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Abstract: Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evolution
and molecular genetics in simplified form. These random search algorithms can be theoretically described
with the help of a deterministic dynamical system model by which the stochastic trajectory of a population
can be characterized using a deterministic heuristic function and its fixed points. For practical problem sizes
the determination of the fixed points is unfeasible even for the simple genetic algorithm (SGA). The recently
introduced simple genetic algorithm withα-selection allows the analytical calculation of the unique fixed
points of the dynamical system model. In this paper, an overview of the theoretical results for the simple ge-
netic algorithm withα-selection and its corresponding intrinsic system model is given. Further, the connection
to the fixed point graph is illustrated which describes the asymptotic behavior of the simple genetic algorithm.
In addition to the theoretical analysis experimental results for the simple genetic algorithm withα-selection,
uniform crossover and bitwise mutation are presented.

1 INTRODUCTION

As specific instances of random heuristic search
(RHS), genetic algorithms mimic biological evolu-
tion and molecular genetics in simplified form (Vose,
1999b). Genetic algorithms (GA) process popula-
tions of individuals which evolve according to selec-
tion and genetic operators like crossover and muta-
tion (Holland, 1992). The algorithm’s stochastic dy-
namics can be described with the help of a dynamical
system model introduced by VOSEet al. (Reeves and
Rowe, 2003; Vose, 1999b; Vose, 1999a). The pop-
ulation trajectory is attracted by the fixed points of
an underlying deterministic heuristic function which
also yields the expected next population. However,
even for moderate problem sizes the calculation of the
fixed points is difficult.

The simple genetic algorithm (SGA) withα-
selection recently introduced in (Neubauer, 2009;
Neubauer, 2008a; Neubauer, 2008c; Neubauer,
2008b) allows to explicitly derive the fixed points of
the heuristic function. In this selection scheme, the
best orα-individual is mated with individuals ran-
domly chosen from the current population with uni-
form probability. For the simple genetic algorithm

with α-selection it is further possible to formulate an
intrinsic system model which is compatible with the
equivalence relation imposed by schemata. The in-
trinsic system model provides a means to analyze the
genetic algorithm’s exploitation and exploration of
the search space due to the mixing operation caused
by crossover and mutation irrespective of the fitness
function.

This paper gives an overview of the theoretical re-
sults for the simple genetic algorithm withα-selection
and its intrinsic system model. It further outlines the
connection to the fixed point graph which describes
the asymptotic behavior of the simple genetic algo-
rithm. In addition to the theoretical analysis experi-
mental results are presented. The paper is organized
as follows. The simple genetic algorithm withα-
selection is described as a specific instance of random
heuristic search in Sect. 2 based on the notion of the
best individual randomly mating with other individ-
uals in the current population. In Sect. 3 the corre-
sponding dynamical system model is derived based
on which the intrinsic system model of the simple ge-
netic algorithm withα-selection is formulated in Sect.
4. Simulation results for the simple genetic algorithm
with α-selection, uniform crossover and bitwise mu-
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tation are presented showing a close agreement be-
tween theory and experiment. The fixed point graph
of the simple genetic algorithm withα-selection is il-
lustrated in Sect. 5. A brief conclusion and an outline
of future research is given in Sect. 6.

2 SIMPLE GENETIC
ALGORITHM WITH
α-SELECTION

In this section, the simple genetic algorithm withα-
selection, uniform crossover and bitwise mutation is
described following the notation and definition of the
simple genetic algorithm (SGA) in (Vose, 1999b). It
is assumed that the genetic algorithm is used for the
maximization of a fitness functionf : Ω→R which is
defined over the search spaceΩ = Z

