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Abstract: Logic of discovery was developed in 1970’s as an answer to questions ”Can computers formulate and justify
scientific hypotheses?” and ”Can they comprehend empirical data and process it rationally, using the apparatus
of modern mathematical logic and statistics to try to produce a rational image of the observed empirical
world?”. Logic of discovery is based on two semantic systems. Observational semantic system corresponds
to observational data and statements on observational data. Theoretical semantic system concerns suitable
state dependent structures. Both systems are related via inductive inference rules corresponding to statistical
approaches. An attempt to modify logic of discovery to data mining was made and a framework making
possible to deal with domain knowledge in data mining was developed. Possibility of enhancement of this
framework for presenting results of data mining through Semantic web is suggested and discussed.

1 INTRODUCTION

Logic of discovery is developed in book (Hájek and
Havránek, 1978) as an answer to questions Q1, Q2:
(Q1) – Can computers formulate and justify scien-
tific hypotheses? (Q2) – Can they comprehend empir-
ical data and process it rationally, using the appara-
tus of modern mathematical logic and statistics to try
to produce a rational image of the observed empiri-
cal world? Answers to these questions are based on a
scheme of inductive inference:

theoretical assumptions, observational statement
theoretical statement

.

Logic of discovery deals with two semantic systems -
observational semantic system and theoretical seman-
tic system. Observational semantic system has a lan-
guage for speaking about observational data. Theoret-
ical semantic system concerns state dependent struc-
tures, both systems are connected by inductive infer-
ence rules based on statistical approaches.

An attempt to modify logic of discovery for needs
of data mining resulted into a suggestion of system
4ft-Discoverer (Rauch, 2010) which is intended to be
an experimental framework making possible to deal
with domain knowledge when mining in particular
data set. The goal of this paper is to discuss a possi-
bility of enhancement of this framework to serve as a
basis for disseminating results of data mining through

Semantic web.
System 4ft-Discoverer is based on logic of associ-

ation rules (Rauch, 2005). The association rule is un-
derstood here as a general relation of two Boolean at-
tributes. Main features of logic of discovery are sum-
marized in section 2. The logic of association rules is
introduced in section 3. Important features of the 4ft-
Discoverer are described in section 4. Possibilities to
enhance 4ft-Discoverer to a framework for dissemi-
nating results of data mining through Semantic web
are discussed in section 5.

2 LOGIC OF DISCOVERY

The schema of inductive inference introduced in sec-
tion 1 inspired additional five questions (Hájek and
Havránek, 1978):
L0: In what languages does one formulate observa-
tional and theoretical statements?
L1: What are rational inductive inference rules bridg-
ing the gap between observational and theoretical sen-
tences? (What does it mean that a theoretical state-
ment is justified?)
L2: Are there rational methods for deciding whether
a theoretical statement is justified (on the basis of
given theoretical assumptions and observational state-
ments)?
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L3: What are the conditions for a theoretical statement
or a set of theoretical statements to be of interest with
respect to the task of scientific cognition?
L4: Are there methods for suggesting such a set of
statements which is as interesting (important) as pos-
sible?

Answering questions (L0) – (L2) leads to logic of
induction, answers to questions (L3) and (L4) lead to
logic of suggestion. Answers to questions (L0) – (L4)
constitute a logic of discovery developed in (Hájek
and Havránek, 1978). The rational inductive infer-
ence rules bridging the gap between observational
and theoretical sentences are based on statistical ap-
proaches, i.e. estimates of various parameters or sta-
tistical hypothesis tests are used.

Semantic system is defined to formalize languages
for observational and theoretical statements: Seman-
tic system S = hSent;M;V;Vali is determined by a
non-empty set Sent of sentences, a non-empty set M
of models, a non-empty set V of abstract values and
an evaluating function Val : (Sent�M)! V . If it is
j 2 Sent and M 2 M then Val(j;M ) is the value
of j in M . Semantic system S = hSent;M ;V;Vali is
observational if Sent, M , V are recursive sets and Val
is a partial recursive function.

Two semantic systems – obbservational seman-
tic system S O = hSentO;MO;V O;ValOi correspond-
ing to analyzed data and theoretical semantic sys-
tem S T = hSentT ;UT ;V T ;ValT i corresponding to the
whole set of objects we are interested in are devel-
oped. The analyzed data can concern only a part of
this whole set. Rationality of inductive inference rules
is based on statistical approaches. It leads to observa-
tional semantic systems with formulas corresponding
to statistical hypothesis tests. An example of observa-
tional system is related to logical calculus of associa-
tion rules, see section 3.

3 LOGIC OF ASSOCIATION
RULES

The most in (Hájek and Havránek, 1978) studied ob-
servational semantic systems are based on observa-
tional predicate calculi which are introduced in sec-
tion 3.1. Logical calculi of association rules can be
understood as modifications of observational predi-
cate calculi, they are informally defined in section 3.2.
Very important are deduction rules in logical calculi
of association rules, some practically important de-
duction rules are mentioned in section 3.3.

3.1 Observational Predicate Calculi

Observational predicate calculus is a result of modi-
fications of classical predicate calculus – only finite
models are allowed and generalized quantifiers are
added. Finite models correspond to data resulting
from observation and generalized quantifiers make
it possible to express various assertions on analyzed
data including assertions corresponding to statistical
hypothesis tests.

