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Abstract: Generally, concepts are treated as individual-level phenomena. Here, we develop an ABM that treats 
concepts as group-level phenomena. We make simple assumptions: (1) Different versions exist of one 
similar conceptualization; (2) When we infer that our view agrees with someone else’s view, we are subject 
to true agreement (i.e., we really share the concept), but also to illusory agreement (i.e., we do not really 
share the concept); (3) Regardless whether agreement is true or illusory, it strengthens a concept’s salience 
in individual minds, and increases the probability of seeking future interactions with that person or source of 
information. When agents interact using these rules, our ABM shows that three conditions exist: (a) All 
versions of the same conceptualization strengthen their salience; (b) Some versions strengthen while others 
weaken their salience; (c) All versions weaken their salience. The same results are corroborated by 
developing probability models (conditional and Markov chain). Sensitivity analyses to various parameters, 
allow the derivation of intuitively correct predictions that support our model’s face validity. We believe the 
ABM and related mathematical models may explain the spread or demise of conceptualizations in social 
groups, and the emergence of polarized social views, all important issues to sociology and psychology. 

1 INTRODUCTION 

Concepts appear to have a life-cycle in the cultures 
in which they exist. Concepts are born at a certain 
point in time, spread or not through culture, and die 
out. Our view here is that the fate of concepts in 
culture depends on their usefulness, and that a 
concept is useful when it generates episodes of 
shared meaning, thus allowing social cohesion and 
the coordination of behaviour. Given that meaning is 
something that happens in individual minds, how is 
it possible that people agree about a meaning? 
Psychological inquiry often assumes that meaning is 
shared by resorting to direct reference, i.e., by 
pointing to the referred object, rather than by 
describing it (Brennan & Clark, 1996; Brown-
Schmidt & Tanenhaus, 2008; Carpenter, Nagell, & 

Tomasello, 1998; Clark & Krych, 2004; Galantucci 
& Sebanz, 2009; Garrod & Anderson, 1987; Moses, 
Baldwin, Rosicky, & Tidball, 2001; Richardson, 
Dale & Tomlinson, 2009; Tomasello, 1995). Though 
this approach may work for concrete objects, it does 
not solve the problem of how people agree about the 
meaning of diffuse objects (abstract entities like, 
e.g., democracy, womanhood, happiness). Direct 
reference does not apply for these objects because 
they lack clear spatio-temporal limits, thus 
preventing the use of direct reference in interactions.  
Furthermore, everyday concepts like those 
illustrated above are notoriously ill-defined; making 
shared meaning even more mysterious (Rosch & 
Mervis, 1975). In our current work, we hold the 
view that shared meaning is possible because 
meaning is conventional, i.e., there is a limited set of 
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meanings that apply to a given situation (Lewis, 
1969; Lewis, 1975; Millikan, 2005). Constraining 
the number of concepts that apply on a given 
occasion, makes agreement a tractable problem. 
However, even if a group of people has developed 
conceptual conventions, the likely case is that each 
person instantiates a somewhat different version of 
those concepts (e.g., people may conceptualize 
“leadership” in slightly different ways). 
Furthermore, even if a group of people has 
conventions about more or less dichotomous 
concepts (e.g., “cowardice” and “courage”), a person 
could still be wrong about which one is being 
deployed by someone else at a given moment (e.g., 
if someone says “suicide”, she may be thinking of 
“cowardice” while I may be thinking of “courage”). 
Consequently, an individual can never know for sure 
whether someone else agrees or not with his 
conceptualization of a given event (even when being 
explicit). Agreement is a probabilistic inference 
(Chaigneau & Gaete, in preparation). 

The ABM we report here focuses on two 
probabilities that represent the abovementioned 
inference. First, the probability of true agreement 
(symbolized by p(a1)), which stands for the 
probability that two agents (an observer and an 
actor) agree on something given that they instantiate 
different versions of the same concept (i.e., the 
“leadership” example above). Second, the 
probability of illusory agreement (symbolized by 
p(a2)), which stands for the probability that observer 
and actor agree, given that they instantiate different 
concepts altogether (i.e., the “courage” or 
“cowardice” example above). 

