
AN API FOR DISTRIBUTED REASONING ON NETWORKED
ONTOLOGIES WITH ALIGNMENTS

Chan Le Duc, Myriam Lamolle
IUT Montreuil, LIASD-University Paris 8, 140 rue de la Nouvelle France, 93100 Montreuil, France

Antoine Zimmermann
Digital Enterprise Research Institute, IDA Business Park, Lower Dangan, Galway, Ireland

Keywords: Distributed reasoning, Ontology, Alignment, Networked ontologies, OWL.

Abstract: In this paper, we describe design and implementation of a Java interface for distributed reasoning on networked
ontologies with alignments. This API is built over the standard OWLlink interface which is a communication
protocol between OWL2 components. It is compatible with usual reasoners based on OWL such as Pellet
and FaCT++ in centralized contexts. In this API, we have implemented an optimized distributed reasoning
algorithm which, on the one hand requires specific primitives to manipulate OWL ontologies and alignments
between them, and on the other hand, provides services to check local and global consistency of networked
ontologies with alignements. The main feature of this API is that it can be easily integrated in various editors
and tools dedicated to ontology manipulation.

1 INTRODUCTION

The Semantic Web is founded on technologies related
to ontologies. An ontology can be built by using a
language whose semantics is formal, e.g. OWL (On-
tology Web Language1). This allows us to define un-
ambiguously the meaning of new terms from a set of
atomic terms which can be concepts, relations or indi-
viduals. Such an OWL ontology enables new knowl-
edge to be inferred by using reasoners such as Pel-
let (Sirin et al., 2007), FaCT++ (Tsarkov and Hor-
rocks, 2006). In addition, an application domain can
be described by several ontologies which are related
in some way. In this context, a reconciliation be-
tween such ontologies can yield new pieces of knowl-
edge which establish correspondences between enti-
ties of two ontologies. A set of such correspondences
is called an alignment. (Borgida and Serafini, 2003)
proposed a formalism, namely DDL (Distributed De-
scription Logics), to represent a system of ontologies
with alignments. DRAGO reasoner 2 resulting from
this work allows to check consistency of such system
and provides other applications related to alignment

1http://www.w3.org/TR/owl-features/
2http://drago.itc.it/download.html

manipulations, e.g., alignment debugging and mini-
mization.

The most of these reasoners have been integrated
within ontology editors such as Protg, Swoop, etc.
However, they are only usable through interfaces
(API). These API are more and more numerous. They
are often specific to reasoners (e.g. KAON2 API).
The proliferation of APIs leads to two issues. On
the one hand, a change of environment can imply to
modify source codes of an application and recom-
pile them in order to be able to use a given rea-
soner. On the other hand, there exist several rea-
soners supporting different semantics such as stan-
dard Description Logics (DL), Distributed Descrip-
tion Logics (DDL) (Borgida and Serafini, 2003), Inte-
grated Distributed Description Logics (IDDL) (Zim-
mermann and Le Duc, 2008), etc.. This fact implies
that specific APIs offer the same services, but with
different syntaxes. Developers must make efforts to
learn APIs on which their application depends.

To address this issue, a W3C working group pro-
poses a new protocol, namely, OWLlink (Liebig et al.,
2009). The main goal is to facilitate (i) the specifi-
cation of reasoners with knowledge bases associated,
(ii) the axiom specification, and (iii) the manner of
asking inferred results. This protocol seems to be par-

295Le Duc C., Lamolle M. and Zimmermann A..
AN API FOR DISTRIBUTED REASONING ON NETWORKED ONTOLOGIES WITH ALIGNMENTS.
DOI: 10.5220/0003101002950304
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 295-304
ISBN: 978-989-8425-29-4
Copyright c
 2010 SCITEPRESS (Science and Technology Publications, Lda.)

ticularly interesting since it is extensible. This enables
us to add functionalities adequate to different kinds of
current and future reasoners.

The main functionalities of the proposed API are
creation and checking consistency of a network of
OWL ontologies with alignments. In addition, it al-
lows users to select a semantics associated to a given
ontology network (e.g. DL, DDL, IDDL), and thus
reasoner corresponding to the selected semantics is
determined as well (Horridge et al., 2007). In this
paper, we focus on the IDDL reasoner3 which imple-
ments the algorithm presented in (Zimmermann and
Le Duc, 2008). This reasoner supports distributed
reasoning services that allow us :
� to deal with ontologies and ontology alignments

(i.e. an ontology network constituted of local
OWL ontologies and their alignments),

� to check local and global consistency of a network
of OWL ontologies with alignments.
Roughly speaking, the IDDL reasoner performs

the following tasks : (i) checking consistency of
alignments by using a global reasoner (e.g. Pellet),
(ii) propagating knowledge from alignments to each
local ontology and asking consistency of the local on-
tology with respect to the propagated knowledge, and
(iii) collecting the consistency result from each local
ontology and deciding consistency of the whole sys-
tem.

