
INTEGRATED CANDIDATE GENERATION IN PROCESSING
BATCHES OF FREQUENT ITEMSET QUERIES USING APRIORI

Piotr Jedrzejczak and Marek Wojciechowski
Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland

Keywords: Data Mining, Frequent Itemsets, Apriori Algorithm, Data Mining Queries.

Abstract: Frequent itemset mining can be regarded as advanced database querying where a user specifies constraints
on the source dataset and patterns to be discovered. Since such frequent itemset queries can be submitted to
the data mining system in batches, a natural question arises whether a batch of queries can be processed
more efficiently than by executing each query individually. So far, two methods of processing batches of
frequent itemset queries have been proposed for the Apriori algorithm: Common Counting, which integrates
only the database scans required to process the queries, and Common Candidate Tree, which extends the
concept by allowing the queries to also share their main memory structures. In this paper we propose a new
method called Common Candidates, which further integrates processing of the queries from a batch by
performing integrated candidate generation.

1 INTRODUCTION

Frequent itemset discovery (Agrawal et al., 1993) is
a very important data mining problem with
numerous practical applications. Its goal is discovery
of the most frequently occurring subsets, in a
database of sets of items, called transactions.

Despite significant advances in frequent itemset
mining, the most widely implemented and used in
practice frequent itemset mining algorithm is the
classic Apriori algorithm (Agrawal and Srikant,
1994), due to its simplicity and satisfactory
performance in real-world scenarios. Apriori
iteratively generates candidates (i.e., potentially
frequent itemsets) from previously found smaller
frequent itemsets and counts their occurrences in the
database. To improve the efficiency of testing which
candidates are contained in a transaction read from
the database, the candidates are stored in a hash tree.

Frequent itemset mining is often regarded as
advanced database querying where a user specifies
the source dataset, the minimum support threshold,
and optionally pattern constraints within a given
constraint model (Imielinski and Mannila, 1996). A
significant amount of research on efficient
processing of frequent itemset queries has been done
in recent years, focusing mainly on constraint
handling (see e.g. (Pei and Han, 2000) for an

overview) and reusing results of previous queries
(Baralis and Psaila, 1999) (Meo, 2003).

Recently, a new problem of optimizing
processing of sets of frequent itemset queries has
been considered, bringing the concept of multiple-
query optimization, the problem extensively studied
in the area of database systems (see (Sellis, 1988)
for an overview), to the domain of frequent itemset
mining. The idea was to process the queries
concurrently rather than sequentially and exploit the
overlapping of queries’ source datasets.

Two general approaches have been taken to
design methods of processing batches of frequent
itemset queries: (1) providing methods independent
from a particular frequent pattern mining algorithm,
and (2) tailoring dedicated methods for the most
prominent frequent pattern mining algorithms with a
particular emphasis on Apriori (Wojciechowski and
Zakrzewicz, 2002). It has been shown that the latter
approach yields more efficient algorithms than the
former, due to better sharing of computations and
I/O operations among the queries forming a batch.

The first method of processing batches of
frequent itemset queries proposed for Apriori was
Common Counting (Wojciechowski and
Zakrzewicz, 2002), which consists in concurrent
execution of the queries with the integration of scans
of parts of the database shared among the queries.
Later, Common Counting was improved by

487Jedrzejczak P. and Wojciechowski M..
INTEGRATED CANDIDATE GENERATION IN PROCESSING BATCHES OF FREQUENT ITEMSET QUERIES USING APRIORI.
DOI: 10.5220/0003099704870490
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2010), pages 487-490
ISBN: 978-989-8425-28-7
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

additionally sharing the hash tree structures used to
store candidates, resulting in the Common Candidate
Tree method (Grudzinski and Wojciechowski,
2007). In this paper we present a new algorithm
called Common Candidates, which builds on the
success of Common Candidate Tree, offering further
integration of computations among the queries by
performing integrated candidate generation.

2 RELATED WORK

To the best of our knowledge, apart from the
problem considered in this paper, multiple-query
optimization for frequent pattern queries has been
considered only in the context of frequent pattern
mining on multiple datasets (Jin et al., 2005). The
idea was to reduce the common computations
appearing in different complex queries, each of
which compared the support of patterns in several
disjoint datasets. This is fundamentally different
from our problem, where each query refers to only
one dataset and the queries' datasets overlap.

Earlier, the need for multiple-query optimization
has been postulated in the area of inductive logic
programming, where a technique based on similar
ideas as Common Counting has been proposed
(Blockeel et al., 2002).