Set SentP of all closed formulas of observational
predicate calculus P can be used to build observa-
tional semantic system S P = hSentP ;MP ;V P ;ValP i
where MP is the set of all models (i.e. finite data struc-
tures) of P , V P = f0;1g and ValP is a function assign-
ing a value from f0;1g to each couple hM ;Fi where
M 2 MP and F 2 SentP . If ValP (M ;F) = 1 then F

is true in M , otherwise F is false in M .
If we use predicate calculus P with only unary

predicates P1; : : :Pn, then each model M 2 MP of S P

is a f0,1g – data matrix with n columns. Expres-
sion 8(x)P1(x) and 9(x)(P1(x)_P2(y)) are examples
of formulas with classical quantifiers 8 and 9.

Expressions )!
p;a;B (x)(P1(x);P2(x)) and

,p;B (x)(P1(x)^ P3(x);P2(y)_ P4(x)) are examples
of formulas with generalized quantifiers )!

p;a;B and
,p;B which are introduced in table 1. These
expressions concern couples of derived predicates
hP1(x);P2(x)i and hP1(x)^P3(x);P2(y)_P4(x)i, they
can be understood as generalization of association
rules.

3.2 Logical Calculi of Association Rules

The boom of association rules in the 1990’s (Agrawal
et al., 1993) was the start of a new effort in the study
of association rules as formulas of observational cal-
culi. The syntax of used formulas of predicate ob-
servational calculi has been significantly simplified,
only calculi with monadic predicates are further stud-
ied. Free and bound variables are omitted and basic
Boolean attributes are used instead of predicates. Re-
sulting calculi can be understood as logical calculi of
association rules (Rauch, 2005; Rauch, 2008; Rauch,
2009).

We are going to informally outline definition of
semantic system AR T = hSentT

AR ;MT ;f0;1g;ValT
AR i

of type T concerning association rules. Elements of
SentT

AR are association rules j�y where j and y are
Boolean attributes derived from columns of analyzed
data matrix M of type T and � is a 4ft-quantifier.

Such association rules are closed formulas of lan-
guage LT

AR of association rules which is outlined in
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section 3.2.1. MT is a set of all data matrices of type
T , see section 3.2.2. ValT

AR is an evaluating function
assigning value ValT

AR (j� y;M ) 2 f0;1g to each
couple M 2 MT and j�y 2 SentT

AR . It is introduced
in section 3.2.3.

3.2.1 Language LT
AR

Association rule is expression j � y where j and y

are Boolean attributes derived from columns of an an-
alyzed data matrix and � is a 4ft-quantifier. Boolean
attribute j is called antecedent and Boolean attribute
y is called succedent.

Basic Boolean attributes are created first. The
basic Boolean attribute is an expression A(a) where
a � fa1; : : :atg and fa1; : : :atg is the set of all cate-
gories of the attribute A. The basic Boolean attribute
A(a) is true in row o of M if it is A(o) 2 a where
A(o) is the value of the attribute A in row o. Exam-
ples of basic Boolean attributes are in figure 1. These
Boolean attributes are derived from columns of data
matrix M with columns corresponding to attributes
A1; : : : ;AK .

M A1 . . . AK A1(1) AK(2;6)
o1 1 . . . 6 1 1
...

...
. . .

...
...

...
on 3 . . . 1 0 0

Figure 1: Data matrix M and basic Boolean attributes.

Boolean attributes j and y are derived from basic
Boolean attributes using connectives _, ^ and : in
the usual way. Expression

A1(1)^ A2(4;5)� AK(2;6)

is an example of an association rule.
We consider data matrices with values – natural

numbers only. The natural numbers represent cat-
egories i.e. possible values of observed attributes
A1; : : : ;AK . Columns of data matrix correspond to at-
tributes and rows correspond to observed objects, e.g.
to patients. An example of such a data matrix is in
figure 1.

There is only finite number of categories i.e. pos-
sible values for each attribute. Let us assume that the
number of possible values of a column is t and that
the possible values in this column are natural num-
bers 1; : : : ; t. All possible values in the data matrix are
then described by the numbers of possible values for
each column. The whole information on number of
columns and possible values in the data matrix is then
given by type of data matrix: A type of data matrix

is a K-tuple T = ht1; : : : ; tKi where ti � 2 are natural
numbers for i = 1; : : : ;K.

Symbols of language LT
AR of association rules

of type T = ht1; : : : ; tKi are attributes A1; : : : ;AK ,
4ft-quantifiers �1; : : : ;�Q, propositional connectives
^;_;: and parentheses. The basic Boolean attributes
A(a) are defined in the above given way. Each basic
Boolean attribute is a Boolean attribute, if j and y

are Boolean attributes, then :j, j^y and j_y are
Boolean attributes.

Set SentT
AR of semantic system S T

AR of associa-
tion rules of type T is the set of all association rules
i.e. closed formulas of language LT

AR . Formal defini-
tion of language of association rules is e.g. in (Rauch,
2005).

