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Abstract: Entropy methods including approximate entropy (ApEn), sample entropy (SampEn) and multiscale entropy 
(MSE) have recently been applied to measure the complexity of finite length time series for classification of 
diseases. In order to effectively use these entropy methods, parameters such as m, r, and scale factor (in 
MSE) are to be determined. So far, there have been no general rules to select these parameters as they 
depend on particular problems. In this paper, we introduce a genetic algorithm (GA) based method for 
optimal selection of these parameters in a sense that the entropic difference between healthy and pathologic 
groups are maximized. 

1 INTRODUCTION 

Proteomics (Eidhammer et al., 2007) can be seen as 
a mass-screening approach to molecular biology, 
which aims to document the overall distribution of 
proteins in cells, identify and characterize individual 
proteins of interest, and ultimately to elucidate their 
relationships and functional roles. It is at the protein 
level that most regulatory processes take place, 
where disease processes primarily occur and where 
most drug targets are to be found. The readily 
available experimental tools for measurement of 
protein expression and characterization by mass 
spectrometry-based methods have already made a 
significant impact on proteomics. 

A revolutionary proteomic technology which has 
recently been developed is used to create mass 
spectrometry cancer dataset (Conrads and Zhou, 2003). 
In its current state, surface-enhanced laser 
desorption/ionization time-of-flight mass 
spectrometry (SELDI-TOF MS) is the technology 
used to acquire the proteomic patterns to be used in 
the diagnostic setting. The principle of SELDI-TOF 
works as follows: proteins of interest are captured, 
by adsorption, partition, electrostatic interaction or 
affinity chromatography on a stationary-phase and 
immobilized in an array format on a chip surface. 
One of the benefits of this process is that raw 

biofluids, such as urine, serum and plasma, can be 
directly applied to the array surface. After a series of 
binding and washing steps, a matrix is applied to the 
array surfaces. The species bound to these surfaces 
can be ionized by matrix-assisted laser 
desorption/ionization (MALDI) and their mass-to-
charge (m/z) ratios measured by TOF MS. The result 
is simply a mass spectrum of the species that bound 
to and subsequently desorbed from the array surface. 
While the inherent simplicity of the technology has 
contributed to the enthusiasm generated for this 
approach, the implementation of sophisticated 
bioinformatic tools has enabled the use of SELDI-
TOF MS as a potentially revolutionary diagnostic 
tool (Eidhammer et al., 2007). 

With the advancement of the analytical 
techniques toward molecular specificity and 
sensitivity, the possibility of discovering new 
molecular biomarkers of disease has also increased. 
This paper introduces a method based on genetic 
algorithm which allows an optimal selection of the 
control parameters of the entropy approach such that 
it can maximize the difference between the entropy 
profiles of mass spectrometry time series of healthy 
and disease populations. 
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2 ENTROPY METHODS 

Entropy methods such as approximate entropy 
(ApEn) (Pincus, 1991), sample entropy (SampEn) 
(Richman and Moorman, 2000), and multiscale entropy 
(MSE) (Costa and Goldberger, 2002) have been used to 
measure the complexity or regularity of biological 
and physiological time series.  

Since the introduction of approximate entropy, 
Muniyappa et al. (Muniyappa, 2007) calculated the 
approximate entropy of each individual subject’s 
growth hormone concentration time series. The 
approximate entropy measured the regularity of 
hormone release; a higher value of ApEn reflects a 
more disordered pattern of hormone secretion. Lake 
et al. (Lake et al., 2002) used sample entropy to 
measure time series regularity of cardiac interbeat 
(R-R) interval data records from newborn infants. 
Rukhin (Rukhin, 2000) proposed a new method which 
was modified from approximate entropy and applied 
to the problem of testing for randomness a string of 
binary bits. While both ApEn and SampEn yield 
scalar value for the entropy measure, MSE uses 
SampEn to obtain various entropy values at different 
scales. In MSE, there are two processes namely 
“coarse-graining” and entropy computation. The 
“coarse-graining” yields a new time series data by 
averaging original data points within non-
overlapping windows of increasing length. The new 
time series data are then used for estimating the 
sample entropy value.  The procedure is repeated for 
different scales to obtain multiple entropy values.  
Multiscale entropy has been applied on various 
datasets such as interbeat interval time series, and 
DNA sequences (Costa et al., 2005).  

