMENT AND VALIDATION OF AN AUTOMATED NEONATAL SEIZURE DETECTOR

35



 
Figure 6: Dubious seizures characterized by brief rhythmic discharges and periodic sharp waves. Such seizures were 
variably detected by the algorithm. 

 
Figure 7: Dubious seizure over right central region characterized by a mixture of arrhythmic slow and sharp waves, not 
detected by the algorithm. 

detector. The validation was performed on a new 
and large dataset, which has not been used 
previously during the optimization of the algorithms. 
These results confirm the suitability of the detection 
system for long-term EEG monitoring in a NICU 
setting, especially for detecting ‘definite seizures’, 
that are similar to the discharges defined by most of 
the published literature on neonatal seizures.  

Seizures with very low amplitude and short 
duration were missed by the algorithm and this has 
been reported by other authors as well (Mitra, 2009). 
More specifically, automatic detection of arrhythmic 
seizures of low amplitude and predominantly 

oscillatory morphology was poor, whereas 
arrhythmic seizures with sharp wave morphology 
were well-detected. As the morphology of the 
neonatal EEG is extremely variable, it is difficult to 
develop a patient-independent algorithm. Neonatal 
seizure definition and classification is still a 
developing field, and the performance of an 
automated detector depends very much on the 
predetermined definition of such discharges.  

The clinical significance of the low amplitude 
arrhythmic seizures occurring in neonates with 
persistent, severely abnormal EEG background 
activity (suggestive of severe underlying brain 
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injury) is debatable, and it is unlikely that detection 
and treatment of such paroxysmal discharges 
improves clinical outcome. More research needs to 
be done to better understand the pathophysiology of 
neonatal seizures and the clinical significance of 
seizures in patients with varying severity of brain 
injury. This is a prerequisite for identifying the types 
of seizures whose treatment with antiepileptic drugs 
will improve clinical outcome. Refinement of 
automated seizure detection methods can then be 
done, targeted at this subgroup.  
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