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Abstract: Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evolution
and molecular genetics in simplified form. These random search algorithms can be theoretically described
with the help of a deterministic dynamical system model by which the stochastic trajectory of a population
can be characterized using a deterministic heuristic function and its fixed points. For practical problem sizes
the determination of the fixed points is unfeasible even for the simple genetic algorithm (SGA). The recently
introduced simple genetic algorithm witlrselection allows the analytical calculation of the unique fixed
points of the dynamical system model. In this paper, an overview of the theoretical results for the simple ge-
netic algorithm witho-selection and its corresponding intrinsic system model is given. Further, the connection
to the fixed point graph is illustrated which describes the asymptotic behavior of the simple genetic algorithm.
In addition to the theoretical analysis experimental results for the simple genetic algorithm-géibction,
uniform crossover and bitwise mutation are presented.

1 INTRODUCTION with a-selection it is further possible to formulate an
intrinsic system model which is compatible with the
As specific instances of random heuristic search equivalence relation imposed by schemata. The in-
(RHS), genetic algorithms mimic biological evolu- trinsic system model provides a means to analyze the
tion and molecular genetics in simplified form (Mose, genetic algorithm’s exploitation and exploration of
1999b). Genetic algorithms (GA) process popula- the search space due to the mixing operation caused
tions of individuals which evolve according to selec- by crossover and mutation irrespective of the fitness
tion and genetic operators like crossover and muta- function.
tion (Holland, 1992). The algorithm’s stochastic dy- This paper gives an overview of the theoretical re-
namics can be described with the help of a dynamical sults for the simple genetic algorithm withselection
system model introduced bydéEet al. (Reeves and  and its intrinsic system model. It further outlines the
Rowe, 2003; Vose, 1999b; Vose, 1999a). The pop- connection to the fixed point graph which describes
ulation trajectory is attracted by the fixed points of the asymptotic behavior of the simple genetic algo-
an underlying deterministic heuristic function which rithm. In addition to the theoretical analysis experi-
also yields the expected next population. However, mental results are presented. The paper is organized
even for moderate problem sizes the calculation of the as follows. The simple genetic algorithm with
fixed points is difficult. selection is described as a specific instance of random
The simple genetic algorithm (SGA) with- heuristic search in Sect. 2 based on the notion of the
selection recently introduced in (Neubauer, 2009; best individual randomly mating with other individ-
Neubauer, 2008a; Neubauer, 2008c; Neubauer,uals in the current population. In Sect. 3 the corre-
2008b) allows to explicitly derive the fixed points of sponding dynamical system model is derived based
the heuristic function. In this selection scheme, the on which the intrinsic system model of the simple ge-
best ora-individual is mated with individuals ran-  netic algorithm with-selection is formulated in Sect.
domly chosen from the current population with uni- 4. Simulation results for the simple genetic algorithm
form probability. For the simple genetic algorithm with a-selection, uniform crossover and bitwise mu-
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tation are presented showing a close agreement be-

tween theory and experiment. The fixed point graph
of the simple genetic algorithm witl-selection is il-
lustrated in Sect. 5. A brief conclusion and an outline
of future research is given in Sect. 6.

2 SIMPLE GENETIC
ALGORITHM WITH
a-SELECTION

In this section, the simple genetic algorithm with

selection, uniform crossover and bitwise mutation is
described following the notation and definition of the
simple genetic algorithm (SGA) in (Vose, 1999b). It

is assumed that the genetic algorithm is used for the

maximization of a fitness functioh: Q — R which is
defined over the search spae= Z5 = {0,1}* con-
sisting of binary/-tuples(ag, ay, . . .,a,-1).

Each binary /-tuple (ap,a1,...,a/-1)
apay--.a—1 Will, be identified with the .integer
a=a-2"T+a-224+ ... +a._1-2° leading
to the search spac&® = {0,1,...,n— 1} with
cardinality |Q| = n = 2. The fitness values are
given by f(a) = fa. Based on the binary number
representation the bitwise modulo-2 additiar b,
bitwise modulo-2 multiplicatiora® b and bitwise
binary complementa are defined. Vice versa,
the integera € Q is viewed as a column vector
(ag,ay,...,a_1)". The all-one/-tuple 1 corresponds
to the integem — 1 = 2/ — 1. The indicator function
is defined byi = j]=1ifi=jand Oifi # j.

