
RULE-BASED ORCHESTRATION OF AGENT-SOCIETIES

Karl-Heinz Krempels and Christoph Terwelp
Databases and Information Systems, RWTH Aachen University, Aachen, Germany

Keywords: Agent societies, Orchestration, Rule-based system.

Abstract: Composing heterogeneous agent-based applications is mostly a complex task due to specific requirements of
agents and existing dependencies among agents and societies. Resolving such dependency-networks is subject
of agent and agent-society deployment and monitoring. The orchestration task covers automatic deployment,
configuration, monitoring and reconfiguration of agent-based applications.
Existing approaches provide static mapping of dependencies and constraints of agent and agent-society de-
scriptions. This leads to a high modification effort, which requires very specialised developer’s know-how
and can be very complex as well as error-prone, not only when distributing agents over several hosts, but also
when launching agents locally.
In this paper a reference model of a deployment infrastructure, a description model for agents and agent-so-
cieties and a knowledge-based mechanism for the orchestration of agent and agent-societies are presented with
the aim to overcome the disadvantages of the considered existing approaches.

1 INTRODUCTION

Multiagent systems (MAS) are composed of au-
tonomous, interacting, more or less intelligent enti-
ties. The agent metaphor has proven to be a promising
choice for building complex and adaptive software
applications, as it addresses key issues for making
complexity manageable at conceptual level (Jennings,
2001). Furthermore, agent technology can be seen as
a natural successor of the object-oriented paradigm
that enriches the world of passive objects with the
notion of autonomous actors. Even though agent ap-
plications are developed in various domains, most of
them are specialised solutions that are deployed in at
most one setting. This is caused by the fact that com-
position and deployment of agent-based applications
is not considered by agent-oriented software engi-
neering methods and therefore neither by multiagent
system development frameworks. In consequence, a
methodology is chosen independently for each appli-
cation without consideration of the possibility to inte-
grate the development process or making the effort to
derive a commonly accepted methodology.

For object-oriented distributed systems the de-
ployment process is specified in systematical guide-
lines describing mechanisms for all activities con-
cerned herewith. These guidelines ensure that a prop-
erly developed distributed application can be pack-
aged into a reusable, maintainable, and configurable

piece of software. However, multiagent systems com-
posed of autonomous proactively (inter-)acting enti-
ties differ considerably from distributed systems and
the issue of appropriate deployment techniques for
MAS has not yet been researched further.

The aim of this paper is to specify agent-based ap-
plications at a high-level using dependencies to de-
clare which recommended properties have to be ful-
filled for the application to start and run properly. In a
first step towards this high-level deployment for MAS
a reference model for launching, configuration, recon-
figuration and monitoring of distributed multiagent
applications is proposed which specifies applications
by declaring which and how many agent or agent-
society instances shall be instantiated at a time and in
which order. A generic meta-model for the specifica-
tion of agent-based applications is described as part of
the reference model. It consists of two layers one for
the definition of agent types and one for the composi-
tion of agent and agent-society instances belonging to
a certain agent-based application scenario.

After an overview of the state of the art in sec-
tion 2 and a description of the identified requirements
in section 3, the model is mapped to a knowledge-
base providing the basis for the development of the
orchestration capability of agents and agent-based ap-
plication tools in section 4. In section 5 the approach
and some conclusion for future work are summarized.

367Krempels K. and Terwelp C..
RULE-BASED ORCHESTRATION OF AGENT-SOCIETIES.
DOI: 10.5220/0003113103670371
In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART-2011), pages 367-371
ISBN: 978-989-8425-41-6
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2 BACKGROUND

The process of deployment is well specified for dis-
tributed systems and consists of many phases, identi-
fied by theObject Management Group(OMG) (Ob-
ject Management Group, 2003).

For agent-based applications, this process is more
dynamic and flexible, because the application consti-
tuting elements are autonomous agents instead of pas-
sive components. Launching multiagent-based appli-
cations differs from starting a distributed component-
based application. Component-based applications are
hierarchical structured and are usually launched using
a single starting point, that creates all needed subcom-
ponents. In contrast, agent-based applications con-
sist of a bundle of autonomous actors that are self-
dependent after launching. A minimum requirement
for the description of agent-based applications at in-
stance level is the specification of agent instances,
of agent-society instances and dependencies among
them.

2.1 Terminology

Before going into details some terms used in this pa-
per are defined. Configurations can be defined at
two levels: Component level and application level
(Castaldi, 2004). For agent-based systems, the agent
level and the application level can be distinguished.
Considering a single agent a distinction can be made
between the static implementation and the running in-
stance. When emphasizing this distinction the former
is referred to asagent typeand the latter asagent in-
stance. This distinction can also be made on the appli-
cation level. The termsociety typerefers to the static
properties of a multiagent application. A society type
is a composition of agent types, supplemented with
some (e.g. interaction) constraints. Asociety instance
refers to the instantiation of a society, and is com-
posed of single agent instances and concrete depen-
dencies between those instances. The model is recur-
sively defined to allow societies to be part of larger
societies on type and instance level.