According to this schema, checking consistency
of each local ontology with respect to the knowledge
propagated from alignments can be carried out in-
dependently by local reasoners. By consequent, the
computation for deciding consistency of the whole
system is performed in a distributed way.

In the following, we present the main features of
different reasoners in Section 2. We introduce in Sec-
tion 3 the new protocol OWLlink which facilitates
communication between reasoners. We propose in
Section 4 different ways to use the IDDL reasoner
by our own Java API based on OWLlink. Section 5
provides details on an optimized implementation of
the algorithm presented in (Zimmermann and Le Duc,
2008). Section 6 presents how to integrate the IDDL
reasoner within the NeOn Toolkit 4. We conclude and
present future work in Section 7.

2 EXISTING REASONERS

Reasoning on ontologies is essentially aimed to infer
new knowledge. Reasoners can be also used to check

3http://gforge.inria.fr/projects/iddl
4http://neon-toolkit.org/wiki

ontology consistency and to classify terms (classes or
relations) in an ontology.

2.1 Reasoners for Simple Ontology

Amongst existing reasoners, which have a Java in-
terface and use OWL API, Pellet and FaCT++ are
the most common. Therefore, we claim that an API
used in distributed reasoners must be compatible with
them. We choose Pellet to experiment the integration
of new reasoners in a transparent way to end-user.
The tested interface with Pellet remains identical to
other open reasoners. In the context of distributed rea-
soning supported by the IDDL reasoner, Pellet is used
to deal with reasoning at global level with alignments.

The OWL API has a standard interface
org.semanticweb.owl.inference.OWLReasoner
with several methods such as isConsistent(), is-
Satisfiable(OWLClass), isEquivalent(OWLClass,
OWLClass), etc. Pellet provides an implementation
of these methods. In terms of interoperability with
existing reasoners, Pellet can be used with Jena as
follows:

import org.mindswap.pellet.jena.PelletReasonerFactory;

import com.hp.hpl.jena.rdf.model.InfModel;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.reasoner.Reasoner;

// creating Pellet reasoner

Reasoner reasoner =

PelletReasonerFactory.theInstance().create();

// creating empty model

Model emptyModel = ModelFactory.createDefaultModel();

// creating inference engine

// using Pellet reasoner

InfModel model = ModelFactory.createInfModel(reasoner,

emptyModel);

This interoperability ability makes Pellet easier to
be integrated within systems based on RDF ontolo-
gies.

2.2 Reasoners for Networked
Ontologies

Another reasoners support distributed reasoning on
ontologies and alignments such as DRAGO5. The
peer-to-peer DRAGO system uses a procedure based
on distributed tableau algorithm for reasoning with
several ontologies interconnected by semantic map-
pings. This distributed reasoner is built on the top
of standard tableau reasoner as Pellet or FaCT++.
The algorithm for distributed reasoning as described
in (Serafini and Tamilin, 2005) builds a distributed

5http://drago.itc.it/download.html

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

296

tableau and consults the consistency of other local
ontologies. If there is a local ontology participating
to bridge rules (mappings) the algorithm consults an-
other distributed reasoner at the peer where the local
ontology is located. This process may be propagated
in the whole network.

The major disadvantage of this algorithm is that
it requires a tableau-based reasoning for every peer.
Therefore, the heterogeneity of reasoning mecha-
nisms is impossible.

Moreover, DRAGO adopts the Pellet API by
adding “D” to method signatures to dedicate dis-
tributed reasoning (e.g., isDconsistent(), isDSatisfi-
able()). However, this interface does not satisfy one
of our criteria (see Section 4) which says that the
name of services (e.g. consistency, satisfiability) de-
finable in two different semantics must not be differ-
ent.

ContentMap6 is a tool supporting the integration
of independently designed ontologies by using map-
pings. This tool uses the standard reasoners to gener-
ate semantic consequences of integrated ontologies.
It can help users to detect potential errors and to
evaluate mappings. This work is comparable to that
of (Meilicke et al., 2009), who proposed a method
to help human experts to check automatically align-
ments created. They used DDL to formalize map-
pings as bridge rules, which exploit Drago to reason
with alignments.

