
CONCURRENCY CONUNDRUMS
An Ontological Solution?

Celina Gibbs and Yvonne Coady
University of Victoria, Victoria, Canada

Keywords: Concurrency, Pedagogy, Software comprehension.

Abstract: The arrival of a new era of programming, where developers must consider the subtitles of concurrency inherent
in modern many-core architectures, calls for a revamping ranging from fundamental pedagogical processes to
software development tools. The problem here is twofold: (1) corresponding real-world scenarios, commonly
leveraged in pedagogical practices, contain implicit relationships that are significantly harder to explicitly
anticipate in complex code-bases, and (2) the growing plethora of parallel programming language mechanisms
collectively blur and distort the common core entities and relationships involved.
As a possible solution, this paper proposes a general ontology for reasoning through concurrency conundrums
at both high and low levels. The entities and relationships are originally established based on real-world
scenarios presented to a group of grade seven students. The ontology is further developed, and implicit rela-
tionships revealed, based on an analysis student observations. The ontology is further developed and implicit
relationships revealed. The goal of this work is form a basis for cognitive support that will map equally well
to both generalized real-world scenarios and detailed code in different programming languages.

1 INTRODUCTION

Current trajectories suggest that future hardware plat-
forms will house thousands of cores. NVIDIA’s Tesla
960 cores for less than $10,000, demonstrates the re-
ality of this situation (Nvidia, 2008). Millions of
cores are even available, such as IBM’s project Kit-
tyHawk (Appavoo et al., 2008).

Parallelism introduces critical issues such as re-
source utilization and contention which had largely
been factored out of mainstream development prac-
tices for high-level applications executing in a se-
quential environment. Programmers are now faced
with the daunting task of rethinking and relearning
what efficient programming is. This situation calls for
researchers to rethink pedagogical practices and pro-
gramming tools.

In this paper we propose the use of a common on-
tology that maps to parallel problems both at a high
level of abstraction for pedagogical support, and at
the level of lines of code for program comprehension
tools. This approach is intended to demonstrate the
subtle complexities of concurrency in real world sce-
narios, creating a conceptual model of parallelism that
translates to the comprehension of parallel software.
We derive the entities of the ontology from both abs-

tract problem-based pedagogy and an understanding
of parallel programming models to ensure an ontol-
ogy that aligns with both levels of representation. In
this unified form, the mapping of the ontology to ei-
ther an abstract scenario or a code base supports both
comprehension as well as the ability to compare the
implications of concurrency in different contexts.

This paper develops and assesses the ontology as
follows. Section 2 draws from experiments with ed-
ucational based activities revolving around real-life
parallelism. Results from these case studies form the
top level of our proposed ontology: computation and
communication. Section 3 details the significant over-
lap in this coarse grained entity classification, and
demonstrates that deepening the ontology not only
clarifies the overlap, but supports the emergence of
another top level entity: coordination. Finally, we
provide a full mapping of this resulting ontology onto
the pedagogical activities in Section 4 with conclu-
sions in Section 5.

2 PEDAGOGICAL ANALYSIS

In order to establish a common ontology that applies
at the level of common experiences and at the level

305Gibbs C. and Coady Y..
CONCURRENCY CONUNDRUMS - An Ontological Solution?.
DOI: 10.5220/0003104203050310
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 305-310
ISBN: 978-989-8425-29-4
Copyright c
 2010 SCITEPRESS (Science and Technology Publications, Lda.)

of implementation, we begin with an analysis at the
more abstract level of activities. The following sub-
sections provide the details for the analysis of three
activities presented to a group of grade seven students
in an attempt to introduce key concepts about concur-
rency (Gunion, 2009). The activities used real-world
and storyline style scenarios to relate to students, in-
cluding: (1) two people washing a set of dishes, (2)
two people and two movie ticket queues and, (3) an al-
tered version of the classic pedagogical, concurrency
scenario of the dining philosophers.

Each scenario allows a range of concurrency to
be introduced within the possible solutions for com-
pleting the activity. Different strategies for solving
the problem introduce different levels of complexity
in terms of executing a solution, but the core activ-
ity remains the same. We refer to the general notion
of ‘tasks’ associated with each activity as computa-
tion. With the introduction of multiple students able
to participate within each activity, some level of com-
munication is required between individuals.