ℓ
2 = {0,1}ℓ con-

sisting of binaryℓ-tuples(a0,a1, . . . ,aℓ−1).
Each binary ℓ-tuple (a0,a1, . . . ,aℓ−1) =

a0a1 . . .aℓ−1 will be identified with the integer
a = a0 · 2ℓ−1 + a1 · 2ℓ−2 + . . . + aℓ−1 · 20 leading
to the search spaceΩ = {0,1, . . . ,n − 1} with
cardinality |Ω| = n = 2ℓ. The fitness values are
given by f (a) = fa. Based on the binary number
representation the bitwise modulo-2 additiona⊕ b,
bitwise modulo-2 multiplicationa⊗ b and bitwise
binary complementa are defined. Vice versa,
the integera ∈ Ω is viewed as a column vector
(a0,a1, . . . ,aℓ−1)

T. The all-oneℓ-tuple1 corresponds
to the integern−1= 2ℓ−1. The indicator function
is defined by[i = j] = 1 if i = j and 0 if i 6= j.

2.1 Algorithm

Thesimple genetic algorithm withα-selectionworks
over populationsP(t) defined as multisets ofr indi-
vidual binaryℓ-tuplesa(t) ∈ Ω. For the creation of
offspring individuals in each generationt genetic op-
erators like crossoverχΩ and mutationµΩ are applied
to parental individuals (see Fig. 1).

2.2 α-Selection

For theα-selectionscheme let

b(t) = argmax{ fi : i ∈ P(t)} (1)

be the best individual orα-individual in the current
populationP(t). In the simple genetic algorithm with
α-selection theα-individual b(t) is mated with indi-
viduals randomly chosen from the current population
P(t) with uniform probabilityr−1.

t := 0;
initialize populationP(0);
while end of adaptation6= truedo

selectα-individualb(t) as first parent;
for the creation ofr offspringdo

select second parentc(t) randomly;
apply crossoverχΩ and mutationµΩ

a(t +1) := µΩ (χΩ (b(t),c(t)));
end
incrementt := t +1;

end

Figure 1: Simple genetic algorithm withα-selection
(Neubauer, 2009; Neubauer, 2008a; Neubauer, 2008c;
Neubauer, 2008b).

2.3 Mixing

The crossoveroperatorχΩ : Ω × Ω → Ω randomly
generates an offspringℓ-tuple a = (a0,a1, . . . ,aℓ−1)
according toa = χΩ(b,c) with crossover probabil-
ity χ from two ℓ-tuples b = (b0,b1, . . . ,bℓ−1) and
c= (c0,c1, . . . ,cℓ−1). With the crossover maskm∈ Ω
theℓ-tuples

a= b⊗m⊕m⊗ c (2)

or
a= b⊗m⊕m⊗ c (3)

are generated one of which is chosen as offspringa
with equal probability 2−1. For uniform crossover
the crossover maskm is randomly chosen fromΩ
according to the probability distribution vectorχ =
(χ0,χ1, . . . ,χn−1)

T with (Vose, 1999b)

χm =

{
1−χ+χ ·2−ℓ , m= 0

χ ·2−ℓ , m> 0
. (4)

The bitwise mutation operator µΩ : Ω → Ω,
which randomly flips each bit of theℓ-tuple a =
(a0,a1, . . . ,aℓ−1) with mutation probabilityµ, is de-
fined with the help of the mutation maskm∈ Ω ac-
cording toµΩ(a) = a⊕m. The mutation maskm is
randomly chosen fromΩ according to the probability
distribution vectorµ= (µ0,µ1, . . . ,µn−1)

T with (Vose,
1999b)

µm = µ1Tm · (1−µ)ℓ−1Tm . (5)

A typical value of the mutation probability isµ∼ 1
ℓ .

3 DYNAMICAL SYSTEM MODEL

In the dynamical system model(Vose, 1999b) the
dynamics of the simple genetic algorithm is com-
pactly formulated by defining the population vector
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p = (p0, p1, . . . , pn−1)
T. Each component

pi =
1
r ∑

j∈P
[ j = i] (6)

gives the proportion of the elementi ∈Ω in the current
populationP. The population vectorp is an element
of the simplex

Λ =

{
p ∈ R

n : pi ≥ 0∧ ∑
i∈Ω

pi = 1

}
. (7)

For a population of sizer the number of possible pop-
ulation vectors is given by

(n+r−1
r

)
. In the limit of in-

finite populations withr → ∞ the population vectors
are dense in the simplexΛ. For simplicity we will take
the simplexΛ as the defining region of the population
vectorp which is strictly valid only for large popula-
tions withr ≫ 1 in the sense of aninfinite population
model.