2 CONCEPTUAL DESCRIPTION 
OF THE ABM 

Our current ABM represents a social group which 
has a set of conventional conceptual states that, for 
ease of exposition, we will call the focal set.  These 
states can represent different versions of the same 
concept (e.g., different versions of “leadership”; or a 
set of closely related concepts, such as “miserly”, 
“stingy”, “scrooge”). Our p(a1) probability reflects 
the degree of overlap between the different versions 
in the focal set (greater overlap implies greater 
probability of true agreement). Our p(a2) probability 
reflects the degree of contrast against alternative 
conceptualizations (lower contrast implies greater 
probability of illusory agreement). The system 
models the dynamical trajectories of concepts as 

they become increasingly or decreasingly relevant 
for agents depending on their capacity to generate 
agreement of any type. 

In each simulation run, agents act as observers 
and actors. Observers seek evidence that actors share 
their concept. Actors have a certain probability that 
they will or will not act according to the focal set 
concept. If they act according to the focal set 
concept, that specific interaction has a probability 
p(a1) of providing observers evidence of a shared 
concept. If actors don’t act according to the focal set 
concept (i.e., they act according to the contrast 
concept), that specific interaction has a probability 
p(a2) of providing observers evidence of a shared 
concept. 

We make some very simple and quite generally 
accepted assumptions about our agents’ psychology. 
If the observer witnesses evidence (blind to whether 
it is true or illusory agreement), then his own 
conceptual state increases its relevance in his mind 
(i.e., our cognitive assumption; c.f., Evans, 2008; 
Brewer, 1988; Lenton, Blair & Hastie, 2002), will be 
more likely to guide his behaviour in the future (i.e., 
our motivational assumption; c.f., Rudman & 
Phelan, 2008), and the observer will want to interact 
with that particular agent again in the future (i.e., our 
social assumption; c.f., Nickerson, 1998). 

3 ABM IMPLEMENTATION 

The theory presented in section 2 is implemented in 
an agent-based model (ABM). In summary, the 
ABM represents how concepts spread and get 
stronger (or weaker) in a social group, by observing 
the behaviour of other members. In the ABM, each 
individual is an agent (actor, A), which acts 
according to its concept with probability equal to the 
strength of the concept. That behaviour is observed 
by another agent (observer, O), and that changes the 
strength of its concept. In general, if the observed 
behaviour agrees with the behaviour expected from 
O’s concept, then O’s concept strengthens. 
Conversely, if the observed behaviour differs from 
what is expected from that concept, then O’s concept 
weakens. Concurrently, the agents begin to interact 
more frequently with those that have strengthened 
their concepts. In the following paragraphs we 
describe the details of the ABM. 

In the social group that the ABM represents, one 
can set the number of members that belong to the 
group. Each agent can have one of five different 
related concepts or versions of the same concept and 
each of the concepts or versions is represented by a 
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number in the [0, 1] interval, labelled the coefficient 
of the concept. This coefficient determines the 
probability that an agent behaves according to the 
given concept. The initial values of the coefficients 
are sampled from a normal distribution with a mean 
and standard deviation, which can be set. The model 
checks that the assigned coefficients will always 
remain in the [0, 1] interval. 

Agents modify the strength of their concept’s 
coefficients by observing the behaviour of other 
agents. Every time they see behaviour consistent 
with their concepts, the corresponding coefficients 
are incremented by 0.02. On the other hand, if the 
observed behaviour is not consistent with their 
concepts, the corresponding coefficients are 
decremented by 0.02. The model makes sure that the 
coefficients always remain inside the [0, 1] interval. 
Thus, when an agent sees that another agent acts 
according to its concept, it is more probable that the 
agent will act according to its own concept in the 
future. These actions spread concepts throughout the 
group. 