2.1 Algorithm

Thesimple genetic algorithm withi-selectionworks
over populationd(t) defined as multisets of indi-
vidual binary/-tuplesa(t) € Q. For the creation of
offspring individuals in each generatibigenetic op-
erators like crossoveqg and mutationu, are applied
to parental individuals (see Fig. 1).

2.2 a-Sdection

For thea-selectionscheme let

b(t) =argmaxX fi :i e P(t)} (1)

be the best individual on-individual in the current
populationP(t). In the simple genetic algorithm with
a-selection then-individual b(t) is mated with indi-
viduals randomly chosen from the current population
P(t) with uniform probabilityr =1,
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t:=0;
initialize populationP(0);
while end of adaptatiog truedo
selecta-individualb(t) as first parent;
for the creation of offspringdo
select second pareaft) randomly;
apply crossovexq and mutatiornlg

a(t+1) := po (Xa (b(t),c(t)));

end
increment :=t+1;
end
Figure 1: Simple genetic algorithm witl-selection

(Neubauer, 2009; Neubauer, 2008a; Neubauer, 2008c;
Neubauer, 2008b).

2.3 Mixing

The crossoveroperatorxg : Q x Q — Q randomly
generates an offspringtuple a = (ag,a1,..-,a¢-1)
according toa = xgo(b,c) with crossover probabil-
ity x from two ¢-tuplesb = (bg,bs,...,b,—1) and
c=1(cp,C1,..-,Cr_1). With the crossover mask e Q
the/-tuples

a=beamomec (2)

or

a=bmemec )

are generated one of which is chosen as offspaing
with equal probability 2. For uniform crossover
the crossover mashkn is randomly chosen fronf
according to the probability distribution vectgr=
(X0, X1, ---»Xn-1)" with (Vose, 1999b)

Xm{

The bitwise mutation operator g : Q — Q,
which randomly flips each bit of thé-tuple a =
(ap,aq,...,a,—1) with mutation probabilityy, is de-
fined with the help of the mutation maske Q ac-
cording topg(a) = a® m. The mutation maskn is
randomly chosen fror® according to the probability
distribution vectop = (Uo, My, ..., ka—1) " with (Vose,
1999b)

m=20
m>0

1-x+x-2°",

X- 2—€ , (4)

(—1™m

.
b= pt ™ (1— ) : (5)
A typical value of the mutation probability jg~ %

3 DYNAMICAL SYSTEM MODEL

In the dynamical system modé€Vose, 1999b) the
dynamics of the simple genetic algorithm is com-
pactly formulated by defining the population vector
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p = (Po,P1,---,Pn-1)". Each component Because of the corresponding mean quadratic devia-
tion
1
& E(It(m -6 (PIP =7 (1-l6 @I?) @D

gives the proportion of the elemdre Q in the current
populationP. The population vectop is an element  the RHST behaves like the deterministic dynamical

of the simplex system model in the limit of infinite populations with
r — o. As illustrated by experimental evidence the
i RHSt shows punctuated equilibria, i.e. phases of rel-
= n-p > =
A {p ceRp=2 0/\%} b 1} - ative stability nearby a fixed poimd = G (w) of the

) ) ) heuristic functiong disrupted by sudden transitions
For a population of sizethe nuTber of possible pop- {5 another dynamical equilibrium near another fixed
Ulat|0n vectorsis g|Ven b¢+:7 ) |n the I|m|t Of n- point_ We Ca” th|s théD(ed point hypothesief ge_
finite populations withr — o the population vectors  petic algorithms.
are dense in the simpléx For simplicity we will take
the simplex\ as the defining region of the population
vectorp which is strictly valid only for large popula-
tions withr >> 1 in the sense of ainfinite population
model In the simple genetic algorithm witti-selection the