3.2.2 Data Matrices MT

A more formal definition of a data matrix with the
number of columns and the numbers of possible val-
ues in particular columns given by the type T =
ht1; : : : ; tKi is used: Let T = ht1; : : : ; tKi be the type
of data matrix. Then a data matrix of type T is a
K + 1-tuple M = hM; f1; : : : ; fKi, where M is a non-
empty finite set and fi is the unary function from M
to f1; : : : ; tig for i = 1; : : : ;K. Set M is a set of rows of
data matrix M . Set M is called a domain of data ma-
trix M , we write M = Dom(M ). An example of data
matrix M = hM; f1; : : : ; fKi is figure 2. We assume
that M = fo1; : : : ;ong.

object f1 . . . fK
o1 f1(o1) . . . fK(o1)
...

...
. . .

...
on f1(on) . . . fK(on)

Figure 2: Data matrix M = hM; f1; : : : ; fKi.

3.2.3 Evaluation Function ValT
AR

Association rule j � y can be true or false in given
data matrix M 2 MT . Rule j � y is verified on the
basis of four-fold table 4 f t(j,y, M ) of j and y in
M , see figure 3.

M y :y

j a b
:j a b

Figure 3: 4ft-table 4ft(j;y;M ).

Here a is the number of objects (i.e. rows of M )
satisfying both j and y, b is the number of objects
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satisfying j and not satisfying y, etc. 4 f t(j,y, M ) is
also written as ha;b;c;di and called 4ft-table.

Evaluation function ValT
AR assigns a value 0 or 1

to each couple hj � y;M i where j � y is the asso-
ciation rule and M 2 MT . If ValT

AR (j � y;M ) = 1
then we say that rule j � y is true in M and if
ValT

AR (j � y;M ) = 0 then we say that rule j � y

is false in M . ValT
AR (j� y;M ) is defined using 4ft-

table 4ft(j;y;M ) of j and y in M and associated
function F� of �.

Associated function F� of the 4ft quantifier �
is a f0;1g - valued function defined for all quadru-
ples ha;b;c;di of natural numbers. Value of asso-
ciation rule j � y in data matrix M 2 MT is de-
fined such that ValT

AR (j � y;M ) = F�(a;b;c;d)
where ha;b;c;di = 4 f t(j;y;M ). Examples of 4ft-
quantifiers � and associated functions F�(a;b;c;d)
are in table 1.

Table 1: Examples of 4ft-quantifiers.

� F�(a;b;c;d) = 1 iff
)p;B

a
a+b � p^a� B

)!
p;a;B å

r
i=a

�r
i

�i(1� p)r�i � a^a� B
�p;B

a+d
a+b+c+d � p^a� B

�a;B å
min(r;k)
i=a

(k
i)(n�k

r�i)
(r

n)
� a^a� B

�2
a;B

(ad�bc)2

rkls n� c2
a^a� B

�+
q;B

a
a+b � (1+q) a+c

a+b+c+d ^a� B

The 4ft-quantifiers )p;B of founded implication,
)!

p;a;B of lower critical implication, Fisher’s quanti-
fier�a;B and c2–quantifier�2

a;B are defined in (Hájek
and Havránek, 1978), the quantifier �p;B of founded
equivalence is defined in (Hájek et al., 1983) and the
4ft-quantifier of above average dependence �+

q;B is
defined in (Rauch, 2005).

3.3 Deduction Rules in Logical Calculus
of Association Rules

Language LT
AR , set of data matrices MT and evalua-

tion function ValT
AR constitute logical calculus of as-

sociation rules (Rauch, 2005). There are various the-
oretically interesting and practically useful results re-
lated to logical calculus of association rules. Most of
them are related to classes of 4ft-quantifiers (Rauch,
2008).

An example of a class of 4ft-quantifiers is the class
of implicational 4ft-quantifiers. 4ft-quantifier � is
implicational if F�(a;b;c;d) = 1^a0 � a^b0 � b im-

plies F�(a0;b0;c;d) = 1. Both 4ft-quantifiers )p;B

and)!
p;a;B (see table 1) are implicational.

Important results concerning soundness of deduc-
tion rules of the form j�y

j0�y0 were achieved (Rauch,
2008). Here both j � y and j0 � y0 are association
rules. We outline these results for the class of interest-
ing implicational quantifiers: If )� is an interesting
implicational quantifier then there are formulas w1A,
w1B, w2 of propositional calculus created from j, y,
j0, y0 so that the deduction rule j)�y

j0)�y0 is sound if and
only if at least one of the following conditions (1), (2)
are satisfied: (1) – both w1A and w1B are tautologies,
(2) – w2 is a tautology.

All practically important implicational 4ft-
quantifiers are interesting implicational quantifiers.
Similar theorems are proved for additional classes of
4ft-quantifiers (Rauch, 2005; Rauch, 2008).

4 4FT-DISCOVERER

4ft-Discoverer 4 f tDT is system 4 f tDT =
hS T

AR ; UT
AR ; 4ft-Miner; 4ft-Filter; 4ft-Synt i

where S T
AR and UT

AR are two semantic system
intended to be able to express results of observation,
properties of particular data matrices and various
items of domain knowledge. Here T is type of data
matrix, it is T = ht1; : : : ; tKi, see section 3.2.1. We
say that 4ft-Discoverer 4 f tDT is of type T .