The simple genetic algorithm is now described as
an instance of RHSτ : Λ → Λ according top(t+1) =
τ(p(t)) with τ depending on the random selection and
genetic operators. As outlined in (Vose, 1999b)τ
can be equivalently represented by a suitable heuristic
functionG : Λ → Λ which for a given population vec-
tor p yields the probability distributionG (p). This
probability distribution

G (p)i = Pr{individual i is sampled fromΩ} (8)

is used to generate the next populationp(t+1) in gen-
erationt +1 from the populationp(t) in generationt
as illustrated in Fig. 2. The transition probabilities of
the RHSτ are given by the formula (Vose, 1999b)

Pr{τ(p) = q}= r! ∏
i∈Ω

G (p)rqi
i

(rqi)!
. (9)

p(t) p(t +1)

G (p(t))

G

τ

sample inΩ

Figure 2: Simple genetic algorithm as RHSτ with heuristic
functionG .

The trajectoryp, τ(p), τ2 (p), . . . approximately
follows the trajectoryp, G (p), G 2 (p), . . . of the de-
terministic dynamical system defined by the heuristic
functionG with

E{τ(p)}= G (p) . (10)

Because of the corresponding mean quadratic devia-
tion

E{‖τ(p)−G (p)‖2}=
1
r
·
(

1−‖G (p)‖2
)

(11)

the RHSτ behaves like the deterministic dynamical
system model in the limit of infinite populations with
r → ∞. As illustrated by experimental evidence the
RHSτ shows punctuated equilibria, i.e. phases of rel-
ative stability nearby a fixed pointω = G (ω) of the
heuristic functionG disrupted by sudden transitions
to another dynamical equilibrium near another fixed
point. We call this thefixed point hypothesisof ge-
netic algorithms.

3.1 Heuristic

In the simple genetic algorithm withα-selection the
α-individual

b= argmax{ fi : i ∈ Ω∧ pi > 0} (12)

is selected as the first parent for creation of a new off-
spring, whereas the second parent is chosen uniformly
at random from the current population according to
the probability distributionp j overΩ with j ∈ Ω. The
heuristic functionG (p) follows to

G (p)i = ∑
j∈Ω

p j ·Pr{µΩ (χΩ(b, j)) = i} . (13)

The probability distributions for crossoverχΩ and
mutationµΩ lead to

Pr{µΩ (χΩ(b, j)) = i}= (14)

∑
u,v∈Ω

µv ·
χu+χu

2
· [b⊗u⊕u⊗ j = i ⊕ v] .

By defining then×n mixing matrix(Vose, 1999b)

Mi, j = ∑
u,v∈Ω

µv ·
χu+χu

2
· [i ⊗u⊕u⊗ j = v] (15)

this yields Pr{µΩ (χΩ(b, j)) = i} = Mi⊕b,i⊕ j and fi-
nally

G (p)i = ∑
j∈Ω

p j ·Mi⊕b,i⊕ j . (16)

With the permutation matrix(σb)i, j = [i ⊕ j = b] and
the twist (M∗)i, j = Mi⊕ j ,i of the symmetric mixing

matrix M = MT the new population vector is given
by

q = G (p) = σb ·M
∗ ·σb ·p . (17)

Thisdynamical system modelis illustrated in Fig. 3.
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p qσb M∗ σb

Figure 3: Dynamical system model of the simple genetic
algorithm withα-selection (Neubauer, 2008a).