The simple genetic algorithm is now described as a-individual

aninstance of RH%: A — A according t(t+1) = )
T(p(t)) with T depending on the random selection and b=argmaxfi :i e QApi > 0} (12)
genetic operators. ~ As outlined in (Vose, 1999b)
can be equivalently represented by a suitable heuristic
functiong : A — A which for a given population vec-
tor p yields the probability distributior; (p). This
probability distribution

G (p); = Pr{individuali is sampled fronQ2} (8)

is used to generate the next populatdt+- 1) in gen-
erationt + 1 from the populatiop(t) in generatiort
as illustrated in Fig. 2. The transition probabilities of The probability distributions for crossover, and
the RHST are given by the formula (Vose, 1999b) mutationpl lead to

3.1 Heuristic

is selected as the first parent for creation of a new off-
spring, whereas the second parentis chosen uniformly
at random from the current population according to
the probability distributiorp; overQ with j € Q. The
heuristic functiong (p) follows to

G (p)i = ZQ pi-Pba(Xa(bj) =i} . (13)
je

rgi . .
i Pr b =ly= 14
ie v w2 beouatie j=ieV .
uveQ 2
P(t) 1 p(t+1) By defining then x n mixing matrix(Mose, 1999b)
//’ Mij=y u\,~X“+XU~[i®u@U®j =v] (15)
- uveQ 2
g -~ '
///’/ sample inQ this yields P{pq (Xa(b,j)) =i} = Migp,ie; and fi-
g nally
G (p(t)) G (p)i = 20 Pj -Misbie) - (16)
Figure 2: Simple genetic algorithm as RR®ith heuristic 1
functiong. With the permutation matrixop); ; = [i & j = b] and
the twist (M*); ; = Mg of the symmetric mixing

The trajectoryp, T(p), T°(p), ... approximately  matrix M = MT the new population vector is given
follows the trajectonp, G (p), G2(p), ... of the de- by

terministic dynamical system defined by the heuristic "
functiong with ‘q =G (p)=0p-M ~0b'p‘ - (17)

E{t(p)} =6 (p) . (10) This dynamical system modslillustrated in Fig. 3.
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Figure 3: Dynamical system model of the simple genetic
algorithm witha-selection (Neubauer, 2008a).

3.2 Mixing Matrix

The calculation of the mixing matriM can be carried
out efficiently with the help of the WLsH transform
(Vose and Wright, 1998). For a mattfiA the WALSH
transform isM = W -M - W with the n x n WALSH
matrix\W ; = n~%2. (—=1)""i. The WALSH matrixW
is symmetric and orthogonal, i.8V-1 =WT =W.

The WALSH transform of a vectov yieldsV =W -v.
In Fig. 4 the WALSH matrix W is illustrated forn =
64.

26 =

Figure 4: lllustration of the WLSH matrixW for n= 25 =
64.

For crossover and bitwise mutation theaV¢H
transform of the mixing matris is given by (Vose,
1999b)

Miyj = [i®j :O]~
(12w (D
2

(18)

(Xkasi +Xkasj)

ke QT@JT

with B
Q={ieQ:i®k=0}. (29)

Due to the factofi @ j = 0] the componentsf; ; are
nonzero only ifi ® j = 0 or j € Q;, respectively. The
WALSH transform of the twist of the mixing matrix
can be calculated from
ETA
(M)

= Miojj - (20)
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4 INTRINSIC SYSTEM MODEL

The matrixoy, - M* - oy, of the dynamical system model
of the simple genetic algorithm witbi-selection in
Eq. (17) depends on the mixing mati and the
a-individual b. Because oby,* = oy, this yields the
equivalent formulation

|

The permuted population vecta,p develops ac-
cording to the matrixM* which is independent of
the a-individual b. The matrixM* defines thein-
trinsic system modelf the genetic algorithm witlx-
selection (Neubauer, 2008a).