Mathematical formulations of approximate 
entropy, sample entropy, multiscale entropy, and 
genetic algorithms are briefly described as follows. 

2.1 Approximate Entropy (ApEn) 

Given a time series of N points, U = {u(j): 1 ≤  j ≤ 
N}. The series of vectors, xm(i), whose length is m 
are derived from the time series, U, given by 

)}({)( kiuim +=x  (1) 

where 0 ≤  k ≤  m – 1 and 1 ≤  i ≤  N – m + 1. The 
distance between two such vectors given by 
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where )(, iN rm is the number of vectors, xm(j) (with 1 
≤  j ≤  N – m + 1), such that rjid mm ≤)]( ),([ xx . The 
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Eckmann and Ruelle (Eckmann and Ruelle, 1985) 
suggested approximating the entropy of the 
underlying process as 
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Because of these limits, this definition is not suited 
to the analysis of the finite time series derived from 
experiments. Pincus (Pincus, 1991) saw that the 
calculation of )]()([ 1 rr mm +Φ−Φ for fixed 
parameters m, r, and N had intrinsic interest as a 
measure of regularity and complexity. For finite data 
set, ApEn is given by 

)()(),(ApEn 1 rrrm mm +Φ−Φ=  (6) 

2.2 Sample Entropy (SampEn) 

The difference between ApEn and SampEn is that 
the latter does not count self-matches when 
estimating conditional probabilities. The scheme for 
computing SampEn is described as follows. First, we 
define the probability that two sequences match for 

m points as )(rBm
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and the probability that two sequences match for (m 
+ 1) points as )(rAm  
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where )(,1 iN rm+ is the number of vectors, xm+1(j), 
such that rjid mm ≤++ )]( ),([ 11 xx . 
Then, the sample entropy is given by 

]
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2.3 Multiscale Entropy 

Traditional approaches to measuring the complexity 
of biological signals fail to account for the multiple 
time scales inherent in such time series (Costa et al., 
2005). Therefore, multiscale entropy has been 
introduced to address this drawback. There are two 
processes in multiscale entropy. First, multiple 
coarse-grained time series are generated by 
averaging original data points within non-
overlapping windows. Each element of the coarse-

grained time series, )( juτ , is given by 
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where τ represents the scale factor and 1 ≤  j ≤  N/τ. 
In the second process, sample entropy is applied 

to the coarse-grained time series, )( juτ , derived 
from the first process. 

2.4 Genetic Algorithms (GAs) 

Genetic algorithms (Mitchell, 2001) are computational 
systems that mimic evolution and adaptation of 
individuals in environment. That means the next 
generation is normally better than the previous one. 
Genetic algorithms represent each individual of 
population as a chromosome (string); and a 
chromosome is one of candidate solutions of 
problems. So a chromosome should in some way 
contain information about solution that it represents. 
Encoding of chromosome depends on the problem 
heavily. There are some types of encoding as: binary 
encoding each of which is a string of bits 0 or 1. In 
value encoding, each chromosome is a sequence of 
some values; values can be anything connected to the 
problem, such as (real) numbers, chars or any 

objects. Each chromosome has a fitness value which 
describes how well this solution can solve problem. 

The scheme of genetic algorithms is: at the first 
step a population of random chromosomes is 
generated. Fitness value of each chromosome is 
computed at the second step. A new generation is 
created by using some operations such as 
reproduction, crossover, and mutation based on the 
fitness value at the third step. Three above steps are 
looped until the criteria are satisfied. The criteria can 
be a maximum number of generations allowed to be 
run or an additional problem-specific success 
predicate which have to be satisfied. The result 
solution is the best-so-far chromosome (the best 
chromosome appears at any generation). 