The following subsections specifically investigate
the ways in which computation and communication
play out within the solution space defined by the stu-
dents for each of these three scenarios, and some of
the associated consequences encountered when con-
currency is introduced.

2.1 Dishwashing Scenario

The dishwashing scenario is proposed as a stack of
dirty dishes that need to be cleaned, dried and put
away by two people. Though the students proposed a
variety of solutions for distributing the work, the core
computation remained the same, with differing levels
of communication in each scenario.

Computation. Washing a dish, drying a dish and
putting a dish away, for all of the dishes in the stack,
was immediately identified by all students core ele-
ments of computation in this scenario. These small
distinct pieces of computation, or sub-tasks, combine
to make up the larger complete task.

Communication. The exact communication be-
tween participants in this scenario becomes solution
dependant, but in general students identified a visual
communication mechanism that would occur between
participants as one person handed off a dish to the
next person. While these ‘hand off’ points varied, the
idea that one individual must complete their portion
of the ‘computation’ before the next could take that
dish dictated a partial ordering of sub-tasks.

Concept Overlap - Computation/Communication.
Though the students seemed to immediately recog-
nize elements of computation versus communication,
they are tightly coupled. In fact, the act of complet-
ing one computation is a form of communication to a
partner in this work.

2.2 Movie Ticket Scenario

The movie scenario was posed as a problem of two
friends wishing to purchase tickets for a popular
movie at a theatre with two long queues. This was a
slightly concocted problem in which communication
was limited by lack of visual contact between queues.
Students had to come up with solutions that involved
sticking together or splitting up, and dealing with the
consequences of each.

Computation. The computation in this scenario is
simply the act of purchasing a ticket. Depending on
the solution, multiple tickets can be bought by one
person or a single ticket by each person.

Communication. In cases where students decided
the quickest way to get tickets was to split up, they
soon realized the associated consequence of possibly
buying too many tickets. This race condition, coupled
with the non-deterministic processing of the respec-
tive lines, required them to consider creative ways to
communicate beyond subtle visual cues.

Concept Overlap - Computation/Communication.
The overlap between computation and communica-
tion in this scenario is solution dependant. In the case
of students making use of the two ticket queues, com-
putation can performed across the two ticket booths
but introduces the need for communication. In the
case of the students staying together in one queue,
communication is not necessary, but the concurrency
is sacrificed.

2.3 Knights & Forks Scenario

This scenario was altered from its original context of
philosophers and described as five knights sitting at
a round-table with a single fork between each. A
knight required acquisition of two forks in order to
eat, if they were not eating they were thinking inde-
pendently. Students were asked to come up with solu-
tions to manage the forks shared between the knights.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

306

Computation. The computation in this scenario
can be identified as the actions of eating and thinking-
though attempting to acquire a fork is arguably a sub-
task, it was not considered to be a first-class compu-
tation.

Communication. In this case, the communication
is aided by the visual cue of a fork being available for
use by a knight wishing to transition from thinking to
eating. This communication between one participant
attempting to acquire a fork with two adjacent partic-
ipants is required to allow a knight to eat.

Concept Overlap - Computation/Communication.
As was the case with the dishwashing scenario, visual
cues (such as an adjacent knight releasing or acquir-
ing a resource) dictated an ordering such that the end
of one sub-task could trigger the beginning of another,
though this was not a precondition for the sub-task.

In this activity the consequences of concurrency
that are particularly problematic came to the fore-
front. Students encountered issues of race condi-
tions, deadlock and starvation through role playing,
and came up with multiple strategies for managing the
shared resource to facilitate each participants’ ability
to eat. Each of these strategies required some form
of communication between participants based on the
computation (eating, thinking) patterns.

2.4 Summary

These pedagogical activities served to help us identify
common ways in which these students thought about
problems associated with concurrency. In each case,
students immediately identified tasks/sub-tasks, and
coupled these with the often implicit communication
mechanisms, including visual cues. Table 1 highlights
this breakdown for each activity.

Table 1: Linking real-world examples to computation
(CMPT) and communication (COMM) core entities.

Entity Scenario: Scenario: Scenario:
Dishwashing Movie Knights &

(DW) Theatre (MT) Forks (KF)

CMPT wash, dry, purchase eat,
put away a ticket think

COMM visual, absent, visual,
event driven problematic mutual

exclusion

3 DEFINING THE ONTOLOGY

The preliminary case study described in Section 2
supports the need for a more fine-grained classifica-
tion, to clean up the overlap or intersection between
entities as much as possible. We want to retain the
high-level conceptual model of computation and com-
munication, as they were useful as a start.