S T
AR and UT

AR are briefly described in section 4.1.
They are related each other by function ConsT

AR as-
signing to each item of domain knowledge a set of its
atomic consequences, see section 4.2.

4ft-Miner is a GUHA procedure i.e. data mining
procedure which mines for association rules - couples
of Boolean attributes created from columns of data
matrices M 2 MT (Rauch and Šimůnek, 2005). It has
very fine tools to define a set of association rules to
be generated and verified. It is introduced in section
4.3. Procedures 4ft-Filter and 4ft-Synt are intended
to interpret results of 4ft-Miner using domain knowl-
edge expressed by semantic system the UT

AR . Both
procedures are introduced in section 4.4.

4.1 Semantic Systems S T
AR and UT

AR

Semantic system S T
AR of type T = ht1; : : : ; tKi is

defined as S T
AR = hMT ;SentT

AR ;ValT
AR ;SentT

M ;ValT
M i,

where:

� MT is the set of all data matrices M of type T see
section 3.2.2.
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� SentT
AR is the set of all association rules j � y

of type T i.e. the set of all closed formulas of
language LT

AR , see section 3.2.1.

� ValT
AR is the evaluation function defined in sec-

tion 3.2.3.

� SentT
M is a set of (closed) formulas of language

LT
M which is a language intended to express fea-

tures of particular data matrices. Informal exam-
ples of such formulas are: data matrix M1 2 MT

concerns only pathological patients and data ma-
trix M2 2 MT concerns patients from a given town
(we assume that data matrices from MT concern
patients). This language is not defined in details
in (Rauch, 2010), more details are in section 5.

� ValT
M is an evaluation function for features of data

matrices, ValMT : (SentT
M � MT )! f0;1g. If q 2

SentT
M and M 2 MT then ValMT (q;M ) is the value

of feature q for M . If ValMT (q;M ) = 1 then M
has feature q, otherwise M has not feature q.

Please note that we use here the notion semantic
system in a broader sense than defined in (Hájek and
Havránek, 1978), the same is true for system UT

AR
introduced below. We call system S T

AR observational
to express that S T

AR concerns results of observation.

Semantic system UT
AR of type T = ht1; : : : ; tKi is

defined as UT
AR = hU;SentT

U ;ConsT
AR i where

� U =
S
fDom(M ) j M 2 MT g is a union of do-

mains of all data matrices M 2 MT , see also sec-
tion 3.2.2.

� SentT
U is a set of (closed) formulas of language

LT
U which is a language intended to express var-

ious items of knowledge related to set U or items
of general knowledge. Thus each I 2 SentT

U is
an item of knowledge. An example of item of
knowledge related to set U is information on spe-
cific vaccination applied to all patients in a given
region. We assume that each data matrix M 2 MT

concerns only patients from this region. An ex-
ample of an item of general knowledge is a com-
monly accepted fact that if weight increases then
blood pressure increases too. Examples of formu-
las from SentT

U are given below.

� ConsT
AR is a function assigning to each I 2 SentT

U

a set of association rules which can be under-
stood as consequences of item I . This function
is intended to connect observational semantic sys-
tem S T

AR and theoretical semantic system UT
AR by

adding semantics to items of domain knowledge.
More information is in section 4.2.

System UT
AR is called theoretical because of it talks

about the whole set of objects we are interested in.
Language LT

U is intended to express items of
knowledge related to set U or items of general knowl-
edge. Some examples of general knowledge follow.
Here A is one of attributes A1, . . . , AK of language
LT

AR , the same is true for B. In addition, w, w1, w2

are Boolean attributes of LT
AR and w does not contain

attribute A.

� A "" B means that if A increases then B increases

� A "# B means that if A increases then B decreases

� A!+ w means that if A increases then relative
frequency of w increases

� A!� w means that if A increases then relative
frequency of w decreases

� w1!+ w2 means that if w1 is satisfied then rela-
tive frequency of w2 increases

� w1!� w2 means that if w1 is satisfied then rela-
tive frequency of w2 decreases.

We can imagine that there is an additional parameter
making possible to express that a formula is opinion
of expert X or an assertion from a paper Y.

4.2 ConsT
AR – Atomic Consequences

Function ConsT
AR is used instead of the statistical ap-

proaches used in (Hájek and Havránek, 1978) to con-
nect observational semantic system S Oand theoreti-
cal semantic system S T . It is assumed that function
ConsT

AR is defined with help of domain expert. It adds
semantics to items of domain knowledge expressed
by formulas from SentT

U .
We show how function ConsT

AR creates a set
ConsT

AR (A "" B;M ) of association rules – formulas
of language LT

AR which can be considered as a set
of all atomic consequences of item A "" B of knowl-
edge in data matrix M . Function ConsT

AR can be
seen as a family of functions ConsT

� where � is a
4ft-quantifier of language LT

AR . Function ConsT
� cre-

ates a set ConsT
�(A "" B;M ) of association rules –

formulas of language LT
AR such that this set can be

considered as a set of all atomic consequences of
A "" B of the form r � s in data matrix M . Then
ConsT

AR (A "" B;M ) is defined as a union[
fConsT

�(A "" B;M ) j � belongs to LT
AR g .