3 GA–BASED 
MULTISCALE ENTROPY 

The main idea of GA–based multiscale entropy 
(GA–based MSE) is to find parameters of multiscale 
entropy: length of vector m, criterion of similarity r, 
and scale factor τ to maximize the entropic 
difference between healthy and pathologic groups. 
The training set of the algorithm consists of two sub-
groups called healthy (H) and pathologic (P) groups 
which are defined by 
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are the i–th time series of healthy and pathologic 
group. NH and NP are number of time series in 
healthy and pathologic group. 

First, we apply (12) to each time series of H and 
P group to generate the coarse-grained time series as 
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Then, the mean sample entropy (or approximate 
entropy) of the coarse-grained time series of H and P 
group are given by 

COMPLEXITY ANALYSIS OF MASS SPECTROMETRY DATA FOR DISEASE CLASSIFICATION USING
GA-BASED MULTISCALE ENTROPY

7



P

N

i
i

H

N

i
i

N

rm

N

rm

P

H

∑

∑

=

=

=

=

1*

1*

),(SampEn
SampEn(P)

),(SampEn
SampEn(H)

 (15) 

where ),(SampEn rmi is the sample entropy of the i–
th coarse-grained time series in H or P group given 
by (11). 
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where ),(ApEn rmi is the approximate entropy of the 
i–th coarse-grained time series in H or P group given 
by (6). 

We determine parameters m, r, and scale factor 
such that these parameters maximize the difference 
between the mean entropy of H and P groups. 
Mathematically, we have the following nonlinear 
programming if we use SampEn 

Find [m, r, τ] which maximize 
2** ]SampEn(P)SampEn(H)[),,( −=τrmf  (17) 

Subject to 
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or we have the following nonlinear programming if 
we use ApEn 

Find [m, r, τ] which maximize 
2** ]ApEn(P)ApEn(H)[),,( −=τrmf  (19) 

Subject to 
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Analytical solutions to a nonlinear programming 
problem are difficult to obtain.  There have been no 
closed-form solutions of global optimality for 
general nonlinear programming problems (Hagan et 
al., 1995), (Seeger, 2006). In most algorithms, the 
formula for the search direction is generally derived 

from the Taylor series such as steepest descent, 
Newton’s method, conjugate gradient, etc., which is 
a “local” approximate to the function (Hagan et al., 
1995)(Seeger, 2006). For problems concerning global 
optimization, genetic algorithms have been 
extensively studied. GAs can be considered as a 
“globalization technique” because they can handle a 
population of candidate solutions. Another advantage 
of GAs is that GAs do not use gradients or Hessians 
which may not exist or difficult to obtain (Chong and 
Zak, 2001). So we decided to use GAs to solve the 
above nonlinear programming.  We describe the GAs 
components employed in this study as follows. 

 Chromosome Encoding: each chromosome 
represents a tri-tuples of two natural numbers and a 
real number, [m, r, τ]. So each chromosome is 
encoded as a fixed-length string of 3 numbers (value 
encoding). 

Fitness Function: because initial population is 
randomly created as a set of tri-tuples of numbers 
which satisfy (18), and mutation operation is not 
used, so the criteria of (18) are satisfied during 
search process. The objective function (17) or (19) is 
used to calculated fitness value of each chromosome. 
In other word, the objective function (17) or (19) is 
the fitness function. 

Control Parameters of GAs: based on the results 
of (To and Vohradsky, 2007)(To and Vohradsky, 
2007) we selected values for the control parameters 
of GAs listed in Table 1. 

Table 1: Control parameters of gas. 