(21)

4.1 Fixed Point

The fixed points of the intrinsic system model are
obtained from the eigenvectors bf* to eigenvalue

A=1,i.e.
: (22)

The fixed points of the heuristic functian of the dy-
namical system model follow from the permutation
opw for a givena-individual b. For the fixed point
analysis of the dynamical system model it therefore
suffices to analyze the intrinsic system model shown
in Fig. 5.

p—» M* —> q

Figure 5: Intrinsic system model of the genetic algorithm
with a-selection (Neubauer, 2008a).

To this end, the WLSH transform of both sides of
the equatiorg = M* - p is taken yielding

g=W-q=W-M*W-W.-p=M".p . (23)
For an eigenvectov with eigenvalueA it follows
M*.v = A-v and equivalentiM*" .V = A -V, i.e. the
matrix M* and its WALSH transformM*" have the
same eigenvalues with eigenvectors which are also re-
lated by the VKLSH transform.

For crossover and mutation theAWsH transform
of the mixing matrix fulflllsMIJ i®j=0],ieMis
separative M*" = M"** is a lower triangular matrix
the spectrum of which is given by the first column of
M (Vose, 1999b). Since the spectrumMf and its
WALSH transformM*" are the same this yields the
eigenvalues

Ai= (M*A)i,i = I\ﬁo,i . (24)
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For crossover and bitwise mutation the eigenvalues p(t) . p(t+1)
are given by ® >
121" /
Ai = % % (Xk+Xkei) - (25) Ob(t) /
KED; /
i /
Y /
Because olg =1 and o /
/
1 1 /
O<A <= — - 26 * /
SAS5-H<3 (26) M Y,
for 1 <i < n-—1 there exists a single eigenvector ) 4 //
which is a unique fixed point of the intrinsic system ® 7 sample inQ
model. For uniform crossover the eigenvalues are ob- 7/
tained from Op(t) /
/
ot [y o1 17X v/
Ai = (1—2p) (x 2+ — ) (27) ’%

for 1 <i<n— 1. The fixed points of the heuristic Tb(t)M" Ty P(1)
function g of the simple genetic algorithm with- Figure 6: Simple genetic algorithm withselection as RHS

selection are obtained from the permutatipmo for a T with intrinsic system mode\l*.

givena-individualb. According to thdixed point hy-

pothesighe population will stay near this fixed point p(t) . p(t+1)

Op W and converge to a new fixed point if a better |

individual is found. >
The unique fixed pointo of the intrinsic system -

model can be determined explicitly with the help of () ® -

the WALSH transform. Due to the relatio® = M*" - e

® and the lower triangular matri¥*" the WALSH

transform of the fixed point can be recursively calcu-

lated according to Ob(t)

1 it w
—— - § Migj,j- (28)
1— Mo, J;

“= Figure 7: Simple genetic algorithm withrselection as RHS
T with unique fixed point.

for 1 <i < n-— 1 starting with
4.2 Convergence

o =n"Y? (29)

The matrixM* defining the intrinsic system model of
the simple genetic algorithm with-selection has the
real eigenvaluedo =1 and 0< \j < 3 —p< 3 for
1<i<n-—1. The correspondingtRDAN canonical
form of M* is given by

which ensureS .o w = 1. The unique fixed point
w is then obtained via the inverseANSH transform
w=W-Q.

The transition in one generatidnfrom popula-
tion vectorp(t) to population vectop(t + 1) of the Lrs
random heuristic searchin Fig. 2 can be detailed J=S"M'S. (30)
for the simple genetic algorithm with-selection as ~ This matrix J consists of simple JRDAN sub-
shown in Fig. 6. Under the assumption of tireed matricesJy, (Ai) along the main diagonal and zeros
point hypothesidor the intrinsic system model the elsewhere, i.e.
permuted population vectar,p(t) will stay near T
the unique fixed pointo. The( E)o(pz;lation in gener- _J - dlag(‘_]vo_()m)"]_vl()\l)"”’JVHO\K_l)) (31)_
ationt + 1 is therefore approximately sampled from Wlth.th.e.K distinct eigenvalued; each of algebraic
the search spac@ according to the probability dis- Multiplicity vi. The n columnss; of the DRDAN
tribution oy, with time-independent fixed poinb canonical formJ form a basis, i.e. the permuted pop-

anda-individualb(t) as illustrated in Fig. 7. ulation vector can be formulated as follows
n-1
Oty P(t) = ) ¢j(t)-sj . (32)
v ;o
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The trajectory of the permutated population vec-
tor op) p(t) can be obtained from the intrinsic sys-
tem model of the genetic algorithm witir-selection
according to