We outline how function ConsT
)p;B

works for 4ft-
quantifier )p;B of founded implication (see table 1)
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and item A "" B of domain knowledge. The func-
tions ConsT

� for additional 4ft-quantifiers and formu-
las of LT

M are defined using similar principles, see also
(Rauch, 2009).

We assume that attribute A has categories 1; : : : ;u
and attribute B has categories 1; : : : ;v. Our task is to
define a set of rules r)p;B s which can be naturally
considered as a set of all consequences of item A "" B
and which are as simple as possible. We assume the
simplest rules in form A(a))p;B B(b) where
a� f1; : : : ;ug and b� f1; : : : ;vg.

The rule A(low))p;B B(low) saying if A is low
then B is low can be understood as a natural conse-
quence of A "" B. The only problem is to define coef-
ficients a and b which can be understood as low. We
choose natural Alow, 1 < Alow < u and natural Blow,
1 < Blow < v and then we consider a as low if and
only if a � f1; : : : ;Alowg and b as low if and only if
b� f1; : : : ;Blowg, see also section 4.3.

Also the rule A(high) )p;B B(high) saying that
if A is high then B is high can be understood as
a natural consequence of A "" B. We choose nat-
ural Ahigh, 1 < Alow < Ahigh < u and natural Bhigh,
1 < Blow < Bhigh < v and then we consider a as high
if and only if a � fAhigh; : : : ;vg and b as high if and
only if b� fBhigh; : : : ;vg.

It remains to define values of parameters p and B
of )p;B. We can choose each p � 0:9 and B � n

20
where n is the number of rows of data matrix M .
However, boundaries of p and B as well as values
Alow, Ahigh, Blow, Bhigh should be determined by a do-
main expert.

Set of all rules A(low) )p;B B(low) and
A(high))p;B B(high) satisfying the above given con-
ditions can be considered as ConsT

)p;B
(A "" B;M ) –

a set of atomic consequences of A "" B of the form
r)p;B s in M .

Set ConsT
)p;B

(A "" B;M ) can be defined in
a finer way by rules A(medium) )p;B B(medium)
with a suitable definition of ”medium”. Rules
A(low, medium) )p;B B(medium), etc. can also be
added.

There is a natural requirement on consistency of
set ConsT

AR (A "" B;M ) of atomic consequences, de-
tailed discussion is however without the scope of this
paper.

4.3 GUHA Procedure 4ft-Miner

4ft-Miner procedure mines for association rules of the
form j � y where j 2 F, y 2 Y, and j and y have
no common attributes. Input parameters define ana-
lyzed data matrix M , 4ft-quantifier �, set of relevant

antecedents F and set of relevant succedents Y.
Each antecedent is a conjunction t1 ^ �� � ^ tm

of partial antecedents t1; : : : ;tm. Each partial an-
tecedent is either conjunction l1 ^ �� � ^ lq or dis-
junction l1 _ �� � _lq of literals l1; : : : ;lq. Each lit-
eral is a basic Boolean attribute A(a) or its negation
:A(a). Definition of set of relevant antecedents F

consists of definitions of relevant partial antecedents
F1; : : : ;Fm, t1 ^ �� � ^ tm is a relevant antecedent if
t1 2F1; : : : ;tm 2Fm.

Definition of a relevant partial antecedent is given
by list A01; : : : ;A

0
u of attributes, by a minimal and maxi-

mal number of literals in particular partial antecedents
and by a type of partial antecedent i.e. conjunctions
or disjunctions. In addition, for each attribute A0 a
set of relevant basic Boolean attributes which are au-
tomatically generated is defined. There are various
detailed possibilities how to define all relevant ba-
sic Boolean attributes A0(a) (Rauch and Šimůnek,
2005). We outline only one of them. We use at-
tribute A with categories 1, 2, 3, 4, 5. Option in-
tervals of length 2-3 gives basic Boolean attributes
A(1;2), A(2;3), A(3;4), A(4;5), A(1;2;3), A(2;3;4),
A(3;4;5). This way we can get basic Boolean at-
tributes A(low), A(high), B(low), B(high), see section
4.2.

Set Y of relevant succedents is defined analo-
gously. The output of 4ft-Miner is set W of association
rules j� y which are true in M and both j 2F and
y 2 Y. The 4ft-Miner procedure does not use apri-
ori, its implementation is based on representation of
analyzed data by suitable strings of bits (Rauch and
Šimůnek, 2005).

Let us note that the 4ft-Miner procedure mines
also for conditional association rules j � y=c where
j, y and c are Boolean attributes. The association
rule j � y=c is true in data matrix M if and only
if the rule j � y is true in data matrix M =c where
M =c is a data matrix consisting from all rows of M
satisfying c.

The input of 4ft-Miner can contain also a defini-
tion of set X of relevant conditions in addition to defi-
nitions of set of relevant antecedents F and set of rel-
evant succedents Y. The set X is defined analogously
to sets F and Y.

The output of 4ft-Miner is then set W of condi-
tional association rules j� y=c true in M which are
true in M and both j 2F, y 2Y and c 2 X.