Agents develop interaction preferences as they 
observe each other. Specifically, agents will tend to 
interact more frequently with agents who have 
confirmed their concepts in previous interactions, 
and indirectly, they will be less likely to interact 
with those that have not confirmed their concepts. 
This aspect of the ABM limits the diffusion of 
concepts, given that it imposes certain heterogeneity 
to the diffusion speed of the concepts. It could even 
cause the weakening of some concepts among 
certain members of the group. To simulate this 
aspect of our theory, each agent has an interaction 
probability with the rest of the agents. Taking into 
account computational restrictions, those 
probabilities take only discrete values (0.08, 0.11, 
0.17, 0.26 and 0.38, probabilities which increase by 
approximately 50% between successive values). At 
the start of a simulation run, all the agents are 
assigned a probability equal to 0.08, which means 
that an agent will randomly interact with any other 
agent. Then, as the run advances, if agent A 
confirms O’s concept, agent O will increase its 
interaction probability with A to the immediately 
larger value. For example, if agent A’s interaction 
probability was 0.08, then agent A will increase that 
probability to 0.11. 

A last aspect incorporated in the ABM is that in a 
social group, it might exist more than one version of 
a concept. Thus, the model allows setting the 
number of versions that will be present in a group 
between 1 and 5. Each version will be assigned to a 

number of agents equal to the total number of agents 
in a group divided by the number of versions. 

Each agent O determines whether its concept 
will strengthen or weaken according to the following 
rules: 

a) If A acts according to its own concept in the 
focal set, and A’s conceptual content completely 
coincides with O’s conceptual content, then O’s 
concept will strengthen with probability equal to 1. 

b) If A acts according to its own concept in the 
focal set, and that concept is a version of the same 
concept in O’s focal set (but not identical), then O’s 
concept will strengthen with probability equal to 
p(a1)and will weaken with probability equal to 1 - 
p(a1). 

c) If A does not act according to its concept in the 
focal set (i.e., acts according to a contrasting 
concept), and the contrasting concept overlaps 
somewhat with the O’s concept in the focal set, then 
O’s concept will strengthen with probability equal to 
p(a2) and will weaken with probability equal to 1 - 
p(a2). 

d) If A does not act according to its concept in the 
focal set (i.e., acts according to a contrasting 
concept), and A’s conceptual content completely 
coincides with O’s conceptual content, then O’s 
concept will weaken with probability equal to 1. 

Finally, each simulation cycle or step of the ABM is 
composed of the following actions: 

i) From the set of all agents, randomly select 
without replacement an observer agent (O). 

ii) O selects one actor agent (A), according to the 
interaction probabilities that O has for the rest of the 
agents. 

iii) A behaves according to its concept with 
probability equal to the value of the coefficient of 
the concept that it has. 

iv) O observes that behavior and modifies its 
coefficient of the concept, according to the rules that 
were previously described. 

v) Repeat steps i) through iv) until all agents have 
been observers. 

We acknowledge that this description may not 
provide the reader with a complete understanding of 
our ABM. Space restrictions preclude providing 
greater detail. In lieu, the ABM is available as a zip 
file. The interested reader can download it from 
http://www.uai.cl/images/stories/CentrosInvetigacio
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n/CINCO/CAT_1_English.zip. To run it, you will 
need first to install Netlogo version 4.0.4 
(http://ccl.northwestern.edu/netlogo/). Once on the 
ABM interface, do the following steps to run a 
simulation: (1) Input the simulation parameters, be it 
with the slider controls or typing the desired p(a1) 
and p(a2) values in the appropriate windows. (2) 
Press SETUP. (3) Press SIMULATE. (4) If you 
want to pause a run, simply press SIMULATE (you 
will need to press it again to resume).         

4 PRELIMINARY RESULTS 

Once the ABM was implemented and verified, we 
carried out several runs to assess the dynamics of the 
coefficients of the concepts that emerged. After 
gaining some insights into the dynamics of those 
coefficients and how different combination of 
parameters changed those dynamics, we performed 
experiments fixing the value of some parameters as 
follows: number of agents = 100; number of 
versions of a concept (or number of related 
concepts) = 5; initial value of coefficients of 
concepts = 0.5; and changing the value of p(a1) and 
p(a2) between 0.1 and 0.95. According to the 
combination of values for p(a1) and p(a2), three 
different dynamics emerged. 