Parameters Values 
Number of generation 500 

Population size 1000 
Probability of crossover 0.9 

Probability of reproduction 0.1 

4 EXPERIMENTS 

4.1 Ovarian Cancer Data 

This dataset (Petricoin, 2002) were produced using 
the WCX2 protein chip. The goal of this study was 
to explore the impact of robotic sample handling 
(washing, incubation, etc.) on the spectral quality. 
The authors employed an upgraded PBSII SELDI-
TOF mass spectrometer to generate the spectra. 
Different sets of ovarian serum samples were used 
compared to previous studies. Figs 1 and 2 show the 
typical SELDI mass spectrometry of the control and 
ovarian cancers samples which were not randomized 
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so that the authors could evaluate the effect of 
robotic automation on the spectral variance within 
each phenotypic group. This database has 253 
patterns each of which belongs to ovarian cancer 
class or control class. Each pattern is a time series 
whose length is 15154. 

Figs. 3 and 4 show MSE analysis of control 
sample and cancer sample whose parameters were 
randomly selected using SampEn and ApEn, 
respectively. The values plotted in Figs. 3 and 4 are 
mean and the standard deviations of these values are 
listed in Table 2. If we have a glimpse of Figs. 3 and 
4, we see that the separation of two curves is not 
good. Therefore, selection of parameters such as m, 
r, and scale factor that maximize the separation of 
two curves is not trivial task because the cardinality 
of the set {m, r, scale factor} is uncountable. 

Solving the nonlinear programming (17) or (19) 
will give the parameters such as m, r, and scale 
factor that maximize the separation of two curves. 
Fig. 5 shows the application of GA–based MSE to 
ovarian cancer dataset with mean values. The 
standard deviations of these mean values are listed in 
Table 4 and the parameters of GA–based MSE listed 
in Table 3. 

In order to compare the separation of two entropy 
curves plotted in Figs. 3, 4, and 5, we can use two 
measures: first, we plot mean values ± standard 
deviation. Second, we calculate the distance of two 
curves using the Euclidean distance formula. 

For the first measure, we combine Figs. 3–4 and 
Table 2 to plot mean values ± standard deviation of 
MSE results as shown in Figs. 6 and 7. The curves of 
MSE–ApEn completely overlap while the MSE–
SampEn curves have half of points which do not 
overlap but the separations of these points are not as 
good as the results of GA–based MSE. We see that 
the separations of MSE–SampEn curves are better 
that MSE–ApEn curves because SampEn does not 
count self-matches so it does not increase conditional 
probabilities. 

Using Fig. 5 and Table 4, we can plot mean 
values ± standard deviation of GA–based MSE 
results as shown in Fig. 8 with a very high separation 
and no overlapped points. Therefore, the separations 
of curves given by GA–based MSE are better than 
MSE. 

For the second measure which uses the Euclidean 
distance to estimate the separation of two entropy 
profiles. The distance given by GA–based MSE is 
2.22 while 0.10 and 0.10 are the distances given by 
MSE–SampEn and MSE–ApEn, respectively. It can 
be seen that the distance of GA–based MSE is 22 
times further than the distance of MSE. 

Large computational time is a drawback of GA–
based methods but it is not in GA–based MSE 
because of two reasons. First, if we randomly select 
parameters of MSE to maximize the separation of 
two entropy curves it takes more time than GA–
based MSE. Second, the above nonlinear 
programming (17–18 or 19–20) has no closed–form 
solutions so we can not use direct math methods to 
solve.  Almost search algorithms which are generally 
derived from the Taylor series such as steepest 
descent, Newton’s method, conjugate gradient, etc., 
is a “local” approximate to the function(Hagan et al. 
1995)(Seeger, 2006) and these methods need 
gradients or Hessians which is time–intensive to 
compute. While GA–based method is a good 
candidate because it can be considered as “global” 
search and does not need gradients or Hessians of 
objective functions. 

Although the training process is time-consuming, 
the selected parameters are applied many times 
without retraining. That means we have one–training 
many-usage process. 

Table 2: Standard deviation of MSE analysis of ovarian 
cancer data. 