4.4 Procedures 4ft-Filter and 4ft-Synt

The 4ft-Filter procedure filters out consequences of
given item of domain knowledge from the output of
4ft-Miner. Item of domain knowledge is expressed by
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a formula from SentT
U . The 4ft-Synt recognizes groups

of patterns which can be considered as a consequence
of a (yet unknown) item of knowledge.

Function Is4 f tConsequence(I ;j � y;M ) de-
fined for all formulas I 2 SentT

U , association rules
j � y 2 SentT

AR and data matrices M 2 MT can be
used to realize 4ft-Filter procedure. It is defined
such that Is4 f tConsequence(I ;j� y;M ) = 1 if rule
j � y can be considered as a consequence of I , oth-
erwise Is4 f tConsequence(I ;j� y;M ) = 0.

Value Is4 f tConsequence(I ;j � y;M ) is com-
puted using function ConsT

AR , see section 4.2 and
using deduction rules j�y

j0�y0 , see section 3.3. There
are criteria of correctness of rules j�y

j0�y0 for each 4ft-
quantifier � of 4ft-Miner procedure (Rauch, 2005;
Rauch, 2008; Rauch and Šimůnek, 2005). Function
ConsT

AR is defined for all I 2 SentT
U , and M 2 MT

such that ConsT
AR (I ;M ) = L and L is a set of all

association rules r � s which can be considered as
atomic consequences of I in M .

Value Is4 f tConsequence(I ;j � y;M ) is com-
puted in two steps. In the first step we compute set
L = ConsT

AR (I ;M ). In the second step we test cor-
rectness of r�s

j�y
for each r� s 2 L. If there is such a

correct rule, then j�y is considered as consequence
of I in M and Is4 f tConsequence(I ;j� y;M ) = 1.
Otherwise Is4 f tConsequence(I ;j� y;M ) = 0.

Function Is4 f tConsequence(I ;j � y;M ) can
also be used to realize the procedure 4ft-Synt which
recognizes groups of rules j � y which can be con-
sidered as a consequence of a (yet unknown) items
of knowledge. We assume that each, even yet un-
known, item of knowledge is represented by a formula
of SentT

U . The procedure 4ft-Synt can be then realized
such that we choose formula w 2 SentT

U and using
function Is4 f tConsequence(w;j�y;M ) we pick up
all consequences of w from output of 4ft-Miner pro-
cedure. However, we have somehow to limit set of
tested formulas w 2 SentT

U . A more detailed study of
this problem is out of the scope of this paper.

5 4FT-DISCOVERER AND
SEMANTIC WEB

One of 10 challenging problems in data mining re-
search (see http://www.cs.uvm.edu/�icdm/) is char-
acterized as mining complex knowledge from complex
data. It is emphasized that all the current data mining
systems can do is hand the results back to the user.
However, it is necessary to relate results to real world
decisions they affect. A way how to do it is to arrange

results of data mining into an analytical report struc-
tured both according to the analyzed problem and to
the user’s needs. Core of such a report is a set of asser-
tions on analyzed data together with some explanation
comments. Such analytical report can be considered
as a formal structure. An idea of indexing such reports
by logical formulas corresponding to patterns result-
ing from data mining is outlined in (Rauch, 1997). It
means that such analytical reports are natural candi-
dates for Semantic Web.

Project SEWEBAR concerning these ideas is de-
scribed in (Rauch and Šimůnek, 2007). It is assumed
there are various institutions (e.g. hospitals) storing
data in their databases. There are automatically or
semi-automatically produced local analytical reports
giving answers to various local analytical questions.
It is further assumed that these reports are presented
on Internet. It is natural to try to get answers to var-
ious global analytical questions using these local an-
alytical reports. It is again assumed that answers to
global analytical questions will be presented on In-
ternet in a form of analytical reports. We call such
reports global analytical reports. Various aspects of
the SEWEBAR project are discussed in (Rauch, 2007;
Rauch and Šimůnek, 2009; Kliegr et al., 2009) includ-
ing formulation of analytical questions using various
items of domain knowledge. Some experiments are
presented at http://sewebar.vse.cz/.

The SEWEBAR project is based on dealing with
analytical reports which are considered as formal
structures. No unified formal framework is given
to the project till now. The goal of this section is
to discuss possibilities of enhancement of the 4ft-
Discoverer to serve as a formal framework for the
SEWEBAR project. We are going to identify main
related problems and to sketch possible ways of their
solution.

Overview of currently known main problems re-
lated to enhancement of 4ft-Discoverer is given in
section 5.1. Possibilities of solution of particular
problems are discussed in sections 5.2 – 5.4.

5.1 Enhancing 4ft-Discoverer

The core of 4ft-Discoverer is formal framework for
dealing with domain knowledge and association rules
(i.e. interesting couples of Boolean attributes related
in a given way in a given data matrix). We have for-
mulas expressing items of domain knowledge, proce-
dures 4ft-Miner, 4ft-Filter, and 4ft-Synt, and function
Is4 f tConsequence, see section 4.4.

By these tools we are able to achieve interesting
results in solving various local analytical questions
related to a given data matrix. Our task is to arrange
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these results into a local analytical report such that
it will be possible to deal with the report as with a
formal object. Some remarks to this problem are in
section 5.2.