Oty P(t) = (M*)" - G0 P(0)

Using the expansion of this vector in the basis formed
by the columns of the@RDAN canonical form] this
leads to (Mose, 1999h)

(33)

Opt) P(t) = (34)
K—1Uj11—1 min{t,j—u; } t ek
S; - AT ~C',k(0)
iZO J=ZU| : kZO <k> I J
with
i—1
Vi=S V. (35)
=3

The convergence of the permuted population vec-
tor oty P(t) to the unique stable fixed poiat of the
intrinsic system model of the simple genetic algo-
rithm with a-selection is determined by the eigenval-
uesA;. Because of the single eigenvaluig= 1 with
algebraic multiplicityvg = 1 and thereforaeg = 0,
v1 = 1 it follows

Op(t) P(t) = So- Co(0) + (36)
K—1Viy1—1  min{t,j—u;}

520 5 (e

for t > 1. With the remaining eigenvalues for

1 <i < n—1the convergence properties of the sim-
ple genetic algorithm witl-selection can be charac-
terized by introducing théme constants; according

to

AN =gt/ (37)
leading to
1 2
= <
U= ey S Taan <2 (38)

by taking into account & Aj < 3 —p< 3. Due to this
upper bound on the time constantfor 1 <i<n-1
the permuted population vectog, p(t) rapidly con-
verges to the unique stable fixed painbf the intrin-
sic system model of the simple genetic algorithm with
a-selection.

4.3 Experimental Results
In this section, the ONEMAX problem with fitness

function

fi=1Ti (39)
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is considered, i.ef; denotes the number of 1's in the
binary representation o Q. A simple genetic algo-
rithm with a-selection using uniform crossover, bit-
wise mutation and random initial population is used
with the strategy parametefs= 10, n = 2/ = 1024,

X =0.75,u= ¢~ andr = 100. The unique fixed point
w of the intrinsic system model is shown in Fig. 8.

0.25

0.2

0.1

0.05f

0

0 100 200 300 400 500

600 700 800 900 1000

Figure 8: Fixed point of the intrinsic system model of the
simple genetic algorithm with-selection.

The EucLIDean distance of the simulated and per-
muted population vectasy,, p(t) in generatiort to
the fixed pointw is given by

|Gty P(t) — w|| = \/% ((Ub(t) p(t)); — 031)2

(40)
In Fig. 9 this BucLIDean distance is shown for one
simulation run. The permuted population vector
O P(t) rapidly converges to the unique fixed point
w of the intrinsic system model of the simple ge-
netic algorithm witha-selection and stays close to
this fixed point.

5 FIXED POINT GRAPH

The stable fixed points of the simple genetic algorithm
with a-selection are given by

Wp = OpW (41)

with the unique fixed pointv of the intrinsic system
model and € Q. As shown in Sect. 4.3 the trajectory
of the simple genetic algorithm with-selection stays
near the fixed pointeyw according to thdixed point
hypothesis

We will now formulate the connection of the dy-
namical system model and its fixed points to the fixed
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Figure 9: EucLIDean distancéoy,) p(t) — w|| over gener-
ationt for the simple genetic algorithm with-selection.

Graph

fixed pointsF with weights
Pw.w; =inf{|p| : pis a path fromw tow;} . (45)

For infinite population size& — « the steady state
distribution of the simple genetic algorithm as RHS
T converges to the steady state distribution of the
Markov chain ¢ over 7. For the determination of
this steady state distribution we consider the so-called
tributary. Thetributary Ty is defined as the tree con-
taining every vertex off with all its edges pointing
towards the rooty. The cost of the tributanyy is
given by the sum of its edge weiglgig, ;. As shown
by VosEkin (Vose, 1996; Vose, 1999b) for an infinite
population size — o the steady state distribution of
the simple genetic algorithm is given by the roptof
theminimum cost tributary T(provided it exists).