However, to become more precise, we believe
a finer-granularity representation is best achieved
through a hierarchical structure provided by an on-
tology. Further, we hope to derive an ontology that
would apply interchangeably to both activities and
code and in the future, to other representations of
parallel solutions such as patterns. Here we propose
a more fine-grained breakdown of computation and
communication based on insights from parallel pro-
gramming research combined with observations out-
lined in Section 2.

3.1 Identifying Entities

In this first stage of deriving the ontology, we use a
combination of related work and concrete evidence
from the activities to identify key entities involved.

3.1.1 Computation

In terms of pure computation in a solution to a par-
allelizeable problem, from our observations we have
identified two finer-grained key entities: task and se-
quential. The task encompasses the actual computa-
tion performed in parallel, or its direct invocation, ver-
sus the sequential portion, some might consider the
limiting factor in Amdahl’s law (Amdahl, 2000).

This task entity aligns with the parallel program-
ming model originally identified in embedded ap-
plications (Shah et al., 2003) and high-performance
computing (Pancake and Bergmark, 1990), in which
one of the critical steps in parallelism is ‘the division
of the application into parallel tasks’. This division
of tasks is also how the students naturally developed
solutions at the more abstract level of activities such
as the dishwashing and movie ticket scenarios.

The sequential portions of codebases vary sub-
stantially in terms of the degree of implicit/explicit
resource provisioning in the parallel setup. The stu-
dent solutions to the parallel activities also differed
in terms of what would be considered the sequential
portion depending on the decisions in terms of par-
allelism and guaranteed tradeoffs. For example, the
decision of whether or not to split across lines at the
movie theatre severely impacts the identification and
articulation of the sequential portion of the solution.

CONCURRENCY CONUNDRUMS - An Ontological Solution?

307

3.1.2 Communication

In the case of pure data parallelism, in which no
inter-worker communication involved pure commu-
nication, is primarily through some form of shared
memory or shared state. In these situations a good
distribution of data and some control over data access
highlights the importance of two finer-grained key en-
tities: data distribution and synchronization.

Data can be distributed through shared memory or
placement of the data within a worker’s local mem-
ory space, whereas synchronization mechanisms tend
to communicate through shared state. This finer-
grained breakdown of communication aligns with the
following characteristics of parallel support mecha-
nisms from (Asanovic et al., 2006): ‘distribution of
data to memory elements’ and ‘inter-task synchro-
nization’.

While the activities given to the students were not
examples of pure data parallelism, the same issues of
data distribution and synchronization came into play
in the problems and solutions. The dishwashing sce-
nario being more of a dataflow concurrency used the
shared buffer to communicate when a dish was ready
for the next task. This concept of a shared buffer or a
shared fork as in the Knights and Forks activity intro-
duce tasks that require synchronization around a re-
source as well as distribution of data. With out the
shared state it was not possible to introduce this same
issue of synchronization in the movie ticket scenario
which was a good example of task parallelism with
access to data distributed across the two queues.

3.1.3 Minimizing the Overlap

While we can somewhat logically parcel out the enti-
ties within pure computation and communication in
both the activities as sequential, task, synchroniza-
tion and data distribution, these four entities do not
encompass everything involved in a parallel solution.
Our case study identified an overlap that lies in the in-
tersection of computation and communication, specif-
ically identifying an implicit coordination between
these two high level entities. From these observations
we identify two entities corresponding to this setup
required in a solution as task coordination and data
coordination.

While the task and data distribution are very dis-
tinct entities, task coordination and data coordination
are more tightly coupled, both involving a provision-
ing of resources:

� Task coordination handles resource provisioning
primarily for computation, but it must also be
communicated to tasks.

� Data coordination handles resource provision-
ing primarily for communication, associated with
computation.

These activities demonstrated that there was very
little conscious coordination proposed by the stu-
dents, but as discussed above the overall system con-
tained combinations of computation/communication
based elements that introduced implicit coordination.
It was observed in (Gunion, 2009) that coordination
emerges as the agreed upon protocol in the suggested
solutions within the activities. These protocols can ei-
ther be coordinating access to shared resources (data
coordination) or coordinating the execution of sepa-
rate tasks (task coordination).