The current version of 4ft-Discoverer is tailored
to analysis of one particular data matrix using domain
knowledge expressed by formulas from SentT

AR , see
section 4.1. Only very few attention is given to knowl-
edge related to particular data matrices. This knowl-
edge is assumed to be formalized by SentT

M i.e. the
set of (closed) formulas of language LT

M which is a
language intended to express characteristics of partic-
ular data matrices, see section 4.1. This requires more
attention even when mining in one particular data ma-
trix. Some remarks to knowledge related to particular
data matrices are in section 5.3.

Our goal is to get answers to various global an-
alytical questions using local analytical reports pre-
sented on Internet. The answers to global analytical
questions will be presented as global analytical re-
ports. It is further assumed that such global analyti-
cal reports will be used as input for answering addi-
tional global analytical reports. This approach brings
lot of various problems. Initial comments to them are
in section 5.4.

Very important is application of classical Seman-
tic web technologies in the SEWEBAR project. In
this paper we are not interested in this topic. Let us
however emphasize that there are various activities in
this directions, see e.g. (Kliegr et al., 2009). The cur-
rent state is presented at http://sewebar.vse.cz/.

Let us also note that 4ft-Discoverer is tailored to
association rules mined by the 4ft-Miner GUHA pro-
cedure. There are six additional GUHA procedures
mining for various types of patterns (Hájek et al.,
2010). Similar formal framework can be developed
for these procedures.

5.2 Local Analytical Reports

An example of local analytical question is the ques-
tion: Are there any association rules which can be
considered as exceptions from the generally accepted
fact A "" B in given data matrix M ? We assume
that the exception concerns a subset of rows defined
by attributes C1; : : : ;CL – columns of M . Informally
speaking, this task can be solved in following steps:

1. We identify exceptions with conditional associa-
tion rules t� s=c satisfying

� t� s2ConsT
AR (A "# B) i.e. t� s is an atomic

consequence of A "# B which is a contradiction
to A "" B.

� c is a Boolean attribute derived from attributes
C1; : : : ;CL.

2. We take into account that it is possible that
ConsT

AR (A "# B) and ConsT
AR (A "" B) have

common rules. For example it can happen
A(medium))p;B B(medium) 2ConsT

AR (A "# B),
A(medium))p;B B(medium) 2ConsT

AR (A "" B),
see section 4.2.

3. We use 4ft-Miner with input parameters such that

� set F of relevant antecedents is the set of all t

where t� s 2ConsT
AR (A "# B). It can be done

due to the possibility to use option intervals for
set of all relevant basic Boolean attributes de-
rived from attribute A, see section 4.3.

� set Y of relevant succedents is the set of all s

where t� s 2ConsT
AR (A "# B).

� set X of relevant conditions is defined as a set
of Boolean attributes derived from attributes
C1; : : : ;CL in a suitable way
� we use quantifier)p;B with p = 0:9 and B� n

20
where n is the number of rows of data matrix
M , see section 4.2.

4. Function Is4 f tConsequence(A "" B;j � y;M )
(see section 4.4) is used to filter out from W all
rules t� s=c satisfying t� s2ConsT

AR (A ""B).

5. The remaining conditional association rules cor-
respond to searched exceptions.

The above informally described steps can be for-
malized and automatized. In addition they can be de-
scribed such that it will be possible to understood this
description as a local analytical report answering the
given analytical question. This approach differs from
that introduced in (Suzuki, 2004).

Such local analytical reports are formal structures
and they can be indexed for automatized search. For-
mulas like t � s=c and A "" B can be also used for
indexing and searching to deal with semantics. Lot
of similar local analytical questions can be formal-
ized and answered by local analytical reports in the
above outlined way. Some of them are sketched in
(Rauch and Šimůnek, 2009). Detailed elaboration of
this topic is a subject of current research.

5.3 Knowledge on Data Matrices

Properties of analyzed data are crucial for analysis
and interpretation of results. It is ideal when the data
satisfies all requirements for correct application of
statistical approaches. However in the case of data
mining it is only rare situation. Our goal is to use
properties of analyzed data both to formulation and
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solution of suitable analytical questions in a similar
way the knowledge expressed by formulas of SentT

U

is used.
Language LT

M is intended to express characteris-
tics of particular data matrices and it is assumed to
use set SentT

M of closed formulas of this language to
deal with knowledge on particular data matrices in the
same way as formulas of SentT

U are used, see section
4.1. It means we have to:
� get formulas of SentT

M expressing important prop-
erties of data matrices in a similar way the formu-
las A ""B, A "#B, . . . , of SentT

U express important
items of domain knowledge, see section 4.1.

� define function ConsMT
AR adding semantics to

formulas from SentT
M , similarly to the way func-

tion ConsT
AR gives semantics to formulas from

SentT
U ; ConsMT

AR (I ;M ) is a set of association
rules – formulas of language LT

AR which can be
considered as a set of all atomic consequences of
item I of knowledge on data matrix M .