3.2 Mixing Matrix

The calculation of the mixing matrixM can be carried
out efficiently with the help of the WALSH transform
(Vose and Wright, 1998). For a matrixM the WALSH

transform isM̂ = W ·M ·W with the n× n WALSH

matrixWi, j = n−1/2 · (−1)iT j . The WALSH matrixW
is symmetric and orthogonal, i.e.W−1 = WT = W.
The WALSH transform of a vectorv yields v̂ =W ·v.
In Fig. 4 the WALSH matrix W is illustrated forn=
26 = 64.

Figure 4: Illustration of the WALSH matrixW for n= 26 =
64.

For crossover and bitwise mutation the WALSH

transform of the mixing matrixM is given by (Vose,
1999b)

M̂i, j = [i ⊗ j = 0]· (18)

(1−2µ)1T(i⊕ j)

2 ∑
k∈Ωi⊗ j

(
χk⊕i +χk⊕ j

)

with
Ωk = {i ∈ Ω : i ⊗ k= 0} . (19)

Due to the factor[i ⊗ j = 0] the componentŝMi, j are
nonzero only ifi ⊗ j = 0 or j ∈ Ωi , respectively. The
WALSH transform of the twist of the mixing matrix
can be calculated from

(
M∗∧

)
i, j = M̂i⊕ j , j . (20)

4 INTRINSIC SYSTEM MODEL

The matrixσb ·M∗ ·σb of the dynamical system model
of the simple genetic algorithm withα-selection in
Eq. (17) depends on the mixing matrixM and the
α-individual b. Because ofσ−1

b = σb this yields the
equivalent formulation

σb q = M∗ ·σb p . (21)

The permuted population vectorσb p develops ac-
cording to the matrixM∗ which is independent of
the α-individual b. The matrixM∗ defines thein-
trinsic system modelof the genetic algorithm withα-
selection (Neubauer, 2008a).

4.1 Fixed Point

The fixed points of the intrinsic system model are
obtained from the eigenvectors ofM∗ to eigenvalue
λ = 1, i.e.

ω = M∗ ·ω . (22)

The fixed points of the heuristic functionG of the dy-
namical system model follow from the permutation
σb ω for a givenα-individual b. For the fixed point
analysis of the dynamical system model it therefore
suffices to analyze the intrinsic system model shown
in Fig. 5.

p qM∗

Figure 5: Intrinsic system model of the genetic algorithm
with α-selection (Neubauer, 2008a).

To this end, the WALSH transform of both sides of
the equationq = M∗ ·p is taken yielding

q̂ =W ·q =W ·M∗ ·W ·W ·p = M∗∧ · p̂ . (23)

For an eigenvectorv with eigenvalueλ it follows
M∗ ·v = λ ·v and equivalentlyM∗∧ · v̂ = λ · v̂, i.e. the
matrix M∗ and its WALSH transformM∗∧ have the
same eigenvalues with eigenvectors which are also re-
lated by the WALSH transform.

For crossover and mutation the WALSH transform
of the mixing matrix fulfillsM̂i, j ∝ [i⊗ j = 0], i.e.M̂ is
separative.M∗∧ = M∧∗∗ is a lower triangular matrix
the spectrum of which is given by the first column of
M̂ (Vose, 1999b). Since the spectrum ofM∗ and its
WALSH transformM∗∧ are the same this yields the
eigenvalues

λi =
(
M∗∧

)
i,i = M̂0,i . (24)
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For crossover and bitwise mutation the eigenvalues
are given by

λi =
(1−2µ)1Ti

2
· ∑

k∈Ωi

(χk+χk⊕i) . (25)

Because ofλ0 = 1 and

0≤ λi ≤
1
2
−µ<

1
2

(26)

for 1 ≤ i ≤ n−1 there exists a single eigenvectorω
which is a unique fixed point of the intrinsic system
model. For uniform crossover the eigenvalues are ob-
tained from

λi = (1−2µ)1Ti ·

(
χ ·2−1T i +

1−χ
2

)
(27)

for 1 ≤ i ≤ n− 1. The fixed points of the heuristic
function G of the simple genetic algorithm withα-
selection are obtained from the permutationσb ω for a
givenα-individualb. According to thefixed point hy-
pothesisthe population will stay near this fixed point
σb ω and converge to a new fixed point if a betterα-
individual is found.