2.2 Existing Approaches

In (Ricordel and Demazeau, 2000) several agent de-
velopment frameworks are compared with respect
to their capability to support the phases: analysis,
design, implementation and deployment of software
development processes. It shows that only a few
frameworks are addressing the issue of deployment.
ZEUS (Nwana et al., 1999),AgentFactory (Col-
lier, 2001),Agent Builder (Acronymics, Inc, 2004)

and theAgent-Society Configuration Manager and
Launcher (ASCML) (Bade et al., 2007; Braubach
et al., 2005; Lilienthal and Widyadharma, 2006) are
positive exceptions. Agent Academy and AgentFac-
tory framework allow to specify agent applications.
They offer support to parametrize agent instances
from defined agent types. When launching the appli-
cation, all agent instances are started at once. ZEUS
and AgentFactory use human readable starting scripts
that contain commands for starting agents. All these
approaches suffer from lack of concepts to describe
agent-societies and dependencies between agents and
societies. The dependencies have to be resolved by
the administrator of an agent-based application before
the application is launched. The ASCML defines con-
cepts for agent types, agent instances, society types
and society instances. Also the definition of depen-
dencies between these entities is possible. But it can
only handle six generic dependency types and appli-
cation based extensions can only be achieved by mod-
ification of the ASCML.

Tools like editION (dos Santos Ferreira Júnior
et al., 2006), a calligraphic interface for managing
agents for the ION agent framework, concentrate on
supporting the administrator in designing agent-based
applications and does not allow reconfiguration at
runtime.

3 REQUIREMENTS

From the presented state of the art in deploying mul-
tiagent applications a lack of concepts, standards and
tools can be identified, in particular forlaunchingand
dynamicreconfigurationof agent-based applications.

In the following desirable features to achieve dy-
namic reconfiguration and manageable launching are
introduced.

A management tool for the deployment of agent-
based applications must provide support for the intro-
duced models for agents, societies and dependencies
descriptions. Furthermore, it must provide basic ser-
vices to edit and modify these entities as well as start-
ing and stopping services for agents and agent soci-
eties. Additionally, these services must be available
remotely to enable the launching of distributed appli-
cations. Therefore, issues of security accounting and
write management have to be considered (Sloman,
1995). A launch-process management is required by
the basic services to ensure that the right agents and
agent-societies are launched at the specified nodes at
the correct time. This can be achieved by defining
dependencies among agent instances of a society and
solving these dependencies at launch time to deter-

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

368



mine the right launch time and order for every agent.
Monitoring and reconfiguration services have to

be offered by a management agent of agent-based ap-
plications. In this way the management agent is en-
abled to control the whole application. Once an ap-
plication has been started its administrator has to be
informed about its state, resulting from the lifecycles
of its entities.

A reconfiguration capability is necessary to en-
able the management agent to adapt the application
according to changing demands. E.g. to start more
agents in case of unused computing power. By de-
tecting failures and relaunching agents, as well as de-
tecting agents which are not used by an application
anymore, the monitoring service can increase the reli-
ability of agent-based applications and save comput-
ing power.

To describe and launch agent-based application
there is a need to adapt the agent, the society and
the dependency concept. In the ASCML approach six
generic dependencies for application independent use
have been introduced to model specific dependencies
for a given application.

For durable applications concepts for extensibility
at design- and runtime must be provided. Otherwise a
redesign of the application is necessary to change its
configuration.

4 APPROACH

This approach for distributed deployment of multia-
gent applications is based on the idea of specialised
service agents that are responsible for launching and
managing agents and societies on their own plat-
form. These service agents are called IASCML (Intel-
ligent Agent-Society Configuration Management and
Launcher).

4.1 Deployment Reference Model

The deployment reference model used here is sim-
ilar to the model of the ASCML agent (Braubach
et al., 2005) and assumes a running IASCML agent on
each platform. Each IASCML agent controls an agent
repository containing archives with agent and agent-
society applications. The archives contain descrip-
tion files for each launchable agent included. These
description files simplify the launching and configu-
ration task as they enable developers to map special
agent configuration parameters to well defined param-
eters of the agent description model. A welcome ef-
fect of this is that we hide special agent configurations
from the user of the agent. This also ensures that an

agent archive can be used in the same way on all the
agent platforms running an IASCML agent.

Agent-societies can be handled similarly since
they are build on top of well defined agent descrip-
tions in this model.