� define function

Is4 f tConsequenceM(I ;j� y;M )

for all I 2 SentT
M , association rules

j � y 2 SentT
AR and data matrices M 2 MT

such that Is4 f tConsequenceM(I ;j � y;M ) = 1
if rule j � y can be considered as a con-
sequence of I in data matrix M and
Is4 f tConsequenceM(I ;j � y;M ) = 0 oth-
erwise; Is4 f tConsequenceM(I ;j � y;M ) is
analogous to Is4 f tConsequence(I ;j � y;M ),
see section 4.4.
We give a very simple example of a formula

from SentT
M . It is formula Fr�0:9(A1(1)) saying

that at least 90 per cent of rows of data ma-
trix satisfy basic Boolean attribute A1(1). It is
ValMT (Fr�0:9(A1(1));M ) = 1 if at least 90 per cent
of rows of M satisfy basic Boolean attribute A1(1),
otherwise it is ValMT (Fr�0:9(A1(1));M ) = 0.

Function ConsMT
AR can be seen as a family of

functions ConsMT
� where � is a 4ft-quantifier of

language LT
AR , it is analogous to ConsT

� . Then
ConsMT

AR (Fr�0:9(A1(1));M ) is defined as a union[
fConsMT

� (Fr�0:9(A1(1));M ) j� belongs to LT
AR g .

We outline function ConsMT
)p;B

for 4ft-quantifier
)p;B of founded implication (see table 1). We can
define ConsMT

)0:9;B
(Fr�0:9(A1(1));M ) as a set of all

rules j)p;B A1(1) where 0:85� p� 0:95 and B� n
20

where n is the number of rows of data matrix M .

However, boundaries of p and B should be determined
by a domain expert.

Is4 f tConsequenceM(Fr�0:9(A1(1));j � y;M )
is computed in two steps, see also sec-
tion 4.4. In the first step we compute set
L = ConsMT

AR (Fr�0:9(A1(1));M ) of rules r � s

which can be considered as atomic consequences
of Fr�0:9(A1(1)) in M . In the second step we
test correctness of deduction rule r�s

j�y
for each

r � s 2 L. If there is such a correct rule, then
j� y is considered as consequence of Fr�0:9(A1(1))
in M and Is4 f tConsequenceM(I ;j � y;M ) = 1.
Otherwise Is4 f tConsequenceM(I ;j� y;M ) = 0.

Detailed elaboration of the outlined approach is a
subject of current research.

5.4 Global Analytical Reports

The goal is to get answers to various global analyti-
cal questions using local analytical reports presented
on Internet. The answers to global analytical ques-
tions will be presented as global analytical reports. It
is further assumed that such global analytical reports
will be used as input for answering additional global
analytical reports. It means that the global analytical
reports must be again treated as formal objects.

The global analytical questions are formulated on
the basis of available local analytical reports. Thus
the research of global analytical questions must start
with preparing variety of local analytical questions
and corresponding analytical reports. An example of
local analytical question together with a sketch of its
solution by means of 4ft-Discoverer are in section 5.2.
Additional examples of local analytical questions are
in (Rauch and Šimůnek, 2009).

Each local analytical question leads to several
global analytical question. We denote as LAQ1 the lo-
cal analytical question introduced in section 5.2: Are
there any association rules which can be considered
as exceptions from the generally accepted fact A "" B
in given data matrix M ? We assume that the excep-
tion concerns a subset of objects defined by attributes
C1; : : : ;CL concerning data matrix M . Then we can
formulate e.g. the following global analytical ques-
tions GAQ1 and GAQ2:
GAQ1: Which data matrices are similar to the given

data matrix M what concerns solutions of LAQ1?
GAQ2: Which data matrices differ from the given

data matrix M what concerns solutions of LAQ1?
Lot of additional global analytical questions can

be formulated. The core problem related to solution
of such global analytical questions is comparison of
results concerning two data matrices MA and MB.
There are two possibilities:
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1. Both MA and MB belong to one 4ft-Discoverer
4 f tDT .

2. MA belongs to 4ft-Discoverer 4 f tDTA and MB be-
longs to 4ft-Discoverer 4 f tDTB where TA 6= TB.

There is a research effort to solve problem of compar-
ison of MA and MB for both possibilities. However
its description is out of the scope of this paper.

6 CONCLUSIONS

Logic of discovery was introduced in (Hájek and
Havránek, 1978) and modified in (Rauch, 2010). The
modification resulted into a system 4ft-Discoverer
4 f tDT which is a framework for mining associa-
tion rules and application of domain knowledge in
the mining process. We have briefly introduced the
4ft-Discoverer 4 f tDT and then we have shown that it
can be enhanced for needs of the SEWEBAR project
which aims to disseminating results of data mining in
the form of analytical reports answering reasonable
analytical questions.

We have identified several research problems re-
lated to this enhancement and outlined possibilities
of their solution. Further work concerns solution of
these problems.
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Rauch, J. and Šimůnek, M. (2009). Dealing with back-
ground knowledge in the sewebar project. In Berendt,
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Železný, F., editors, Knowledge Discovery Enhanced
with Semantic and Social Information, volume 220 of
Studies in Computational Intelligence, pages 89–106.
Springer.

Suzuki, E. (2004). Discovering interesting exception rules
with rule pair. In In J. Fuernkranz (Ed.), Proceedings
of the ECML/PKDD Workshop on Advances in Induc-
tive Rule Learning, pages 163–178.

LOGIC OF DISCOVERY, DATA MINING AND SEMANTIC WEB - Position Paper

351