Figure 1 illustrates this overlap and begins to de-
velop our ontology for representing these necessary
characteristics of parallel applications.

Figure 1: Relationships between computation and commu-
nication entities.

Table 2 provides a summary of how each of these
six entities could map to a language independent im-
plementation.

Table 2: Mapping fine-grained entities to implementation.

Entity Implementation Description
sequential computation
(SEQ) coordination of computation
task direct computation
(TSK) computation invocation

resource allocation
task coordination wrapper functions
(TC) arguments and context

queue management
memory allocation

data coordination intermediate buffer creation
(DC) partition function invocation

partition size management
synchronization synchronization primitives
(SYN) barriers

data distribution data copying

(DD) partition function
data assignment

3.2 Revealing Relationships

These results begin to identify the magnitude of coor-
dination necessary in something as simple as the setup

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

308

stage in a parallel application. Yet, considering each
task on its own—coordination often does not appear
to be explicit.

In fact, given the finer-granularity of entities pro-
vided in Table 2, we can now re-categorize task coor-
dination, data coordination, and synchronization ex-
plicitly to be associated with a new higher-level en-
tity: coordination. Here we argue that, though task
coordination can be cleanly reassigned to this higher-
level, both synchronization and data distribution still
contribute to communication as well, resulting in the
hierarchy in Figure 2.

Figure 2: Extended ontology.

This extended ontology of varying granularity
supports not only the comprehension of fine-grained
entities in isolation, but also provides a holistic view
of entity relationships. The key characteristic of co-
ordination entities is their representation of relation-
ships between other entities. These tiers in the ontol-
ogy provide perspectives that can work in synergy to
eventually support the linking of low-level implemen-
tation details to high-level abstractions and patterns.

4 FULL ONTOLOGY MAPPING

In this section we reflect back on the details of the ed-
ucational activities to consider the applicability of the
finer-grained mapping proposed in Section 3. Table 3
provides a mapping of the ontology proposed in Sec-
tion 3 onto the educational activities. The mapping
in this table is limited to the assignment of sequen-
tial, task, synchronization and data distribution to the
problem description whereas task and data coordina-
tion are solution specific.

Tables 4, 5 and 6 provide a mapping of task
and data coordination to three different solutions for
each problem suggested by the students. These ta-
bles highlight the differences between the solutions
proposed by students participating in the activities
describe above. For example, in the movie theatre
scenario, the increased level of task coordination re-
quired for a distribution across multiple ticket booth
becomes evident.

This relationship between the distribution of data
and the amount of coordination required to distribute
and manage access to it is visible across all three ac-
tivities. In the dishwashing scenario, solutions DW 1

Table 3: Full ontology mapping onto activities.

Entity Scenario Scenario Scenario
MT DW KF

SEQ
wait in line wash, dry, each knight

and purchase put away one takes a turn
a ticket dish at a time eating

TSK purchase wash, dry eat, think
a ticket put away

TC see Table 4 see Table 5 see Table 6DC

SYN
not wash, dry access to a

synchronized put away fork between
two knights

DD ticket booths sink, rack, between
counter knights

Table 4: Solution specific ontology mappings for movie
ticket scenario.

MT 1 MT 2 MT 3

TC

each person both go in each person
assigned a line, one queue, assigned a line,

first to front no purchase one
purchases two coordination, ticket each,

tickets and one task meet when
communicates complete
when complete

DC ticket access ticket access ticket access
across 2 booths only 1 booth across 2 booths

Table 5: Solution specific ontology mappings for dishwash-
ing scenario.

DW 1 DW 2 DW 3

TC

one washes, one washes, both wash,
one dries one dries, dry and
and both both dry and put away
put away put away

DC

buffer to hold buffer to buffer to hold
a washed dish hold washed washed dishes
(dryer access) dishes(dryer (shared access)
buffer to hold access) clean dishes
clean dishes (shared access)

(shared access)

and DW 2 assign individual tasks to a single person
where possible, limiting the amount of shared access
to a buffer and therefore requiring less coordination.
Similarly, in the Knights and Forks activity, the solu-
tions that eliminate sharing as much as possible (KF
2 and KF 3), require less coordination of resources.
The level of complexity of coordination does although
have implications in terms of the amount of paral-
lelism possible. This relationship between the coordi-
nation and parallelism is visible when considering the
coordination in the context of the other entities: se-
quential, task, data distribution and synchronization.
In order to achieve a minimal effort in terms of coor-
dination a tradeoff is made at the level of the task and

CONCURRENCY CONUNDRUMS - An Ontological Solution?