4.1 Convergence to Zero 

When we set small values for p(a1) and p(a2), for 
example p(a1) = 0.1 and p(a2) = 0.2, then the 
coefficients rapidly decrease and get close to zero, 
remaining at that value. This can be seen in Figure 1, 
where we plotted the mean value of the coefficient 
of each version of the concept (c1 through c5) over 
simulation steps. The mean value of each coefficient 
is calculated by averaging the individual value of the 
coefficient of the agents that have each version of 
the concept. 
 

 

Figure 1: Mean of coefficients of concepts (c1 through 
c5), for p(a1) = 0.1 and p(a2)= 0.2. 

That happens because the probability that O 
observes a behaviour consistent with its concepts is 
very low, since p(a1) and p(a2) are small. Thus, in 
general, concepts tend to weaken, which in turn 
makes it more probable that the coefficients will 
keep decreasing throughout the run. Conceptually, 
this is equivalent to concepts that are not useful to 
generate agreement in a social group, and rapidly die 
out. 

4.2 Convergence to One 

When both p(a1) and p(a2) are set to large values, 
for example p(a1) = 0.8 and p(a2) = 0.9, then the 
coefficients quickly increase and take values close to 
1.0. This can be seen in Figure 2. 
 

 

Figure 2: Mean of coefficients of concepts (c1 through 
c5), for p(a1) = 0.8 and p(a2) = 0.9. 

Contrary to what happened in 4.1, in this 
situation p(a1) and p(a2) are large, thus favouring 
that O observes a behaviour consistent with its 
concepts, which will strengthen the coefficients. In 
turn, this makes more probable that in successive 
cycles, all the coefficients of the concepts will 
increase. Conceptually, this is equivalent to a group 
of related concepts synergistically increasing their 
relevance by promoting agreement in culture.  

4.3 Bifurcation 

Using different combinations for p(a1) and p(a2), 
such as (0.20, 0.80), (0.60, 0.40), (0.80, 0.16), we 
saw that some concepts tended to strengthen and 
others to weaken. We labelled this type of dynamic a 
“bifurcation”, which is shown in Figure 3. 

Under this condition, a relatively large value of 
p(a1) or p(a2), but not of both of them, will promote 
that on each run some Os observe behaviours 
consistent with their concepts. However, since p(a1) 
or p(a2) will have a small value, it will also happen 
that on each run some Os will not observe 
behaviours consistent with their concepts. Thus, 
some versions of the concept will strengthen and 
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others weaken in agents’ minds. Conceptually, this 
is equivalent to a group of related concepts that have 
a weakly contrasting (i.e., somewhat overlapping) 
conceptual alternative, such as might be the case of 
concepts of male versus female gender, and concepts 
of liberal versus conservative political views. 
Concepts like these tend to become polarized in 
large social groups, just as occurs in our model’s 
bifurcations. 

 

Figure 3: Mean of coefficients of concepts (c1 through 
c5), for p(a1) = 0.2 and p(a2)= 0.8. 

4.4 Map of Dynamics 

Since we realized the significant influence of p(a1) 
and p(a2) on the type of dynamics that emerged, we 
ran simulations using more combinations for these 
two variables. The types of dynamics of the 
coefficients that emerged are presented in Figure 4. 
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Figure 4: Dynamics that emerge for coefficients of 
concepts, according to values set to p(a1) and 
p(a2)(bifurcation, 1 = convergence to 1, 0 = convergence 
to 0). 

We confirmed that for small values of p(a1) and 
p(a2), we obtained convergence to zero; for large 
values of p(a1) and p(a2), we saw convergence to 
one; and for other combinations of those parameters, 
we observed a bifurcation. Interestingly, note that 
the combinations for p(a1) and p(a2), for which we 
obtain a bifurcation, approximately lie on a line 
connecting the lower right corner of the graph with 

the upper left one. Moreover, see that the zone 
where we get the bifurcation gets wider at the upper 
left corner. That means that at the lower right corner 
(p(a1) >> p(a2)), the dynamics of the ABM gets 
more sensitive to the combination of p(a1) and p(a2) 
than at the opposite corner (p(a1) << p(a2)). Since 
that behaviour of the ABM was quite intriguing, we 
developed another model to try to explain such 
behaviour.  