Scale 
factor 

SampEn ApEn 
Control Cancer Control Cancer 

1 0.0037 0.0018 0.1683 0.1679 
2 0.0040 0.0026 0.2118 0.2098 
3 0.0050 0.0034 0.2114 0.2226 
6 0.0112 0.0073 0.1936 0.2054 
7 0.0126 0.0083 0.2035 0.2378 
8 0.0141 0.0102 0.1896 0.2183 
9 0.0162 0.0117 0.1989 0.2068 

10 0.0207 0.0145 0.2161 0.2018 
30 0.0354 0.0193 0.1535 0.1448 

Table 3: Parameters of GA–based MSE of ovarian cancer 
data. 

M r Scale factor 
41 0.47 42 
40 0.43 43 
39 0.43 44 
11 0.07 45 
10 0.06 46 

Table 4: Standard deviation of GA–based MSE of ovarian 
cancer data. 

Scale factor Control Cancer 
42 0.3270 0.0497 
43 0.3245 0.0480 
44 0.3147 0.0498 
45 0.3797 0.0532 
46 0.3381 0.0514 
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Figure 1: Control sample. 

0

20

40

60

80

100

120

1 5001 10001 15001

Time index

Re
la

tiv
e 

in
te

ns
ity

 
Figure 2: Ovarian cancer sample. 
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Figure 3:  MSE–SampEn analysis of the ovarian cancer 
dataset (values are given as means with m = 11, r = 0.073). 
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Figure 4:  MSE–ApEn analysis of the ovarian cancer 
dataset (values are given as means with m = 1, r = 0.0567). 
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Figure 5:  GA–based MSE analysis of ovarian cancer 
dataset (values are given as means). 
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Figure 6:  MSE–SampEn analysis of the ovarian cancer 
dataset (values are given as means ± standard deviation 
with m = 11, r = 0.073). 
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Figure 7:  MSE–ApEn analysis of the ovarian cancer 
dataset (values are given as means ± standard deviation 
with m = 1, r = 0.0567). 
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Figure 8:  GA–based MSE analysis of ovarian cancer 
dataset (values are given as means ± standard deviation). 

4.2 MACE Data 

This dataset has recently been studied in (Zhou et al., 
2006) (Pham et al., 2008). These authors used high-
throughput, low-resolution SELDI MS to obtain the 
protein profiles from patients and controls. Figs 9 
and 10 show the typical SELDI mass spectra of the 
control and MACE samples, respectively, where the 
m/z values are converted to time indexes. The 
protein profiles were acquired from 2 to 200 kDa. 

Figs. 11 and 12 show SampEn and ApEn curves 
of control and MACE samples, respectively using 
MSE analysis. Table 5 lists the standard deviation 
values of the above analyses. The parameters of 
MSE were randomly selected. Parameters selection 
to distinguish between two entropy curves is not easy 
in this dataset. 

The GA–based MSE was applied to the MACE 
dataset. Fig. 13 shows two entropy curves of control 
and MACE samples. We see that these curves are 
clearly distinguished. We will use the above two 

measurements (section 5.1) to compare the 
separation of curves given by MSE and GA–based 
MSE. The parameters and standard deviation of GA–
based MSE are listed in Table 6 and 7, respectively. 

We use Figs. 11 and 12 and Table 5 to plot mean 
values ± standard deviation of MSE results as shown 
in Figs. 14 and 15. The curves of MSE–ApEn 
completely overlap while the MSE–SampEn curves 
have only one point (at scale factor 6) which does 
not overlap but the separation between two curves at 
this point is not good. In this dataset, the application 
of MSE is not as good as ovarian cancer data 
(section 5.1) because the complexity of this dataset is 
higher (the cardiac disease is unclear while the 
cancer disease is clarity). For GA–based MSE, we 
use Fig. 13 and Table 7 to plot mean values ± 
standard deviation as shown in Fig. 16 with a very 
high separation and no overlapped points. Therefore, 
the separations of curves given by GA–based MSE 
are better than MSE. 