3 BASIC DEFINITIONS

Frequent Itemset Query. A frequent itemset query
is a tuple dmq = (R, a, Σ, Φ, minsup), where R is a
database relation, a is a set-valued attribute of R, Σ is
a condition involving the attributes of R called data
selection predicate, Φ is a condition involving
discovered itemsets called pattern constraint, and
minsup is the minimum support threshold. The result
of dmq is a set of itemsets discovered in πaσΣR,
satisfying Φ, and having support ≥ minsup (π and σ
denote relational projection and selection operations
respectively).

Elementary Data Selection Predicates. The set of
elementary data selection predicates for a set of
frequent itemset queries DMQ = {dmq1, dmq2, ...,
dmqn} is the smallest set S={s1, s2 ,..., sk} of data
selection predicates over the relation R such that for
each u, v (u ≠ v) we have σsuR∩σsvR =∅ and for
each dmqi there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR. The set of elementary
data selection predicates represents the partitioning

of the database determined by overlapping of
queries’ datasets.

Problem Statement. Given a set of frequent itemset
queries DMQ = {dmq1, dmq2, ..., dmqn}, the problem
of multiple-query optimization of DMQ consists in
generating an algorithm to execute DMQ that
minimizes the overall processing time.

4 COMMON CANDIDATES

The only part of Apriori that is still performed
separately for each query in Common Candidate
Tree (CCT) is the candidate itemset generation. In
order to introduce concurrency in that area, we
propose a new method: Common Candidates
(CCan), which makes it possible to generate
candidates for all queries in a batch at once while
preserving all the optimizations present in CCT. The
pseudo-code for CCan is presented in Figure 1.

CCT used two representations of an itemset: a
standard, single-query representation (to store the
frequent itemsets and freshly generated candidates)
and an extended, multiple-query one (to store the
frequent itemsets inside a common hash tree). CCan
abandons the former completely and stores both the
frequent and candidate itemsets using the extended
representation with a bitmap (fromQuery[]) used to
indicate which queries generated a candidate itemset
and then updated to show in which queries that
itemset has been verified to be frequent.

The general idea of candidate generation remains
identical to that of Apriori and is composed of the
join phase and pruning phase. There are, however,
some significant differences. Unlike all the previous
methods which performed the join phase with only
the itemsets from one query at a time, CCan joins all
frequent itemsets from all queries simultaneously.
To avoid generating candidates that do not apply to
any query, only those pairs of itemsets that share at
least one query are considered. After a candidate has
been generated, its bitmap is calculated during the
mandatory pruning phase by performing a logical
AND operation on the bitmaps of all of its subsets of
size 1 less. The resulting bitmap has its bits set only
for those queries in which all of the subsets are
frequent (queries that the candidate actually applies
to), and candidates with an empty bitmap are
automatically pruned. As the candidates generated
using this method already use the extended itemset
representation, they can be stored inside a common
hash tree without any merging or conversion.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

488

The advantage of the integrated candidate generation
of CCan as compared to CCT is two-fold. Firstly,
each candidate is generated only once, no matter
how many queries it applies to. Secondly, there is no
need to convert the itemsets between the standard
and extended representations, as the latter is used in
both the generation and count phases.

5 EXPERIMENTAL RESULTS

In order to evaluate the performance of CCan
compared to CCT, we conducted a series of
experiments on a synthetic dataset generated with
GEN (Agrawal et al., 1996) using the following
settings: number of transactions = 1000000, average
number of items in a transaction = 8, number of
different items = 1000, number of patterns = 1500,
average pattern length = 4. The dataset was stored in
an index-organized table inside an Oracle database
to facilitate efficient access to its fragments
processed by frequent itemset queries. The
experiments were carried out on a Mac with 2.2
GHz Intel Core 2 Duo processor and 4 GB of
memory, running Snow Leopard; the database was
deployed on a PC with Athlon 64 3800+ processor
and 2 GB or memory, running SuSE Linux.

In the experiments we varied the level of
overlapping between the queries and the number of
queries in a batch. Each query referred to a dataset
containing 100000 subsequent transactions from the
generated dataset. The support threshold of 0.7%,
which resulted in 7-8 Apriori iterations, was used for
all queries. In addition to measuring total execution
times for both algorithms, we also measured the time
spent on candidate generation which is the target of
optimizations introduced in CCan.

Figure 2: Generation and total execution times for two
queries and different levels of overlapping.

The goal of the first experiment was to examine how
the level of overlapping between the queries affects
the generation and total execution times of CCan
compared to CTT. The batch used in this experiment
consisted of two queries. Obtained results are shown
in Figure 2.