3 OWLlink PROTOCOL

If ontologies are expressed in OWL, it is necessary
also to use standard communication to make easier
interactions between reasoners and different services,
mainly in distributed ontology context. OWLlink
(Liebig et al., 2009), successor of DIG protocol, is
a Java implementation-neutral communication inter-
face for OWL (Figure 1). It follows the new W3C rec-
ommendations about extensible communication pro-
tocols for systems based on OWL2 (Motik et al.,
2009), which allows one to add new functionalities re-
quired by specific applications. OWLlink overcomes
drawbacks of DIG protocol (Bechhofer et al., 2003)
(Dickinson, 2004) since it relies on DIG2 proposi-
tions (Turhan et al., 2006). OWLlink consists of two
parts: (i) structural protocol specification, and (ii) link
mechanism to transport protocols.

6http://krono.act.uji.es/people/Ernesto/contentmap

3.1 OWLlink Specification

OWLlink manages client/server communication (with
HTTP protocol) by message through session (Wes-
sel and Luther, 2009). Each message of re-
quest type (requestMessage()) on ontology corre-
sponds a response message (requestResponse()).
These two message types embed respectively a
set of objects Request and Response. Associ-
ated with these messages, a mechanism of error
management informs the client about errors aris-
ing from syntactic problems (SyntaxError), seman-
tic problems (SemanticError) or ontology man-
agement (KBError). Clients can get also infor-
mation about server itself (GetDescription() and
Configuration()).

Moreover, OWLlink server can manage simulta-
neously several ontologies by their IRI or by ontology
name. It can check axioms about classes, properties,
or individuals. To do that, client must make a request
(tell) embedding axioms to be checked.

In terms of interoperability, OWLlink provides a
mechanism enabling to encapsulate existing OWL-
based reasoners (Pellet, FaCT++, etc.). This facili-
tates system design which needs to deal with several
ontologies associated with local reasoners. This abil-
ity with client/server communication gives fundamen-
tal elements on which a API dedicated to distributed
reasoning can be elaborated.

3.2 Basic Primitives

OWLlink provides a set of basic primitives7 to access
ontologies to obtain information about entities,
status, schema and individual. For instance, the
primitive isKBDeclaredConsistent() checks
ontology consistency. Regarding the schema of on-
tologies, the primitive isClassSatisfiable()
and isClassSubsumedBy() allow to ask
whether a class is satisfiable or a class is sub-
sumed by another one. Finally, knowledge
about individuals can be obtained by using
isInstanceOf(), areIndividualsRelated()
or getEquivalentIndividuals(), etc.

4 IDDL REASONER INTERFACE

Zimmermann (Zimmermann, 2007) has introduced
IDDL (Integrated Distributed Description Logics) as

7http://owllink-owlapi.sourceforge.net/
documentation.html

AN API FOR DISTRIBUTED REASONING ON NETWORKED ONTOLOGIES WITH ALIGNMENTS

297

Figure 1: OWLlink Architecture (source http://owllink-owlapi.sourceforge.net/).

a new formalism enabling to represent a set of on-
tologies with their alignments, i.e. networked on-
tologies interconnected by alignments. Such a net-
work consists of ontologies expressed by OWL, and
alignments considered as a set of subsumption or
disjunction relations between ontology entities (con-
cept/role/individual). This formalism is adapted par-
ticularly to reason with OWL ontology alignment au-
tomatically generated by tools as Alignment Server8.
The differences between IDDL and other formalisms
are:

1. In IDDL, alignments are considered as knowl-
edge pieces independent from ontology knowl-
edge. As a result, when knowledge is propagated
from alignments to local ontologies, new seman-
tic consequences can be entailed.

2. IDDL does not make any expressiveness hypoth-
esis over used formalisms in local ontology apart
from decidability. This enables the heterogeneity
of reasoning mechanisms and formalisms that are
used in local ontologies. For instance, a local rea-
soner uses a tableaux-based algorithm while an-
other reasoner can decide consistency with help
of an automata-based algorithm.

3. IDDL supports a real distributed reasoning, i.e. all
reasoning on local ontologies can be carried out
independently.

Like the most of reasoners, IDDL gives two main
services: consistency checking and entailment. IDDL
reasoner provides the two following interfaces:

1. “standalone” interface compatible with classical
reasoners (Pellet, FaCT++). The IDDL rea-
soner consists of main class IDDLReasoner,
which implements standard interface
org.semanticweb.owl.inference.OWLReasoner,

2. interface for distributed reasoning which is based
on OWLlinkReasoner presented in section 3.

It is important to note that the services available
in the IDDL API must have the same signature that
should not depend on which reasoner associated with

8http://aserv.inrialpes.fr/

a semantics is used. Moreover, from users’ point
of view, this feature facilitates changes from a rea-
soner to another, and corresponds to the fact that we
can talk about (the) consistency of a system includ-
ing several logics in condition that the notion of con-
sistency is generally definable for each one. This is
the case for a system consisting of DL (OWL), DDL,
IDDL, etc.. Besides, distributed reasoners depend on
APIs for manipulating correspondences between on-
tologies. For this purpose, the IDDL reasoner cur-
rently uses the Alignment API (Euzenat, 2004). It
may arise an issue if users replace a distributed rea-
soner by another and they use different Alignment
APIs.