309

Table 6: Solution specific ontology mappings for Knights
& Forks scenario.

KF 1 KF 2 KF 3

TC

coordinate a choose who to no
schedule of: get rid of and coordination

2 people eating coordinate a each person
and 3 people schedule of: has a set

thinking 2 people eating of forks
and 2 thinking

DC

fork between fork between no
two knights two knights coordination

(shared access) (shared access) each person
has a set
of forks

data distribution.
For example, in the movie theatre scenario, the

task was to wait in line to purchase a ticket while the
data was distributed across two booths. The simplest
solution in terms of coordination was to make use of
only one line up but in looking at the sequential entity
for this scenario it is clear that this would sequential-
ize the solution.

Similarly, with the Knights and Forks scenario,
minimal coordination was required in the solutions
where a knight was removed or the individual knights
took turns eating. Again, the relationship between the
task and data distribution entities that is dictated by
this minimal coordination can be identified by look-
ing at the entities in Table 3. In this case we see that
the task is to eat and think and by giving up one of
the knights in fact computational power is being sac-
rificed. Again, if each night takes a turn eating this
a sequential solution as listed in the top row of the
Knights and Forks scenario of Table 3.

5 CONCLUSIONS

Currently we face the precarious situation where par-
allelism is challenging because developers lack a
means of exploring possible internal dynamics and
causal relationships that tend to be problematic in
these code bases. Our study shows that many impor-
tant relationships are actually concealed or implicit.
This is particularly true in real-world scenarios, of-
ten used in pedagogical practices when introducing
these concepts. Abstractions and mechanisms that
hide these relationships as opposed to accentuating
them maybe in fact do more harm than good in fu-
ture code bases.

Though parallelism itself is not a new challenge,
the current state of flux for applications and the de-
gree to which they need to be transformed is rel-
atively new and somewhat alarming (Sutter, 2005).

The daunting task of efficient programming for highly
parallel systems is currently receiving much atten-
tion from several perspectives within computer sci-
ence (Asanovic et al., 2006). This offers an opportu-
nity for researchers to rethink programming models,
system software, and hardware architectures from the
ground up.

This paper proposes an ontology that would map
to the general conceptual entities of a solution to a
parallel problem. The entity identification, based on
a top-down analysis of conceptual activities was cor-
roborated through consideration of parallel research
and existing mechanisms. The application of the on-
tology onto solutions at the level of activities demon-
strates its support for reasoning about and comparing
solutions in an aim to convey the tradeoffs within a
parallel solution space.

Future work requires a more exhaustive list of
these relationships with advice from experts in par-
allel application development. We also look to ontol-
ogy experts to help us better define the ontology in
order to take full advantage of reasoning engines and
cognitive support.

REFERENCES
Amdahl, G. M. (2000). Validity of the single processor ap-

proach to achieving large scale computing capabili-
ties. Readings in computer architecture, pages 79–81.

Appavoo, J., Uhlig, V., and Waterland, A. (2008). Building
a Global-Scale Computer. SIGOPS Operating System
Review, 42(1):77–84.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J.,
Husbands, P., Keutzer, K., Patterson, D. A., Plishker,
W. L., Shalf, J., Williams, S. W., and Yelick, K. A.
(2006). The Landscape of Parallel Computing Re-
search: A View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley.

Gunion, K. (2009). FUNdamentals of CS: Designing
and Evaluating Computer Science Activities for Kids.
Master’s thesis, Department of Computer Science,
University of Victoria.

Nvidia (2008). The Nvidia Tesla Supercomputer.
http://www.nvidia.com/object/personal supercompu
ting.html.

Pancake, C. M. and Bergmark, D. (1990). Do parallel lan-
guages respond to the needs of scientific program-
mers? Computer, 23:13–23.

Shah, N., Plishker, W., and Keutzer, K. (2003). NP-Click:
A Programming Model for the Intel IXP1200. In 2nd
Workshop on Network Processors (NP-2) at the 9th
International Symposium on High Performance Com-
puter Architecture (HPCA-9), Anaheim, CA.

Sutter, H. (2005). The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software. Dr. Dobb’s
Journal, 30(3).

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

310