5 PROBABILISTIC 
AND MARKOV CHAIN MODEL 

To begin to validate the ABM results, and more 
formally explain the conditions under which the 
three dynamics appeared, we developed a simple 
probabilistic model. This initial model justified why 
the bifurcation emerged when the values for p(a1) 
and p(a2) roughly lie on a line connecting the lower 
right corner of the graph with the upper left one, as 
shown in Figure 4.  

5.1 Simple Conditional Probability 
Model 

To explain the three different types of dynamics that 
emerge from the ABM, we use a simple conditional 
probability model to calculate an initial probability 
that a concept will strengthen (pif).  If pif is small, 
then most probably, the coefficient, which represents 
the concept, will decrease. On the other hand, if pif is 
large, the coefficient will increase. If pif is about 0.5, 
then we obtain the ideal situation under which a 
bifurcation might occur, i.e. each coefficient will 
have a 50% chance of decreasing and a 50% chance 
of increasing, thus making it possible that about half 
of them will diminish and half of them will augment. 
Figure 5 shows a conditional probability tree that 
helps calculate pif.  

In this model, pif depends on whether an agent A 
(actor) behaves according to its concept (event BC), 
which has probability equal to the initial value of the 
coefficient that we set (c0), or not (event NBC, with 
probability 1 - c0). Then, if A acts according to its 
concept, then there is a pi probability that A and O 
share all their conceptual content (event SACC), and 
a 1- pi probability that they don’t share it all (i.e., 
each has a different version of the same concept, 
event NSAAC). If they share all their conceptual 
content (with probability pi), then it is certain that O 
will strengthen its concept’s coefficient. If they 
share versions of the same concept (with probability 
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1-pi), then it is less than certain (p(a1)) that O will 
strengthen its concept. 

 

Figure 5: Conditional probability tree for calculating pif. 

On the other hand, if A does not behave 
according to its concept (event NBC), and A and O 
share all their conceptual content (event SAAC, with 
probability pi), then O’s concept will certainly 
weaken. Alternatively, if A and O do not share all 
their conceptual content (event NSAAC), then it 
might happen that A provides O with some portion 
of the conceptual content, and thus O’s concept 
might strengthen with probability p(a2).  

Solving the probability tree of Figure 5 for pif, we 

obtain: 
 

ppcpppcp
aiiaiif 2010

)1)(1()]1([ −−+−+=

 
(1) 

 
In (1), remember that pi corresponds to the 

probability that agents share all their conceptual 
content, i.e. that they have the same version of a 
concept. Thus, we can calculate pi for the beginning 
of a run. In such initial condition, we will have N/V 
agents with the same version of a concept, where N 
equals the total number of agents and V is the 
number of different versions of a concept. Then, the 
initial probability that agent O will interact with an 
agent A that has the same version of the concept will 
be equal to the number of other agents that have the 
same version as O has (without counting O), divided 
by the total number of agents (without counting O):  

1

1

−

−
=

N
V

N

p
i

 (2)

For the value of the parameters used in the runs, N = 
100 and V = 5, so that pi = 19/99 = 0.1919. 

Now, if we set pif  = 0.5 in (1), i.e. the ideal 
condition for obtaining a bifurcation, and  establish 
c0 = 0.5 (the value we used in our simulation runs), 
we can get equation (3), which states the ideal 
condition for p(a1) and p(a2) for getting a 
bifurcation. 
 

0.1
21

=+ pp
aa

 (3)
 

Note that (3) does not contain pi, which means 
that that condition applies for any value of pi. 
Equation (3) corresponds to a line with an intercept 
with the y axis (p(a2) axis) equal to 1.0 and slope 
equal to -1.0, which coincides with the line depicted 
in Figure 4 that represents the combinations of p(a1) 
and p(a2) where we obtained a bifurcation.  Now, if 
the sum of p(a1) and p(a2) is bigger than 1.0, we 
obtain a parallel line to (3), but located above (3). In 
that case, pif is larger than 0.5, and thus most 
probably the coefficients will converge to one.  This 
coincides with the region of combinations for p(a1) 
and p(a2), shown on Figure 4, where the coefficients 
converge to one. To see that, we can rewrite (1), 
replacing c0 = 0.5: 
 

p
pp

pp
i

iif

aa −

−
=+

1

2

21

 
(4)