4.1 Classical Reasoning with a
Standalone Interface

Regarding classical reasoning, the IDDL reasoner
merges all local ontologies and their alignments, then
applies reasoning on the unique ontology. To do so,
the IDDL reasoner provides the following primitives
(where <domain>=fr.inrialpes.exmo.iddl):
<domain>.IDDLReasoner.isConsistent() returns
true if and only if the resulting ontology is consistent,
<domain>.IDDLReasoner.isEntailed(OWLAxiom)
returns true if and only if the axiom can be entailed
from the resulting ontology,
<domain>.IDDLReasoner.isEntailed(Alignment)
returns true if and only if each axiom belonging
to Alignment can be entailed from the resulting
ontology.

From this point of view, the OWLlink interface
(presented in section 3) can be used to encapsulate the
IDDL reasoner in the same way as classical reasoner
(i.e. OWLReasoner). In this case, the IDDL reasoner
with the OWLlink protocol is comparable to a local
IDDL system with regard to the global IDDL system.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

298

4.2 Distributed Reasoning with
OWLlinkReasoner

In distributed reasoning context, the IDDL reasoner
consists of global reasoner using also Pellet. More-
over, the IDDL reasoner needs to know consistency
of each local extended ontology (Zimmermann and
Le Duc, 2008) with the help of local associated rea-
soners. The local reasoners can be Pellet, FaCT++,
DRAGO, IDDL itself, etc., and they can be located in
different sites. OWLlinkReasoner interface provides
necessary elements that the IDDL reasoner needs to
ensure communication between local and global rea-
soners. Indeed, in order to define the method:

IDDLReasoner.addOntology(OWLOntology onto1,
URL localReasoner);

the following code can be used:

URL reasonerURL = new URL(...);
OWLlinkReasoner reasoner =

new OWLlinkHTTPXMLReasoner(
OWLOntologyManager manager,
URL reasonerURL);

CreateKB createKB = new CreateKB();
KB kb = reasoner.answer(createKB);
IRI kbIRI = kb.getKB();
// configuration : a set of global axioms
Tell tell = new Tell(kbIRI,

OWLAxioms[] configuration);
OK ok = reasoner.answer(tell);
...

Roughly speaking, a configuration is a set of axioms
propagated from alignments to local ontologies. This
notion will be clarified in Section 5.

This code enables to associate a local ontol-
ogy (createKB) to a local reasoner (reasoner
which is responsible for deciding and transmit-
ting the result (consistency) to the global reasoner
(reasoner.answer(tell)) whether the local
ontology is consistent with respect to the con-
figuration (new Tell(kbIRI, OWLAxioms[]
configuration)). The following code shows how
to use the IDDL reasoner.

import fr.inrialpes.exmo.iddl.IDDLreasoner;
import fr.inrialpes.exmo.iddl.types.Semantics;
import org.semanticweb.owl.model.OWLAxiom;
import org.semanticweb.owl.align.Alignment;
...

IDDLReasoner reasoner = new IDDLReasoner();
reasoner.addAlignment(URI onto1);
reasoner.addAlignment(URI align1);
reasoner.setSemantics(Semantics.DL);
//check consistency of DL system
reasoner.isConsistent();
//check entailment of an OWL axiom

reasoner.isEntailed(OWLAxiom ax);
//check entailment of an alignment
reasoner.isEntailed(Alignment al);
...

reasoner.addOntology(onto1);
//associate a local reasoner to an ontology.
reasoner.addOntology(URI onto1,

URL localReasoner1);
reasoner.addAlignment(URI align1);
reasoner.setSemantics(Semantics.IDDL);
//check consistency of IDDL system
reasoner.isConsistent();

5 OPTIMIZATION AND
IMPLEMENTATION

This section briefly presents the principle of the algo-
rithm for distributed reasoning and its implementation
in the IDDL reasoner. This version does not allow
disjointness correspondences to occur in alignments.
This restriction does not lead to a serious drawback of
the expressiveness since alignments generated by the
majority of matching algorithms do not often include
disjointness correspondences.

5.1 Algorithm and Optimization

The distributed algorithm implemented in the IDDL
reasoner was presented in (Zimmermann and Le Duc,
2008). However, the vocabulary used in (Zimmer-
mann and Le Duc, 2008) differs from the one used
here. According to the metamodel, wherever ontol-
ogy is used in (Zimmermann and Le Duc, 2008), we
can replace it by module without loss of correctness.
Where alignment is used in (Zimmermann and Le
Duc, 2008), we use mapping here. Finally, a corre-
spondence in (Zimmermann and Le Duc, 2008) is the
equivalent of a mapping assertion here.