The above paragraph describes the mean values ± 
standard deviation charts to estimate the separation 
between two entropy curves. We can also use the 
Euclidean distance to evaluate. The distance of MSE 
and GA–based MSE is 2.28 while 0.18 and 0.03 are 
the distances of MSE–SampEn and MSE–ApEn, 
respectively. In this case, the distance of GA–based 
MSE is 13 times better than MSE. 

Table 5: Standard deviation of MSE analysis of MACE 
data. 

Scale 
factor 

SampEn ApEn 
Control MACE Control MACE 

1 0.0171 0.0191 0.0204 0.0286 
2 0.0220 0.0244 0.0201 0.0295 
3 0.0355 0.0323 0.0288 0.0400 
4 0.0412 0.0345 0.0230 0.0325 
5 0.0495 0.0330 0.0253 0.0378 
6 0.0624 0.0317 0.0261 0.0320 
7 0.0429 0.0297 0.0297 0.0369 
8 0.0503 0.0279 0.0229 0.0273 
9 0.0541 0.0379 0.0220 0.0274 

10 0.0634 0.0530 0.0225 0.0235 
11 0.0630 0.0732 0.0342 0.0341 
12 0.0644 0.0730 0.0343 0.0275 

Table 6: Parameters of GA–based MSE analysis of MACE 
data. 

M r Scale factor 
8 0.0173 5 
6 0.0174 6 
5 0.0156 7 
3 0.0111 9 
2 0.0106 12 
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Table 7: Standard deviation of GA–based MSE of MACE 
data. 

Scale factor Control MACE 
5 0.0647 0.3293 
6 0.3579 0.1253 
7 0.3544 0.1335 
9 0.1955 0.4238 

12 0.2449 0.4286 
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Figure 9: SELDI–MS control sample. 
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Figure 10: SELDI–MS MACE sample. 
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Figure 11: MSE–SampEn analysis of MACE dataset 
(values are given as means with m = 2, r = 0.02). 
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Figure 12: MSE–ApEn analysis of MACE dataset (values 
are given as means with m = 5, r = 0.03). 
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Figure 13:  GA–based MSE analysis of MACE dataset 
(values are given as means). 

BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing

12



0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12

Scale  factor

Sa
m

pE
n

Control

MACE

 
Figure 14:  MSE–SampEn analysis of MACE dataset 
(values are given as means ± standard deviation with 
m = 2, r = 0.02). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12

Scale factor

Ap
E

n

Control

MACE

 

Figure 15: MSE–ApEn analysis of MACE dataset (values 
are given as means ± standard deviation with m = 5, 
r = 0.03). 
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Figure 16:  GA–based MSE analysis of MACE dataset 
(values are given as means ± standard deviation). 

5 CONCLUSIONS 

We have introduced the GA–based MSE which is 
able to optimally select the control parameters of the 
entropy approach to maximize the separation 
between the two entropy profiles.  The method was 
tested against two real mass spectrometry datasets. 
The obtained results have shown the effectiveness 
the GA–based MSE. 

The proposed method can be potentially 
improved by using the extended compact GA 
(ECGA) (Sastry and Goldberg, 2000) and parallel 
GA based on island model (Fernandez, 2005) 
(Cantu-Paz, 2001) (Calegari et al., 1997) to enhance 
the result and the speed of GA–based MSE. The 
crossover operator of classical GA is a random 
operator while crossover operator of ECGA is based 
on probability model. Therefore, extended compact 
GA can be expected to discover appropriate genetic 
codes in the population and preserves them for the 
next generations. Although each generation of 
ECGA takes more time than traditional GA, ECGA 
converges to the solution faster than traditional GA.  
The results of ECGA are better than classical GA. 
The parallel GA based on the island model not only 
increases computational speed but also improves the 
performance because the island model can exploit all 
diversity of population. 
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