4.2 XML-Model-Description

A uniform description for agents and agent-societies
is ensured by concepts based on the ASCML XML-
schema (Braubach et al., 2005). The concept
states/assumes that agent description files end with
the suffix *.agent.xml and agent-society description
files with *.society.xml. This enables the IASCML
agent to identify agent and agent-society descriptions
in all the archives from its repository.

Parameter

Parameterset

Agent

Parameters

Servicedescriptions

Agentdescriptions

value

constraint

value

constraint

Figure 1: XML agent description model.

Figure 1 depicts the structure of an agent type
specification. The root agent tag captures important
properties of an agent such as the agent type, the im-
plementation class, and the platform type. Within
the servicedescriptions- and agentdescriptions-tags
FIPA-compliant descriptions for the agent itself and
the services offered by the agent can be declared.
Theparameter-tag encloses single-valued parameters
and multi-valued parameter sets that are passed as
key=value-arguments to the main class of the agent
at creation time. Parameters specified by the agent
type can be declared mandatory or optional. Parame-
ter values may be provided as default settings. All pa-
rameters specified for an agent type are inherited by
corresponding agent instances. The agent instances
have to provide parameter values for all mandatory
parameters for which the agent type provides no val-
ues. Predefined values of agent type can also be over-
written with new values.

Besides the agent types meta-model there is also a
meta-model for society types defined.

Figure 2 depicts the XML root-element of a soci-
ety type followed by a set of child tags. Theimports-
, agenttypes- and societytypes-tags specify lists of
referenced elements. Thesocietyinstances-tag is the
only mandatory tag. Within this tag one or more so-
ciety instances representing different application set-
tings can be listed.

RULE-BASED ORCHESTRATION OF AGENT-SOCIETIES

369



society

imports import

agenttypes agenttype

societytypes societytypes

societyinstances societyinstance

Figure 2: XML society description model.

The elements constituting a society instance are
shown in Figure 3. A set of agent instances which
have to be created on the local agent platform on start
of the society instance can be specified. Every agent
instance can optionally be provided with parameter
values. In addition to that a set of agent platform
dependent tool options can be specified. These tool
options are used to start special tool agents (e.g. snif-
fer or logger) at once with the agent instances and to
register an agent automatically with the selected tool
agent.

societyinstance

agentinstances agentinstance

dependencies

parameterset

tooloption

parameter

societyinstancerefs agentinstanceref

dependencies

launcher address

dependencies

invariant

functional

Figure 3: XML society instance description model.

Besides the agent instances a society instance can
contain an arbitrary number of subsocieties which
again can contain further subsocieties. This allows a
recursive definition of applications and facilitates the
creation of distributed multiagent applications. Each
referenced subsociety instance refers to a concrete so-
ciety instance, which itself belongs to a declared so-
ciety specification. For the purpose of starting a re-
mote society, a so-called launcher identifier can be de-
clared. This identifier designates the remote IASCML
agent responsible for starting the corresponding re-
mote society instance. At last a society instance can
be declared when to be functional by specifying a set
of dependencies and invariants that have to be ful-
filled. The IASCML supervises these dependencies
and invariants at runtime and for dependencies being
marked as active it engages autonomously in restart-
ing the non-functional parts.

The last focus is on the meta-model for dependen-
cies (Braubach et al., 2005). As shown in the society
instance scheme above, dependencies can be defined
for agent instances, society instances, and to describe
the functional state. Figure 4 depicts the different

dependencies

agenttypedependency

agentinstancedependency provider

servicedependency

servicedescription

provider address

societyinstancedependency provider

societytypedependency

delaydependency

Figure 4: XML dependency description model.

types of dependencies. An agent type dependency can
e.g. be used to wait for an arbitrary number of agents
of a specified type to be running, while an agent in-
stance dependency exactly refers to one designated
agent, identified by its unique agent id. Both kinds
of dependencies also exist for the society element.

4.3 Knowledge-based Model
Description Processing

Processing the agent and society descriptions by an
ASCML agent as proposed in (Braubach et al., 2005)
suffers from one main disadvantage, the processing
of static description modes. This restricts a developer
to specifying the configuration of an agent or agent-
society exclusively at design time.

To overcome this disadvantage a knowledge-
based processing of agent and society descriptions is
proposed in this approach. This provides the pos-
sibility to introduce additional dependency types for
agents at runtime, and to define them at a finer granu-
larity. E.g., to use a description property of an agent,
a service description property or even a boolean ex-
pression on any of the above as a dependency target.

Therefore, a rule-based engine is used providing a
knowledge base and a declarative programming lan-
guage operating on it. For a rule-based deployment
and management of agents and agent societies a map-
ping of the introduced XML-model descriptions to a
knowledge-based representation is necessary, captur-
ing the concepts described above.