5.1.1 Preliminary Assumption

The IDDL reasoner works by having a module rea-
soner communicate with imported modules’ reason-
ers. The imported modules reasoners are supposed
to be encapsulated so that their implementation is un-
known but they can be used via an interface. Conse-
quently, for each imported module mi, we assume that
there exists an oracle Fi which takes a set of DL ax-
ioms Ai as arguments and returns a boolean equal to
Consistency(mi[Ai).

Definition 1 (Reasoning oracle). Let O be an on-
tology defined in a logic L. A reasoning oracle is
a boolean function F : P L ! Bool which returns

AN API FOR DISTRIBUTED REASONING ON NETWORKED ONTOLOGIES WITH ALIGNMENTS

299

F(A) = ConsistencyL(O[A), for all sets of axioms
A 2 P L.

The term ontology in Defintion 1 is to be taken
in a general sense. It can be a module or even a dis-
tributed system, as long as the associated reasoner can
interpret DL axioms and offers correct and complete
reasoning capabilities. In practice, such oracles will
be implemented as an interface which encapsulates a
reasoner like Pellet, Fact++, or a module reasoner.

A module reasoner must call the oracles associ-
ated with the imported modules with well chosen ax-
ioms in order to determine consistency. The choice of
axioms will be explained below. In addition, the mod-
ule reasoner have access to the mappings that may ex-
ist between imported modules. From the importing
module’s point of view, these mappings are treated
like local axioms. Therefore, we can consider that
the mappings are equivalent to an ontology (called
the alignment ontology in (Zimmermann and Le Duc,
2008)).
Definition 2 (Alignment ontology). Let A be a set of
mappings. The alignment ontology is an ontology bA
such that:

� for each mapping assertion i :C v ! j : D with C
and D local concepts,
– ci :C and di :D;
– ci :C vdi :D 2 bA;

� for each mapping assertion i : P v ! j : Q with P
and Q local roles,
– ci :P and di :Q;
– ci :Pvdi :Q 2 bA.
In order to check the global consistency of the

module, we also assume that there is a reasoning or-
acle FA associated to bA. The algorithm consists in
questioning all the reasoning oracles with well cho-
sen axioms that are detailed just below.

5.1.2 Algorithm Overview

In (Zimmermann and Le Duc, 2008), it is formally
proven that consistency checking of an IDDL system
with only subsumption mapping assertions can be re-
duced to determining the emptiness and non empti-
ness of specific concepts. More precisely, we define
the notion of configuration, which serves to explic-
itly separate concepts between empty concepts and
not empty concepts, among a given set of concepts.
It can be represented by a subset of the given set of
concepts, which contains the asserted non-empty con-
cepts.
Definition 3 (Configuration). Let C be a set of con-
cepts. A configuration W over C is a subset of C .

In principle, a configuration W implicitly assert
that for all C 2 W, C v ? and for all C =2 W, C(a) for
some individual a. A similar notion of role configu-
ration is also defined in (Zimmermann and Le Duc,
2008), but for the sake of simplicity we will only
present it for concepts.

The algorithm then consists in selecting a config-
uration over the set of all concepts of the alignment
ontology. The axioms associated with the configura-
tion are then sent to the oracles to verify the consis-
tency of the resulting ontologies. If they all return true
(i.e., they are all consistency with these additional ax-
ioms) then the modular ontology is consistent. Oth-
erwise, another configuration must be chosen. If all
configurations have been tested negatively, the mod-
ular ontology is inconsistent, according to the proof
in (Zimmermann and Le Duc, 2008). Since there is a
finite number of configurations, this algorithm is cor-
rect and complete.

The sets of axioms that must be used to query the
oracles are defined according to a configuration W as
follows.
Let A (resp. A1; : : : ;An) be the sets of axioms associ-
ated with the oracles of the alignment ontology (resp.
with the oracle of modules m1; : : : ;mn).
For all imported modules mi,

� for all concepts i :C 2W, ci :C(a) 2 A and C(aC) 2
Ai where a is a fixed individual and aC is a new
individual in mi.

� for all concepts i :C =2 W, ci :C v ? 2 A and C v
? 2 Ai.