The generation times of both CCT and CCan
remain almost constant regardless of the level of
overlapping, with CCan significantly outperforming
CCT. The difference in total execution times is less
significant, due to the fact that candidate occurrence

Input: ܳܯܦ ൌ ሼ݀݉ݍଵ, ,ଶݍ݉݀ … , ,ሽݍ݉݀ where ݀݉ݍ ൌ ሺܴ, ܽ, ∑, Φ, minsupሻ
ଵܥ (1) ൌ ሼall possible 1‐itemsetsሽ;
 (2) for ሺ݇ ൌ 1; ܥ ് ; ݇ሻ do begin
 (3) for each ݏ א ܵ do begin
ܥܥ (4) ൌ ሼܿ א :ܥ fromQuery[i].ܿ ݅ ൌ true ר ௦ೕܴߪ ك ;ܴሽ∑ߪ
 (5) if ܥܥ ് ,ܥܥthen countሺ ;௦ೕܴሻߪ end
 (6) for each ܿ א doܥ
 (7) for ሺ݅ ൌ 1; ݅ ݊; ݅ሻ do
 (8) if ܿ.counters[i] ൏ minsup then ܿ.fromQuery[i] ൌ false;
ܨ (9) ൌ ሼܿ א :ܥ fromQuery[i].ܿ ݅ ൌ trueሽ;
ାଵܥ (10) ൌ generate_candidatesሺܨሻ;
 (11) end
 (12) for ሺ݅ ൌ 1; ݅ ݊; ݅ሻ do Answer ൌ மߪ ڂ ሼ݂ א :ܨ ݂.fromQuery[i] ൌ trueሽ;

Figure 1: Common Candidates.

INTEGRATED CANDIDATE GENERATION IN PROCESSING BATCHES OF FREQUENT ITEMSET QUERIES
USING APRIORI

489

counting is considerably more time consuming than
candidate generation in Apriori-based methods.

Second of the conducted experiments examined
how well the algorithms scale with the increasing
number of concurrently executed queries. In order to
keep the queries equally similar, the level of
overlapping between each pair of subsequent queries
inside the batch was fixed at 75%. As can be seen in
Figure 3, the generation time of CCT grows linearly
with the increase of the number of queries in a batch,
while CCan remains largely insensitive. Total
execution times increase similarly for both methods,
with CCan performing slightly better, especially
with more queries in a batch.

Figure 3: Generation and total execution times for
different numbers of similar queries.

6 CONCLUSIONS

In this paper we addressed the problem of efficient
processing of batches of frequent itemset queries in
the context of the Apriori algorithm. We proposed a
new algorithm, called Common Candidates, built
upon Common Candidate Tree, offering further
integration of computations performed for a batch of
queries thanks to the integrated candidate generation
procedure.

The conducted experiments showed that the new
method results in significant reduction of the total
time spent on candidate generation. The impact of
the integrated candidate generation procedure on the
overall execution time is less spectacular but still
noticeable.

In the future we plan to investigate the possible
impact of several optimizations applied to Apriori by
its practical implementations on our batch
processing algorithms.

REFERENCES

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining
Association Rules Between Sets of Items in Large
Databases, In Proc. of the 1993 ACM SIGMOD Conf.

Agrawal, R., Mehta, M., Shafer, J., Srikant, R., Arning,
A., Bollinger, T., 1996. The Quest Data Mining
System, In Proc. of the 2nd KDD Conference.

Agrawal, R., Srikant, R., 1994. Fast Algorithms for
Mining Association Rules, In Proc. of the 20th VLDB
Conference.

Baralis, E., Psaila, G.,1999. Incremental Refinement of
Mining Queries, In Proceedings of the 1st DaWaK
Conference.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G.,
Ramon, J., Vandecasteele, H., 2002. Improving the
Efficiency of Inductive Logic Programming Through
the Use of Query Packs, Journal of Artificial
Intelligence Research, Vol. 16.

Grudzinski, P., Wojciechowski, M., 2007. Integration of
Candidate Hash Trees in Concurrent Processing of
Frequent Itemset Queries Using Apriori, In Proc. of
the 3rd ADMKD Workshop.

Imielinski, T., Mannila, H., 1996. A Database Perspective
on Knowledge Discovery, Communications of the
ACM, Vol. 39.

Jin, R., Sinha, K., Agrawal, G., 2005. Simultaneous
Optimization of Complex Mining Tasks with a
Knowledgeable Cache, In Proc. of the 11th KDD
Conference.

Meo, R., 2003. Optimization of a Language for Data
Mining, In Proc. of the ACM SAC Conference.

Pei, J., Han, J., 2000. Can We Push More Constraints into
Frequent Pattern Mining?, In Proc. of the 6th KDD
Conference.

Sellis, T., 1988. Multiple-query optimization, ACM
Transactions on Database Systems, Vol. 13.

Wojciechowski, M., Zakrzewicz, M., 2002. Methods for
Batch Processing of Data Mining Queries, In Proc. of
the 5th DB&IS Conference.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

490