To orchestrate a society based on its description
model from the knowledge base all the dependencies
are mapped to rules. Additionally rules are defined
for each society to control its lifecycle.

Dependencies for remote agents or subsocieties
are mapped to special rules producing an interaction
among IASCML agents (when they are activated) re-
questing the launch of an agent or subsociety.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

370



5 CONCLUSIONS & OUTLOOK

In this paper an extension of the ASCML approach
from (Bade et al., 2007; Braubach et al., 2005) is dis-
cussed. The extension provides runtime adaptivity for
agent-society structures and more accurate modelling
possibilities.

The IASCML approach was implemented with the
help of the rule-based systemJamochathat provides
the required modelling and processing capabilities for
knowledge-based models. The approach was tested
in a lab showing that the orchestration of agents and
agent-societies is improved in comparison to the AS-
CML approach.

Feedback from ASCML users regarding the us-
ability of the ASCML’s GUI, in particular the creation
and modification process of agent and agent-society
description files has been received. This motivates
the redesign of the ASCML GUI and its functionality.
The intention is to move the creation and modification
task of agent and agent-society descriptions to a new
developed plugin for Protégé (Gennari et al., 2002).
The usability of the new IASCML GUI needs to re-
worked to provide for a convenient way of handling
distributed agent-based applications.

The specification of agent-platforms is not sup-
ported by the IASCML yet. This is would very useful
to define dependencies between agents and platforms
and to extend the ASCML agent with load balancing
capabilities among network nodes. Thus it will sub-
ject of further research and development.

To provide the IASCML agent to the agent
community we will contribute the code to the
JADE (JADE, 2010) developer team. Furthermore,
we are going to contribute the agent and agent-society
description models to FIPA with the aim to include it
in a FIPA specification document.

Our longterm vision is to provide an orchestration
tool for agent-based applications and to simplify the
deployment and orchestration process of agents and
agent-societies. This will help agent-based applica-
tions to become (re)usable to a broad community.

REFERENCES

Acronymics, Inc (2004). Agentbuilder - user guide v1.4.
http://www.agentbuilder.com/.

Bade, D., Lilienthal, S., Krempels, K.-H., and Widyad-
harma, A. S. M. (2007). Agent-society configura-
tion manager and launcher. In Bellifemine, F., Caire,
G., and Greenwood, D., editors,Developing Multi-
Agent Systems with JADE, pages 207–223, West Sus-
sex, England. John Wiley & Sons, Ltd.

Braubach, L., Pokahr, A., Bade, D., Krempels, K.-H., and
Lamersdorf, W. (2005). Deployment of distributed
multi-agent systems. In Marie-Pierre Gleizes, An-
drea Omicini, F. Z., editor,ESAW 2005, pages 261–
276. Springer-Verlag GmbH.

Castaldi, M. (2004).Dynamic Reconfiguration of Compo-
nent Based Applications. PhD thesis, Department of
Computer Science, University of L’Aquila, Italy.

Collier, R. W. (2001). Agent Factory: A Framework for
the Engineering of Agent-Oriented Applications. PhD
thesis, University College Dublin.

dos Santos Ferreira Júnior, A. M., Vala, M., Pereira, J.
A. M., Jorge, J. A. P., and Paiva, A. (2006). A cal-
ligraphic interface for managing agents.WSCG 2006,
pages 25–31.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso,
W. E., Crubzy, M., Eriksson, H., Noy, N. F., and Tu,
S. W. (2002).The Evolution of Protégé: An Environ-
ment for Knowledge-Based Systems Development.

JADE (2010). The JADE Project Home Page.
http://jade.tilab.com/.

Jennings, N. R. (2001). An agent-based approach for
building complex software systems.Commun. ACM,
44(4):35–41.

Lilienthal, S. and Widyadharma, S. (2006). Agent society
configuration manager and launcher. InInformatik-
tage 2006, pages 1–4.

Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C.
(1999). Zeus: a toolkit and approach for building
distributed multi-agent systems. InAGENTS ’99:
Proceedings of the third annual conference on Au-
tonomous Agents, pages 360–361, New York, NY,
USA. ACM Press.

Object Management Group (2003). Deployment and con-
figuration of component-based distributed applica-
tions specification.

Ricordel, P.-M. and Demazeau, Y. (2000). From analysis
to deployment: A multi-agent platform survey. In
ESAW 2000, pages 93–105, London, UK. Springer-
Verlag GmbH.

Sloman, M. (1995). Management issues for distributed ser-
vices. InProc. of the 2nd Int. Workshop on Services in
Distributed and Networked Environments, pages 52–
55. IEEE.

RULE-BASED ORCHESTRATION OF AGENT-SOCIETIES

371