 

If we replace in (4) pi for its value 0.1919 and, 
for example, set pif = 0.6, we obtain p(a1) + p(a2) = 
1.248. On the other hand, if the sum of p(a1) and 
p(a2) is smaller than 1.0, we also obtain a parallel 
line to (3) but located below (3). In this case, pif will 
be smaller than 0.5, and thus we will get a 
convergence to zero of the coefficients. For 
example, if we put pif  = 0.4 in (4), we get the line 
p(a1) + p(a2) = 0.753. That line is located within the 
region of combinations of p(a1) and p(a2) shown in 
Figure 4, where we obtain that dynamic.  

However, from Figure 4, we can also see that on 
the upper left corner of the graph, the line p(a1) + 
p(a2) = 1.0 does not represent all the combinations 
of p(a1) and p(a2) where the ABM exhibits the 
bifurcation. Thus, the simple probability model only 
partially explains the empirical results. 

5.2 Markov Chain Model 

Since the model in 5.1 calculates pif only for the 
initial state of a simulation run, it cannot fully 
capture the dynamical nature of the ABM. 
Remember that the concepts’ coefficients change 
during a run, as well as the interaction probabilities 
among agents. In the ABM, that means that c0 and pi 

pif 

BC: c0 

NBC: 1 – c0 

SAAC: pi 

NSAAC: 1 - pi 

1.0 

p(a1) 

p(a2) 

0.0 

SAAC: pi 

NSAAC: 1 - pi 
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will change as the simulation run advances. Thus, 
we need to build a model that captures that 
dynamical aspect of the ABM. To do so, we use a 
simple Markov chain, with four states, as described 
in Table 1. 

Table 1: State transition probability matrix of the Markov 
chain. 

 St+1 (j = 0) Wt+1 (j = 1)
St (i = 0) pif

+ 1 - pif
+

Wt (i = 1) pif
- 1- pif

-

 
Table 1 indicates that if a concept strengthens 

(state St (i = 0)), then the probability that it will 
increase in the next step (state St+1 (j = 0)) is pif

+, and 
that it will weaken is 1 - pif

+ (state Wt+1 (j = 1)). On 
the other hand, if a concept weakens (state Wt (i = 
1)), then the probability that it will strengthen in the 
next step (state St+1 (j = 0)) is pif

- and that it will 
weaken (state Wt+1 (j = 1)) is 1- pif

-. In the ABM, 
each of those pif has a meaning. From expression (1), 
we know that pif depends on c and pi, which change 
during a simulation run. The description of the ABM 
states that if a concept strengthens, then its 
coefficient will increase by a certain Δc, and the 
same will happen with pi, which will increase by 
Δpi. If the concept weakens, then the coefficient c 
will decrease by Δc, but pi will remain the same. 
Therefore, using those facts, we can write the 
following expressions for pif

+ and pif
-: 

 

0
( , ) ,

i f i i i ii f
w i th cp p p p pc c cp

+ ++ ++
= + Δ = + Δ= (5)

 

0
( , ) ,

i f i f i i i
w i th cp p p p pc c c

− − −− −= = − Δ = (6)
 

Then, replacing (5) and (6) in (1), we can write the 
explicit equations for pif

+ and pif
-: 

 

0 1

0 2
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(1 )(1 )
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c

c
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 (7) 
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( 1 ) ( 1 )

(
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i a

c

c

p c p p p

p pc

−
= − Δ + −

+ − + Δ −

 (8) 

 

Now, if we apply the properties of an ergodic 
Markov chain (c.f. Ross, 1998), we can compute a 
long-run probability that a concept will strengthen 
(Π0): 
 

pp

p

ifif

if

+−

−

−+
=Π

1
0

 
(9)

 