5.1.3 Optimization

We can identify, from the algorithm as described
above, some situations that may lead to blow-up com-
plexity.
1. The algorithm will answer negatively if and only

if it has tested all possible configurations. So, ev-
ery time a module is inconsistent, the reasoner
must call all the oracles 2n times, where n is the
number of concepts in the alignment ontology.
This situation is hardly acceptable in a practical
reasoner.
However, optimizations can be carried out to im-
prove this situation. In particular, backtrack algo-
rithms can be applied to this procedure. Indeed,
for each concept C appearing in a mapping, it
must be decided whether it is empty or not. There
are cases where it can be deduced that C is empty
(resp. not empty) immediately. In this case, it
not necessary to test configurations where C is not
empty (resp. empty). This can be visualized in
Figure 2.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

300

. . .
. . .

. . .

Ck

Ck+1

Ck+2

Ck+3

Ck+4

Ck+5

{Ck v⊥} {Ck(a)}

at most n

FIG. 2: At each node, the left branch indicates that the concept Ck is asserted as an empty concept (Ck v ⊥), while the right
branch indicates a non empty concept (Ck(a)). The thick path indicates a possible configuration for the distributed system.

FIG. 3: An IDDL consistent system.

Figure 2: At each node, the left branch indicates that the concept Ck is asserted as an empty concept (Ck v?), while the right
branch indicates a non empty concept (Ck(a)). The thick path indicates a possible configuration for the distributed system.

2. Theoretically, there are 2n possible global config-
urations where n is the number of terms occuring
in alignments. Each configuration W is of the form
W= (X1; � � � ;Xn) where Xi =C(a) asserts the non-
emptyness of the concept C or Xi = (C v ?) as-
serts the emptyness of the concept C. We denote
X̄i = C(a) if Xi = (C v ?) and X̄i = (C v ?) if
Xi =C(a). It holds that Oi[W is not consistent if
there is Xi 2 W such that Oi [fXig is not consis-
tent.
This observation allows the global reasoner to re-
duce dramatically the number of checks on con-
sistency of local ontologies since the global rea-
soner can reuse the inconsistency result of Oi [
fXig for all Xi 2W and for all configuration W.

6 INTEGRATION OF THE IDDL
REASONER WITHIN
NEONTOOLKIT

In this section we describe the principle of the integra-
tion of the IDDL reasoner within the NeOn Toolkit.
This integration is performed by developing a plug-in,
namely IDDL reasoner plug-in, which plays an inter-
face role between the IDDL reasoner and the NeOn-
Toolkit plug-ins, e.g. the module API, Ontology Nav-
igator, Alignment Plugin, etc..

The NeOn toolkit is an environment for managing
and manipulating networked ontologies developed. It
was developed within the NeOn project as a plug-in
for managing ontologies under Eclipse and extends
previous products such as KAON2. The NeOn toolkit
features run time and design time ontology alignment
support. It can be extended through a plug-in mecha-
nism, so it can be customized to the users needs. As a
development environment for ontology management,
the NeOn Toolkit supports the W3C recommenda-
tions OWL and RDF as well as F-Logic for processing
rules. With the support of the integrated mapping-

tool, named OntoMap, heterogeneous data sources,
e.g., databases, file systems, UML diagrams, can be
connected to ontologies quickly and easily.

The IDDL reasoner API for ontology modules
uses the module API to access to alignments and im-
ported modules of an ontology module. In other
terms, the IDDL reasoner plug-in is developed such
that it can get access to the alignments and imported
modules from an ontology module and pass them to
the IDDL reasoner with help of the IDDL reasoner
API.

More precisely, from the NeOn toolkit environ-
ment the IDDL reasoner plug-in gets URIs of the im-
ported modules and the alignments from an ontology
module. In the most of cases where alignments are not
available from the ontology module, the plug-in can
fetch available alignments from an alignment server
and use them as alignments. This feature allows users
to use alignments permanently stored on servers and
select the most suitable alignments for an intended
purpose.

The IDDL reasoner plug-in relies on the IDDL
reasoner, and the core module API which provides
basic operations to manipulate ontology modules and
alignments. By using the core module API, the IDDL
reasoner plug-in can get necessary inputs from an on-
tology module. In the case where the alignments
obtained from the ontology module in question are
not appropriate, the plug-in can connect to Align-
ment Server9 to fetch alignments available. For this
purpose, the plug-in offers to users an interface al-
lowing to visualize and select alignments. Figure 3
is a screenshot of the plugin integrated within Neon
Toolkit.

From a determined input, the IDDL reasoner plug-
in can obtain an answer for consistency from the
IDDL reasoner. In the case where the answer is neg-
ative the plug-in can obtain an explanation indicating
configurations and/or correspondences which are re-
sponsible for that inconsistency.

9http://aserv.inrialpes.fr/

AN API FOR DISTRIBUTED REASONING ON NETWORKED ONTOLOGIES WITH ALIGNMENTS

301

Figure 3: An IDDL consistent system.

The answer time of the IDDL reasoner depends on
the following elements which are taken into account
in the optimized algorithm design.

