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Abstract: Frequent itemset mining can be regarded as advanced database querying where a user specifies constraints 
on the source dataset and patterns to be discovered. Since such frequent itemset queries can be submitted to 
the data mining system in batches, a natural question arises whether a batch of queries can be processed 
more efficiently than by executing each query individually. So far, two methods of processing batches of 
frequent itemset queries have been proposed for the Apriori algorithm: Common Counting, which integrates 
only the database scans required to process the queries, and Common Candidate Tree, which extends the 
concept by allowing the queries to also share their main memory structures. In this paper we propose a new 
method called Common Candidates, which further integrates processing of the queries from a batch by 
performing integrated candidate generation. 

1 INTRODUCTION 

Frequent itemset discovery (Agrawal et al., 1993) is 
a very important data mining problem with 
numerous practical applications. Its goal is discovery 
of the most frequently occurring subsets, in a 
database of sets of items, called transactions.  

Despite significant advances in frequent itemset 
mining, the most widely implemented and used in 
practice frequent itemset mining algorithm is the 
classic Apriori algorithm (Agrawal and Srikant, 
1994), due to its simplicity and satisfactory 
performance in real-world scenarios. Apriori 
iteratively generates candidates (i.e., potentially 
frequent itemsets) from previously found smaller 
frequent itemsets and counts their occurrences in the 
database. To improve the efficiency of testing which 
candidates are contained in a transaction read from 
the database, the candidates are stored in a hash tree. 

Frequent itemset mining is often regarded as 
advanced database querying where a user specifies 
the source dataset, the minimum support threshold, 
and optionally pattern constraints within a given 
constraint model (Imielinski and Mannila, 1996). A 
significant amount of research on efficient 
processing of frequent itemset queries has been done 
in recent years, focusing mainly on constraint 
handling (see e.g. (Pei and Han, 2000) for an 

overview) and reusing results of previous queries 
(Baralis and Psaila, 1999) (Meo, 2003). 

Recently, a new problem of optimizing 
processing of sets of frequent itemset queries has 
been considered, bringing the concept of multiple-
query optimization, the problem extensively studied 
in the area of database systems (see (Sellis, 1988) 
for an overview),  to the domain of frequent itemset 
mining. The idea was to process the queries 
concurrently rather than sequentially and exploit the 
overlapping of queries’ source datasets. 

Two general approaches have been taken to 
design methods of processing batches of frequent 
itemset queries: (1) providing methods independent 
from a particular frequent pattern mining algorithm, 
and (2) tailoring dedicated methods for the most 
prominent frequent pattern mining algorithms with a 
particular emphasis on Apriori (Wojciechowski and 
Zakrzewicz, 2002). It has been shown that the latter 
approach yields more efficient algorithms than the 
former, due to better sharing of computations and 
I/O operations among the queries forming a batch. 

The first method of processing batches of 
frequent itemset queries proposed for Apriori was 
Common Counting (Wojciechowski and 
Zakrzewicz, 2002), which consists in concurrent 
execution of the queries with the integration of scans 
of parts of the database shared among the queries. 
Later, Common Counting was improved by 
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additionally sharing the hash tree structures used to 
store candidates, resulting in the Common Candidate 
Tree method (Grudzinski and Wojciechowski, 
2007). In this paper we present a new algorithm 
called Common Candidates, which builds on the 
success of Common Candidate Tree, offering further 
integration of computations among the queries by 
performing integrated candidate generation. 

2 RELATED WORK 

To the best of our knowledge, apart from the 
problem considered in this paper, multiple-query 
optimization for frequent pattern queries has been 
considered only in the context of frequent pattern 
mining on multiple datasets (Jin et al., 2005). The 
idea was to reduce the common computations 
appearing in different complex queries, each of 
which compared the support of patterns in several 
disjoint datasets. This is fundamentally different 
from our problem, where each query refers to only 
one dataset and the queries' datasets overlap. 

Earlier, the need for multiple-query optimization 
has been postulated in the area of inductive logic 
programming, where a technique based on similar 
ideas as Common Counting has been proposed 
(Blockeel et al., 2002). 