Since (9) is written in terms of pif
+ and pif

-, which 
in turn are given by (7) and (8), it would be rather 
cumbersome to write an explicit equation for (9) in 
terms of c, Δc, pi, Δpi, p(a1) and p(a2). Thus, we 
prefer to use the following definitions and write a 
simpler expression for Π0: 
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Then, using (10), we can write: 
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Expression (11) can be rearranged so that it looks 
similar to equation (4), i.e. represents a line that 
states the relationship that must exist between p(a1) 
and p(a2) for a given Π0: 
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Note that (12) is an equation of a line with a slope 
equal to the expression located to the left of p(a1) 
and an intercept with the y axis (p(a2) axis) equal to 
the far right hand expression. If we compare (12) 
with (4), we can see that the slope in (4) does not 
change, depending on the values that p(a1), p(a2) 
and pif take; but in (12) the slope changes (remember 
that pif in (4) is equivalent to Π0 in (12)). Moreover, 
if we set in (10), c0 = 0.5, pi = 0.1919, Δc = 0.45 and 
Δpi = 0.05; and put the values a through g, defined 
in (10), in (12), we can get a family of lines that 
represents the condition that must meet p(a1) and 
p(a2) for obtaining different values of Π0. Figure 6 
shows the same graph presented in Figure 4, but 
displaying lines for Π0 = 0.3 to 0.7 according to the 
Markov chain model that corresponds to expression 
(12). 

From Figure 6, we can see that the line for Π0 = 
0.5 (the ideal condition for getting a bifurcation) 
approximately coincides with a line equal to the one 
we calculated for the simple probabilistic model (see 
expression (3) and Figure 4). The other lines for Π0 

= 0.6 and 0.7 are located in the region where the 
ABM exhibits the convergence to one dynamic and 
the lines for Π0 = 0.3 and 0.4 lie in the region where 
the convergence to zero dynamic emerges. Thus, we 
can see that the Markov chain model represents 
fairly well the conditions under which the ABM 
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exhibits the three different dynamics. Moreover, 
note that the lines tend to converge toward the lower 
right corner of the graph, where p(a1) >> p(a2) and 
tend to diverge toward the upper left corner, where 
p(a1) << p(a2). This means, that the region where 
we get the bifurcation and which separates the areas 
where we obtain the convergence to one and zero, 
gets narrower when  p(a1) >> p(a2) and wider when 
p(a1) << p(a2). That characteristic was the one that 
the probabilistic model described in 5.1 was not able 
to capture. 
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Figure 6: Dynamics that emerge for coefficients of 
concepts, according to values set to p(a1) and 
p(a2)(bifurcation, 1 = convergence to 1, 0 = convergence 
to 0) and lines for different values of Π0 according to the 
Markov chain model. 

5.3 Sensitivity of Models to Changes in 
Values of some Parameters 

By analyzing the ABM’s and its associated 
probabilistic models’ sensitivity to different 
parameters, we are able to derive predictions for 
“real world” situations. Although the Markov chain 
model presented in 5.2 better explains the dynamical 
properties of the ABM than the probabilistic model 
described in 5.1, the latter model is easier to analyze 
from a substantive point of view. Thus, based on 
expression (1), we will compute the sensitivity of 
that model to changes in values of some parameters. 
Here, we will present only two results of such 
analyses. To do so, we use (1) and take the partial 
derivatives of pif  with respect to p(a1) and p(a2): 
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Additionally, since pi appears in (13) and (14) 
and that variable depends on the number of agents 
and concepts (N, V see (2)), we can express (13) and 
(14) in terms of N and V. Moreover, given that for 
reasonably large values of N, pi tends to 1/V, we will 
analyze (13) and (14) taking into consideration that 
pi  ≈1/V. 

From (13) and (14) we can see that the 
sensitivity of pif with respect to p(a1) and p(a2) is 
always positive (remember that 0 ≤ c0, pi ≤ 1), i.e. 
the larger p(a1) and p(a2), the larger pif. Now, the 
larger the number of concepts a group has (V), the 
smaller pi will be and the more influential p(a1) and 
p(a2) will be on the value that takes pif. That means 
that for groups with a large set of related concepts 
(or many different versions of the same concept), the 
probability of true and illusory agreement (p(a1) and 
p(a2)) will greatly influence  pif. The significance of 
that influence will also be determined by the value 
of c0. Note that for large values of c0, p(a1) will have 
a larger influence on pif than p(a2) and vice-versa. 
Thus, for groups with many concepts, the degree of 
agreement, either true or illusory, and the initial 
strength of each concept will dictate whether each 
concept strengthens or weakens, and eventually 
disappears. 