Due to the simple structure of the dynamical sys-

point graph which describes the asymptotic behavior tem model of the simple genetic algorithm with
of the simple genetic algorithm (Vose, 1999b). Due selection and its stable fixed points = opw future
to the nature of this paper as a position paper, the fol- research will focus on the derivation of this steady
lowing is more speculative than the preceding results. state distribution for the simple genetic algorithm

To this end, letr_be the set of fixed pointsy, = opw
withbe Q, i.e.

7 o= {001,001}
= {oow,01W,...,0n_10} .

According to (Vose, 1996; Vose, 1999b) the RHS
T can be modeled by a meta leveladkov chainc¢
over the fixed pointsy = opw. Letp = po,P1,---, P
be a path of length of population vectors in the sim-
plexA. The correspondingostof this path is defined
as

(42)

|
|p| = Z Ap_1.px (43)
k=1

with

(44)

Goq = 2 e (@ ?E»k)

Figure 10: Fixed point graph of the simple genetic algo-
rithm with a-selection as RHS.

Thefixed point graptshown in Fig. 10 is defined

as the complete directed graph on the set of stable

with a-selection. In view of the rapid convergence of
the simple genetic algorithm with-selection, paths
p = wi, p,w; of lengthl = 2 from fixed poiniw = ojw
to fixed pointwj = g;jw with interior pointp € A are
considered. The corresponding cost of this path is
given by

[P = Gy p+ Op,oy
or equivalently

_ ) Pk
ph= 2 () @
NS (@j)y
¥ 2 e '”<<g<p>>k)
By taking into account
G (o)) = (), = Wik (47)
and
(Wj)y = Wjak (48)
if follows
Pk Wjak
= Jn [ 22X o
PI= 2™ n(tﬂek)+gﬂw‘@k n((g(m)k)
(49)

Under the simplifying assumption of paths =
wy,p,w; of length 2 the weights of the fixed point
graph are then approximately given by

. Pk
. =Iinf ‘Jn| — ) +
s {gﬂpk (%k)
Wjek

2 ((6 (p)>k) Pe A}

(50)
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with
G (Pk= > Pj Mbak jek (51)
k jeZ'}J jo
and

b=argmaX{fi:ie QAp >0} . (52)

Future research will focus on the analytical derivation
of these weightspwi,wj and the determination of the
minimum cost tributaryl, leading to the steady state
distribution wy, of the simple genetic algorithm with
a-selection.

6 CONCLUSIONS

The intrinsic system model for the simple genetic al-
gorithm witha-selection simplifies the analysis of the
dynamical system model of genetic algorithms. |t
is defined by the mixing matrid and enables the
derivation of the unique fixed poinb. The simpli-
fications are gained because the fitness function
hidden from the mathematical formulation by making
use of thea-individual b. Sinceb enters the dynam-
ical system model via a permutatiog according to
Op - M* - 0y the intrinsic system model can be formu-
lated with the help of the matrik*.

The intrinsic system model provides a means to
analyze the genetic algorithm’s exploitation and ex-
ploration of the search spac® irrespective of the
fitness functionf. This model is compatible with
the equivalence relation imposed by schemata as
shown in (Neubauer, 2008a) by explicitly deriving
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the coarse-grained system model for a given schemata

family. Experimental results for the simple genetic
algorithm with a-selection, uniform crossover and
bitwise mutation presented in this paper show close
agreement to the theoretical predictions with respect
to the rapid convergence of the permuted population
vectoray p to the unique fixed poinb obtained from
the intrinsic system model.

It is further conjectured that the structure of the
dynamical system model of the simple genetic algo-
rithm with a-selection and its intrinsic system model
simplify the determination of the steady state distri-
butionwy, based on the fixed point graph and the min-
imum cost tributaryT,. The analysis of the fixed
point graph and the analytical derivation of its weights
Poy o Will be the focus of future research.
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