The unique fixed pointω of the intrinsic system
model can be determined explicitly with the help of
the WALSH transform. Due to the relation̂ω = M∗∧ ·
ω̂ and the lower triangular matrixM∗∧ the WALSH

transform of the fixed point can be recursively calcu-
lated according to

ω̂i =
1

1− M̂0,i
·

i−1

∑
j=0

M̂i⊕ j , j · ω̂ j (28)

for 1≤ i ≤ n−1 starting with

ω̂0 = n−1/2 (29)

which ensures∑i∈Ω ωi = 1. The unique fixed point
ω is then obtained via the inverse WALSH transform
ω =W · ω̂.

The transition in one generationt from popula-
tion vectorp(t) to population vectorp(t + 1) of the
random heuristic searchτ in Fig. 2 can be detailed
for the simple genetic algorithm withα-selection as
shown in Fig. 6. Under the assumption of thefixed
point hypothesisfor the intrinsic system model the
permuted population vectorσb(t)p(t) will stay near
the unique fixed pointω. The population in gener-
ation t + 1 is therefore approximately sampled from
the search spaceΩ according to the probability dis-
tribution σb(t)ω with time-independent fixed pointω
andα-individualb(t) as illustrated in Fig. 7.

p(t) p(t +1)

σb(t)M
∗σb(t)p(t)

σb(t)

σb(t)

σb(t)

M∗

τ

sample inΩ

Figure 6: Simple genetic algorithm withα-selection as RHS
τ with intrinsic system modelM∗.

p(t) p(t +1)

σb(t)ω

ω

σb(t)

b(t)

τ

sample inΩ

Figure 7: Simple genetic algorithm withα-selection as RHS
τ with unique fixed pointω.

4.2 Convergence

The matrixM∗ defining the intrinsic system model of
the simple genetic algorithm withα-selection has the
real eigenvaluesλ0 = 1 and 0≤ λi ≤

1
2 −µ < 1

2 for
1≤ i ≤ n−1. The corresponding JORDAN canonical
form of M∗ is given by

J = S−1M∗S . (30)

This matrix J consists of simple JORDAN sub-
matricesJνi (λi) along the main diagonal and zeros
elsewhere, i.e.

J = diag
(
Jν0(λ0),Jν1(λ1), . . . ,Jνκ−1(λκ−1)

)
(31)

with the κ distinct eigenvaluesλi each of algebraic
multiplicity νi . The n columnss j of the JORDAN

canonical formJ form a basis, i.e. the permuted pop-
ulation vector can be formulated as follows

σb(t) p(t) =
n−1

∑
j=0

c j(t) · s j . (32)
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The trajectory of the permutated population vec-
tor σb(t) p(t) can be obtained from the intrinsic sys-
tem model of the genetic algorithm withα-selection
according to

σb(t) p(t) = (M∗)t ·σb(0)p(0) . (33)

Using the expansion of this vector in the basis formed
by the columns of the JORDAN canonical formJ this
leads to (Vose, 1999b)

σb(t) p(t) = (34)

κ−1

∑
i=0

υi+1−1

∑
j=υi

s j ·
min{t, j−υi}

∑
k=0

(
t
k

)
·λt−k

i ·c j−k(0)

with

υi =
i−1

∑
j=0

ν j . (35)

The convergence of the permuted population vec-
tor σb(t) p(t) to the unique stable fixed pointω of the
intrinsic system model of the simple genetic algo-
rithm with α-selection is determined by the eigenval-
uesλi . Because of the single eigenvalueλ0 = 1 with
algebraic multiplicityν0 = 1 and thereforeυ0 = 0,
υ1 = 1 it follows

σb(t) p(t) = s0 ·c0(0)+ (36)