Several “real world” situations could conform to 
the dynamics described above. As an illustration, 
imagine a social group that has an abstract concept, 
such as conservative. Presumably, people would 
have many different versions of such concept (i.e., a 
small pi), with some people, e.g., considering that 
conservative is a view about economics, while 
others considering that it is a view about values, and 
so on. Imagine, furthermore, that this concept’s 
relevance in that society is moderate, in the sense 
that it does not persistently determine people’s 
actions (i.e., c0 ≠ 1). For concepts like this, our 
sensitivity analyses predict that their fate as a 
cultural phenomenon will depend mainly on their 
capacity to generate agreement. 

Imagine, furthermore, that conservative has 
liberal as a weakly contrasting alternative concept 
(liberal is weakly contrasting to conservative 
because it does not clearly divide political opinion in 
two sharply contrasting clusters). Our sensitivity 
analyses predict that the fate of this pair will depend 
on agreement, regardless of whether it is true (p(a1)) 
or illusory (p(a2)). Additionally, as discussed in 4.3 
above, these conditions promote bifurcations akin to 
social polarization. 

Perhaps, an even more interesting situation arises 
in groups that have a small number of concepts or 
versions of them. In that case, pi will be large, and 
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thus p(a1) and p(a2) will not have a large influence 
on pif (i.e., the degree of true and illusory agreement 
will not have a large influence on the fate of the 
concepts). Examining Figure 5, we can see that in 
the above mentioned situation, the fate of each 
concept will be predominantly dictated by its initial 
strength c0, i.e., an initially rather strong concept 
will disseminate throughout the group and become 
stronger, and an initially quite weak concept will die 
out. Note that since in this situation, agreement of 
any type is almost irrelevant, that implies that a 
concept may spread even if people do not share the 
same meaning of it. 

Again, a “real world” situation that could 
conform to these conditions is the following. 
Imagine a social group in which an authority (moral, 
political, or other) pushes an oversimplified concept 
(e.g., a slogan), and creates the conditions to make it 
relevant (e.g., punishes dissent). As occurs with 
commands, slogans may leave little room for 
alternative interpretations (i.e., pi is large), which, by 
equations (13) and (14) implies that agreement 
ceases to be the predominant force that drives that 
concept’s path. In other words, if an authority 
presents a very simple idea that allows little room 
for alternative interpretations, and succeeds in 
making it relevant in people’s minds (i.e., makes c0 
sufficiently large), that condition will be sufficient to 
strengthen the concept and disseminate it throughout 
the social group, regardless of whether its meaning 
is shared or not. 

6 CONCLUSIONS 

In the work we report here, we use our ABM to 
develop a complex theory about the dynamics of 
shared meaning in social groups. This use of ABMs 
is not new, and has been advocated by Ilgen and 
Hulin (2000). Our ABM embodies some very simple 
rules of interaction, in keeping with Axelrod’s 
(1997) KISS principle. However, the ABM’s 
dynamics are not simple, as attested by the expanded 
region of combinations of p(a1) and p(a2) in Figure 
4, where bifurcations emerge. 

Our theory development approach to Agent 
Based Modeling led us to formalize the dynamics 
through increasingly refined probabilistic models. 
Not only is this currently allowing us to recursively 
improve our ABM, but it also allowed us to clearly 
link the conceptual and mathematical formulations 
of our theory (respectively, sections 1 and 2,  and 
section 5), and to gain a more general and clear 
understanding of the ABM’s dynamics. 

It is true that our model is, at this point, purely 
theoretical, and that it requires data to support it. 
However, we incorporated into the ABM generally 
accepted psychological theory, and as our sensitivity 
analyses in 5.3 show, the ABM makes intuitively 
correct predictions that were not built into it in an ad 
hoc fashion. These two aspects, we think, are at least 
evidence of the ABM’s face validity. We would be 
very disappointed if future work shows that this 
validity is only illusory. 
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