3 BASIC DEFINITIONS 

Frequent Itemset Query. A frequent itemset query 
is a tuple dmq = (R, a, Σ, Φ, minsup), where R is a 
database relation, a is a set-valued attribute of R, Σ is 
a condition involving the attributes of R called data 
selection predicate, Φ is a condition involving 
discovered itemsets called pattern constraint, and 
minsup is the minimum support threshold. The result 
of dmq is a set of itemsets discovered in πaσΣR, 
satisfying Φ, and having support ≥ minsup (π and σ 
denote relational projection and selection operations 
respectively). 

 
Elementary Data Selection Predicates. The set of 
elementary data selection predicates for a set of 
frequent itemset queries DMQ = {dmq1, dmq2, ..., 
dmqn} is the smallest set S={s1, s2 ,..., sk} of data 
selection predicates over the relation R such that for 
each u, v (u ≠ v) we have σsuR∩σsvR =∅ and for 
each dmqi there exist integers a, b, ..., m such that 
σΣiR=σsaR∪σsbR∪..∪σsmR. The set of elementary 
data selection predicates represents the partitioning 

of the database determined by overlapping of 
queries’ datasets.  

 
Problem Statement. Given a set of frequent itemset 
queries DMQ = {dmq1, dmq2, ..., dmqn}, the problem 
of multiple-query optimization of DMQ consists in 
generating an algorithm to execute DMQ that 
minimizes the overall processing time. 

4 COMMON CANDIDATES 

The only part of Apriori that is still performed 
separately for each query in Common Candidate 
Tree (CCT) is the candidate itemset generation. In 
order to introduce concurrency in that area, we 
propose a new method: Common Candidates 
(CCan), which makes it possible to generate 
candidates for all queries in a batch at once while 
preserving all the optimizations present in CCT. The 
pseudo-code for CCan is presented in Figure 1. 

CCT used two representations of an itemset: a 
standard, single-query representation (to store the 
frequent itemsets and freshly generated candidates) 
and an extended, multiple-query one (to store the 
frequent itemsets inside a common hash tree). CCan 
abandons the former completely and stores both the 
frequent and candidate itemsets using the extended 
representation with a bitmap (fromQuery[]) used to 
indicate which queries generated a candidate itemset 
and then updated to show in which queries that 
itemset has been verified to be frequent. 

The general idea of candidate generation remains 
identical to that of Apriori and is composed of the 
join phase and pruning phase. There are, however, 
some significant differences. Unlike all the previous 
methods which performed the join phase with only 
the itemsets from one query at a time, CCan joins all 
frequent itemsets from all queries simultaneously. 
To avoid generating candidates that do not apply to 
any query, only those pairs of itemsets that share at 
least one query are considered. After a candidate has 
been generated, its bitmap is calculated during the 
mandatory pruning phase by performing a logical 
AND operation on the bitmaps of all of its subsets of 
size 1 less. The resulting bitmap has its bits set only 
for those queries in which all of the subsets are 
frequent (queries that the candidate actually applies 
to), and candidates with an empty bitmap are 
automatically pruned. As the candidates generated 
using this method already use the extended itemset 
representation, they can be stored inside a common 
hash tree without any merging or conversion. 
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The advantage of the integrated candidate generation 
of CCan as compared to CCT is two-fold. Firstly, 
each candidate is generated only once, no matter 
how many queries it applies to. Secondly, there is no 
need to convert the itemsets between the standard 
and extended representations, as the latter is used in 
both the generation and count phases. 

5 EXPERIMENTAL RESULTS 

In order to evaluate the performance of CCan 
compared to CCT, we conducted a series of 
experiments on a synthetic dataset generated with 
GEN (Agrawal et al., 1996) using the following 
settings: number of transactions = 1000000, average 
number of items in a transaction = 8, number of 
different items = 1000, number of patterns = 1500, 
average pattern length = 4. The dataset was stored in 
an index-organized table inside an Oracle database 
to facilitate efficient access to its fragments 
processed by frequent itemset queries. The 
experiments were carried out on a Mac with 2.2 
GHz Intel Core 2 Duo processor and 4 GB of 
memory, running Snow Leopard; the database was 
deployed on a PC with Athlon 64 3800+ processor 
and 2 GB or memory, running SuSE Linux. 