κ−1

∑
i=1

υi+1−1

∑
j=υi

s j ·
min{t, j−υi}

∑
k=0

(
t
k

)
·λt−k

i ·c j−k(0)

for t ≥ 1. With the remaining eigenvaluesλi for
1 ≤ i ≤ n−1 the convergence properties of the sim-
ple genetic algorithm withα-selection can be charac-
terized by introducing thetime constantsτi according
to

λt
i = e−t/τi (37)

leading to

τi =−
1

ln(λi)
≤

2
1+2µ

< 2 (38)

by taking into account 0≤ λi ≤
1
2 −µ< 1

2. Due to this
upper bound on the time constantsτi for 1≤ i ≤ n−1
the permuted population vectorσb(t) p(t) rapidly con-
verges to the unique stable fixed pointω of the intrin-
sic system model of the simple genetic algorithm with
α-selection.

4.3 Experimental Results

In this section, the ONEMAX problem with fitness
function

fi = 1Ti (39)

is considered, i.e.fi denotes the number of 1’s in the
binary representation ofi ∈ Ω. A simple genetic algo-
rithm with α-selection using uniform crossover, bit-
wise mutation and random initial population is used
with the strategy parametersℓ = 10, n = 2ℓ = 1024,
χ= 0.75,µ= ℓ−1 andr = 100. The unique fixed point
ω of the intrinsic system model is shown in Fig. 8.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

i

ω
i

Figure 8: Fixed point of the intrinsic system model of the
simple genetic algorithm withα-selection.

The EUCLIDean distance of the simulated and per-
muted population vectorσb(t) p(t) in generationt to
the fixed pointω is given by

∥∥σb(t) p(t)−ω
∥∥=

√

∑
i∈Ω

((
σb(t) p(t)

)
i
−ωi

)2
.

(40)
In Fig. 9 this EUCLIDean distance is shown for one
simulation run. The permuted population vector
σb(t) p(t) rapidly converges to the unique fixed point
ω of the intrinsic system model of the simple ge-
netic algorithm withα-selection and stays close to
this fixed point.

5 FIXED POINT GRAPH

The stable fixed points of the simple genetic algorithm
with α-selection are given by

ωb = σbω (41)

with the unique fixed pointω of the intrinsic system
model andb∈ Ω. As shown in Sect. 4.3 the trajectory
of the simple genetic algorithm withα-selection stays
near the fixed pointsσbω according to thefixed point
hypothesis.

We will now formulate the connection of the dy-
namical system model and its fixed points to the fixed
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Figure 9: EUCLIDean distance‖σb(t)p(t)−ω‖ over gener-
ationt for the simple genetic algorithm withα-selection.

point graph which describes the asymptotic behavior
of the simple genetic algorithm (Vose, 1999b). Due
to the nature of this paper as a position paper, the fol-
lowing is more speculative than the preceding results.
To this end, letF be the set of fixed pointsωb = σbω
with b∈ Ω, i.e.

F = {ω0,ω1, . . . ,ωn−1} (42)

= {σ0ω,σ1ω, . . . ,σn−1ω} .

According to (Vose, 1996; Vose, 1999b) the RHS
τ can be modeled by a meta level MARKOV chainC
over the fixed pointsωb = σbω. Let ρ = p0,p1, . . . ,pl
be a path of lengthl of population vectors in the sim-
plexΛ. The correspondingcostof this path is defined
as

|ρ|=
l

∑
k=1

αpk−1,pk (43)

with

αp,q = ∑
k∈Ω

qk · ln

(
qk

(G (p))k

)
. (44)

ω0

ωi

ω j

ρωi ,ω j

ρω j ,ωi

ρω0,ωi

ρωi ,ω0

ρω0,ω j

ρω j ,ω0

Figure 10: Fixed point graph of the simple genetic algo-
rithm with α-selection as RHSτ.