1. If there are more unsatisfiable or non-empty con-
cepts occurring in correspondences, the answer
time is shorter,

2. If there are more equivalent concepts or proper-
ties occurring in correspondences, the reasoner
answers faster,

3. If ontology module is inconsistent, the reasoner
has to check likely all configurations. Therefore,
the answer time would be long.

In Example 4, we have two imported ontologies
: Geopolitics and Geography with a mapping be-
tween them. The axioms of the ontologies and map-
ping are expressed in a description logic and they can
be directly coded in OWL. We consider the following
cases:

1. If these imported modules are merged with the
correspondences of the mapping, we obtain an
OWL ontology which is not consistent. The rea-
son is that the mapping allows one to deduce that
two classes ”EuropeanRegion” and ”SouthAmeri-
canRegion” are not disjoint, which contradicts the
disjointness axiom in Geography.

2. However, in the context of ontology modules the
IDDL reasoner can check consistency of the mod-

ule and answer that the module is consistent (Fig-
ure 3).

3. If we now add to the following mapping
1 : Guyana 2$ 2 : SouthAmericanRegion u
EuropeanRegion, the IDDL reasoner answers that
the module is no longer consistent.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we argued that it is necessary to intro-
duce a generic API for reasoners to facilitate envi-
ronment changes without upgrading the current API
version. Moreover, we suggested to use the same sig-
nature of the reasoning services independently from
reasoners associated with a given semantics.

Then, we proposed a design and implementation
of such an API which meets these two criteria. Fi-
nally, we optimized and implemented in this API
a distributed algorithm for checking consistency of
networked ontologies with alignments based on the
IDDL semantics.

Comparing to other approaches, e.g. the dis-
tributed reasoning based on DLL, the IDDL dis-
tributed reasoning is more modular and heteroge-
neous, i.e., what global reasoner needs about a local
ontology is whether it is consistent. Thus, local on-
tologies can use different logics in condition that they

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

302

Geopolitics(1)
Woman(Cindy)
Region(Guyana)

Geography(2)

Countryv Region
EuropeanRegion≡ Regionu∃partOf .{Europe}
SouthAmericanRegion≡ Regionu∃partOf .{SouthAmerica}
EuropeanRegionv ¬SouthAmericanRegion
Trans(partOf)
Country(France)
partOf (France,Europe)

1:Region ≡↔
2:Region

1:Guyana ∈↔
2:∃partOf .{France}

1:Guyana ∈↔
2:SouthAmericanRegion

FIG. 4: An example of an ontology module with mappings

7 Conclusion and Future Work

In this paper, we argued that it is necessary to in-
troduce a generic API for reasoners to facilitate envi-
ronment changes without upgrading the current API
version. Moreover, we suggested to use the same si-
gnature of the reasoning services independently from
reasoners associated with a given semantics.

Then, we proposed a design and implementation
of such an API which meets these two criteria. Fi-
nally, we optimized and implemented in this API
a distributed algorithm for checking consistency of
networked ontologies with alignments based on the
IDDL semantics.

Comparing to other approaches, e.g. the distribu-
ted reasoning based on DLL, the IDDL distributed
reasoning is more modular and heterogeneous, i.e.,
what global reasoner needs about a local ontology is
whether it is consistent. Thus, local ontologies can use
different logics in condition that they remain to be de-
cidable. This feature of IDDL provides possibility to
use different algorithms for reasoning on local onto-
logies.

The current version of the IDDL reasoner provides
only explanations for inconsistencies which are cau-
sed by correspondences propagated from mappings to
local ontologies. A future version of the IDDL reaso-
ner should take advantages of explanations from local
reasoners to give more details about how propagated
correspondences impact on a local ontology.

As mentioned at the beginning of the present sec-
tion, the current version of the IDDL reasoner does
not allow disjointness correspondences to occur in ali-
gnments. This limitation prevents us from supporting
axiom entailment since it is equivalent to inconsis-
tency of an IDDL system including disjointness cor-
respondences. For instance, the current IDDL reaso-
ner does not know whether 〈O,A〉 |= i:Cv j :D where
O, A are the sets of imported ontologies and map-
pings from an ontology module.

In a future version, we plan to extend the reaso-
ner such that it takes into account only disjointness
correspondences translated from entailment but not
those initially included in alignments. Allowing dis-
jointness correspondences in this controlled way may
not lead to a complexity blow-up.

REFERENCES

Bechhofer, S., Moller, R., and Crowther, P. (2003). The DIG
Description Logic Interface. In Calvanese, D., editor,
Proceedings of the International Workshop on Des-
cription Logics (DL03), Volume 81 of CEUR., Rome,
Italy.