In the experiments we varied the level of 
overlapping between the queries and the number of 
queries in a batch. Each query referred to a dataset 
containing 100000 subsequent transactions from the 
generated dataset. The support threshold of 0.7%, 
which resulted in 7-8 Apriori iterations, was used for 
all queries. In addition to measuring total execution 
times for both algorithms, we also measured the time 
spent on candidate generation which is the target of 
optimizations introduced in CCan. 

 
Figure 2: Generation and total execution times for two 
queries and different levels of overlapping. 

The goal of the first experiment was to examine how 
the level of overlapping between the queries affects 
the generation and total execution times of CCan 
compared to CTT. The batch used in this experiment 
consisted of two queries. Obtained results are shown 
in Figure 2. 

The generation times of both CCT and CCan 
remain almost constant regardless of the level of 
overlapping, with CCan significantly outperforming 
CCT. The difference in total execution times is less 
significant, due to the fact that candidate occurrence 

Input: ܳܯܦ ൌ ሼ݀݉ݍଵ, ,ଶݍ݉݀ … , ,ሽݍ݉݀ where ݀݉ݍ ൌ ሺܴ, ܽ, ∑, Φ, minsupሻ  
ଵܥ  (1)  ൌ ሼall possible 1‐itemsetsሽ; 
 (2)  for ሺ݇ ൌ 1; ܥ ് ; ݇ሻ do begin 
 (3)      for each  ݏ א ܵ do begin 
ܥܥ          (4)  ൌ ሼܿ א :ܥ fromQuery[i].ܿ ݅ ൌ true ר ௦ೕܴߪ ك  ;ܴሽ∑ߪ
 (5)          if  ܥܥ ് ,ܥܥthen countሺ  ;௦ೕܴሻߪ  end 
 (6)      for each  ܿ א   doܥ
 (7)          for ሺ݅ ൌ 1; ݅  ݊; ݅ሻ do  
 (8)              if ܿ.counters[i] ൏ minsup then ܿ.fromQuery[i] ൌ false;   
ܨ          (9)  ൌ ሼܿ א :ܥ fromQuery[i].ܿ ݅ ൌ trueሽ; 
ାଵܥ          (10)  ൌ generate_candidatesሺܨሻ; 
 (11)  end 
 (12)  for ሺ݅ ൌ 1; ݅  ݊; ݅ሻ do  Answer ൌ மߪ ڂ ሼ݂ א :ܨ ݂.fromQuery[i] ൌ trueሽ;  

Figure 1: Common Candidates. 
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counting is considerably more time consuming than 
candidate generation in Apriori-based methods. 

Second of the conducted experiments examined 
how well the algorithms scale with the increasing 
number of concurrently executed queries. In order to 
keep the queries equally similar, the level of 
overlapping between each pair of subsequent queries 
inside the batch was fixed at 75%. As can be seen in 
Figure 3, the generation time of CCT grows linearly 
with the increase of the number of queries in a batch, 
while CCan remains largely insensitive. Total 
execution times increase similarly for both methods, 
with CCan performing slightly better, especially 
with more queries in a batch. 

 

 
Figure 3: Generation and total execution times for 
different numbers of similar queries. 

6 CONCLUSIONS 

In this paper we addressed the problem of efficient 
processing of batches of frequent itemset queries in 
the context of the Apriori algorithm. We proposed a 
new algorithm, called Common Candidates, built 
upon Common Candidate Tree, offering further 
integration of computations performed for a batch of 
queries thanks to the integrated candidate generation 
procedure.  

The conducted experiments showed that the new 
method results in significant reduction of the total 
time spent on candidate generation. The impact of 
the integrated candidate generation procedure on the 
overall execution time is less spectacular but still 
noticeable. 

In the future we plan to investigate the possible 
impact of several optimizations applied to Apriori by 
its practical implementations on our batch 
processing algorithms. 
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