Thefixed point graphshown in Fig. 10 is defined
as the complete directed graph on the set of stable

fixed pointsF with weights

ρωi ,ω j = inf
{
|ρ| : ρ is a path fromωi to ω j

}
. (45)

For infinite population sizer → ∞ the steady state
distribution of the simple genetic algorithm as RHS
τ converges to the steady state distribution of the
Markov chain C over F . For the determination of
this steady state distribution we consider the so-called
tributary. Thetributary Tk is defined as the tree con-
taining every vertex ofF with all its edges pointing
towards the rootωk. The cost of the tributaryTk is
given by the sum of its edge weightsρωi ,ω j . As shown
by VOSE in (Vose, 1996; Vose, 1999b) for an infinite
population sizer → ∞ the steady state distribution of
the simple genetic algorithm is given by the rootωι of
theminimum cost tributary Tι (provided it exists).

Due to the simple structure of the dynamical sys-
tem model of the simple genetic algorithm withα-
selection and its stable fixed pointsωb = σbω future
research will focus on the derivation of this steady
state distribution for the simple genetic algorithm
with α-selection. In view of the rapid convergence of
the simple genetic algorithm withα-selection, paths
ρ=ωi ,p,ω j of lengthl = 2 from fixed pointωi = σiω
to fixed pointω j = σ j ω with interior pointp ∈ Λ are
considered. The corresponding cost of this path is
given by

|ρ|= αωi ,p +αp,ω j

or equivalently

|ρ| = ∑
k∈Ω

pk · ln

(
pk

(G (ωi))k

)
(46)

+ ∑
k∈Ω

(ω j)k · ln

(
(ω j)k

(G (p))k

)
.

By taking into account

G (ωi)k = (ωi)k = ωi⊕k (47)

and
(ω j)k = ω j⊕k (48)

if follows

|ρ|= ∑
k∈Ω

pk · ln

(
pk

ωi⊕k

)
+ ∑

k∈Ω
ω j⊕k · ln

(
ω j⊕k

(G (p))k

)
.

(49)
Under the simplifying assumption of pathsρ =
ωi ,p,ω j of length 2 the weights of the fixed point
graph are then approximately given by

ρωi ,ω j = inf

{

∑
k∈Ω

pk · ln

(
pk

ωi⊕k

)
+ (50)

∑
k∈Ω

ω j⊕k · ln

(
ω j⊕k

(G (p))k

)
: p ∈ Λ

}
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with
G (p)k = ∑

j∈Ω
p j ·Mb⊕k, j⊕k (51)

and
b= argmax{ fi : i ∈ Ω∧ pi > 0} . (52)

Future research will focus on the analytical derivation
of these weightsρωi ,ω j and the determination of the
minimum cost tributaryTι leading to the steady state
distributionωι of the simple genetic algorithm with
α-selection.

6 CONCLUSIONS

The intrinsic system model for the simple genetic al-
gorithm withα-selection simplifies the analysis of the
dynamical system model of genetic algorithms. It
is defined by the mixing matrixM and enables the
derivation of the unique fixed pointω. The simpli-
fications are gained because the fitness functionf is
hidden from the mathematical formulation by making
use of theα-individual b. Sinceb enters the dynam-
ical system model via a permutationσb according to
σb ·M∗ ·σb the intrinsic system model can be formu-
lated with the help of the matrixM∗.

The intrinsic system model provides a means to
analyze the genetic algorithm’s exploitation and ex-
ploration of the search spaceΩ irrespective of the
fitness functionf . This model is compatible with
the equivalence relation imposed by schemata as
shown in (Neubauer, 2008a) by explicitly deriving
the coarse-grained system model for a given schemata
family. Experimental results for the simple genetic
algorithm with α-selection, uniform crossover and
bitwise mutation presented in this paper show close
agreement to the theoretical predictions with respect
to the rapid convergence of the permuted population
vectorσb p to the unique fixed pointω obtained from
the intrinsic system model.

It is further conjectured that the structure of the
dynamical system model of the simple genetic algo-
rithm with α-selection and its intrinsic system model
simplify the determination of the steady state distri-
butionωι based on the fixed point graph and the min-
imum cost tributaryTι. The analysis of the fixed
point graph and the analytical derivation of its weights
ρωi ,ω j will be the focus of future research.
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