Borgida, A. and Serafini, L. (2003). Distributed description
logics : Assimilating information from peer sources.
Journal Of Data Semantics, 1(1) :153–184.

Dickinson, I. (2004). Implementation experience with the
DIG 1.1 specification. Technical report, Hewlett-
Packard.

Figure 4: An example of an ontology module with mappings.

remain to be decidable. This feature of IDDL pro-
vides possibility to use different algorithms for rea-
soning on local ontologies.

The current version of the IDDL reasoner pro-
vides only explanations for inconsistencies which are
caused by correspondences propagated from map-
pings to local ontologies. A future version of the
IDDL reasoner should take advantages of explana-
tions from local reasoners to give more details about
how propagated correspondences impact on a local
ontology.

As mentioned at the beginning of the present sec-
tion, the current version of the IDDL reasoner does
not allow disjointness correspondences to occur in
alignments. This limitation prevents us from support-
ing axiom entailment since it is equivalent to inconsis-
tency of an IDDL system including disjointness corre-
spondences. For instance, the current IDDL reasoner
does not know whether hO;Ai j= i:Cv j :D where O,
A are the sets of imported ontologies and mappings
from an ontology module.

In a future version, we plan to extend the reasoner
such that it takes into account only disjointness corre-
spondences translated from entailment but not those
initially included in alignments. Allowing disjoint-
ness correspondences in this controlled way may not
lead to a complexity blow-up.

REFERENCES

Bechhofer, S., Moller, R., and Crowther, P. (2003). The DIG
Description Logic Interface. In Calvanese, D., edi-
tor, Proceedings of the International Workshop on De-
scription Logics (DL03), Volume 81 of CEUR., Rome,
Italy.

Borgida, A. and Serafini, L. (2003). Distributed description
logics : Assimilating information from peer sources.
Journal Of Data Semantics, 1(1):153–184.

Dickinson, I. (2004). Implementation experience with the
DIG 1.1 specification. Technical report, Hewlett-
Packard.

Euzenat, J. (2004). An API for Ontology Alignment. In
The Semantic Web - ISWC 2004: Third International
Semantic Web Conference,Hiroshima, Japan, Novem-
ber 7-11, 2004. Proceedings, volume 3298 of LNCS,
pages 698–712. Springer.

Horridge, M., Bechhofer, S., and Noppens, O. (2007). Ignit-
ing the OWL 1.1 Touch Paper: The OWL API. In 3rd
OWL Experienced and Directions Workshop, OWLED
2007, Innsbruck, Austria.

Liebig, T., Luther, M., and Noppens, O. (2009). The owllink
protocol. In OWLED.

Meilicke, C., Stuckenschmidt, H., and Tamilin, A. (2009).
Reasoning support for mapping revision. In Journal
of Logic and Computation.

Motik, B., Patel-Schneider, P., and Parsia, B. (2009). OWL2
Web Ontology Language: Structural Specification and
Functional-Style Syntax. Technical report, World
Wide Web Consortium.

Serafini, L. and Tamilin, A. (2005). DRAGO: Distributed
reasoning architecture for the semantic web. In Lec-
ture Notes in in computer science, S., editor, Proceed-

AN API FOR DISTRIBUTED REASONING ON NETWORKED ONTOLOGIES WITH ALIGNMENTS

303

ing of the 2nd European Semantic Web Conference,
pages 361–376.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz,
Y. (2007). Pellet: a pratical owl-dl reasoner. Journal
of Web Semantics, 5(2):51–53.

Tsarkov, D. and Horrocks, I. (2006). FaCT++ Descrip-
tion Logic Reasoner: System Description. In Lecture
Notes in Artificial Intelligence, S., editor, Proceeding
of the International Joint Conference on Automated
Reasoning.

Turhan, A.-Y., Bechhofer, S., Kaplunova, A., Liebig, T.,
Luther, M., Noppens, O., Patel-Schneider, P., Sun-
tisrivaraporn, B., and Weithner, T. (2006). DIG 2.0
: Towards a Flexible Interface for Description Logic
Reasoners. In Proceedings of the OWL Experiences
and Directions Workshop (OWLED06) at the ISWC06,
Athens, Georgia, USA.

Wessel, M. and Luther, M. (2009). OWLlink:
HTTP/Functional Binding, Version 1.0. Technical re-
port, W3C.

Zimmermann, A. (2007). Integrated distributed description
logics. In Proceedings of the 20th International Work-
shop on Description Logics (DL 2007), pages 507–
514.

Zimmermann, A. and Le Duc, C. (2008). Reasoning with a
network of aligned ontologies. In Proceedings of the
2nd International Conference on Web Reasoning and
system rules, LNCS 5341, pages 43–75.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

304

