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Abstract: Selecting appropriate features has become a key task when dealing with high-dimensional data. We present a
new algorithm designed to find an optimal solution for classification tasks. Our approach combines forward
selection, backward elimination and exhaustive search. We demonstrate its capabilities and limits using artifi-
cial and real world data sets. Regarding artificial data sets interleaving forward backward selection performs
similar as other well known feature selection methods.

1 INTRODUCTION

The selection of relevant features is crucial for
successful concept formation and classifier learning
(Blum and Langley, 1997; Liu and Motoda, 1998).
Especially for data with very high dimensionality,
many standard machine learning algorithms cannot
be applied directly—as first step, the number of fea-
tures needs to be reduced to a subset of promising
candidates. Less features imply concept or classifier
learning is faster, produces easier comprehensible and
maybe more effective and efficient results.

In general, the feature selection problem can be
characterized as the task of “choosing a small subset
of features that ideally is necessary and sufficient to
describe the target concept” (Kira and Rendell, 1992,
p. 129).

2 REQUIREMENTS

This study is conducted within a project comparing
different classifiers on a single task. The number of
features will be around 60,000. Consequently exhaus-
tive feature subset generation is not recommended,
rather a heuristic guided approach is chosen.

As we want to compare different learning algo-
rithms it is necessary that the feature selection al-
gorithm doesn’t advantage one specific classification
method. Choosing features using a classification al-
gorithm as performance evaluator biases the selected
features towards that classifier. Therefore we choose
the inconsistency rate as evaluation function. It mod-
els the rate of instances that is necessarily misclassi-

fied if the instances are fully split according to all se-
lected features. It is monotonic regarding the subset
relation, i.e. removing attributes from a feature sub-
set cannot decrease the inconsistency rate.1 Liu and
Motoda (1998, p. 76) defined it as follows:

The inconsistency rate is calculated as follows:
(1) two instances are considered inconsistent if they
are the same except for their class labels (we call
these instances as matching instances), . . . (2) the
inconsistency count is the number of all the match-
ing instances minus the largest number of instances
of different class labels, . . . and (3) the inconsis-
tency rate is the sum of all the inconsistency counts
divided by the total number of instances (N).

The algorithm should run until anoptimal2 set is
found. But as finding an optimal feature subset might
be infeasible depending on the data the algorithm was
designed as anytime algorithm (Zilberstein, 1996).

3 ALGORITHMS

In this section we will present our solution for the
task given in the previous section. First we will give
some preliminaries and notation details, then we will
present our algorithm.

3.1 Preliminaries

LetF = {F1, . . . ,FM} denote the set of all features. A
set of featuresF is calledvalid iff its inconsistency

1A prove outline for the monotonicity of the inconsis-
tency rate is given by Liu, Motoda and Dash (1998).

2For a definition of optimality see section 3.1.
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Table 1: Properties of the used artificial data sets.

Data Set Features Instances Class Type Feature Type Noise Known Relevant Features
Monk1 6 124 binary nominal no A1,A2,A5
Monk2 6 169 binary nominal no A1,A2,A3,A4, A5, A6
Monk3 6 122 binary nominal yes, 5% A2,A4,A5
Parity5+5 10 100 binary binary no B2,B3,B4,B6, B8

rate doesn’t exceed a certain thresholdt.
Assume two valid feature subsetsF1 andF2. Set

F1 is said to bebetterthanF2 iff F1 has less features
or has an equal number of features but a lower incon-
sistency rate.

A feature subsetF is now calledoptimal iff there
exists no other setF ′ that is better thanF .

3.2 IFBS

The Interleaving Forward Backward Selection algo-
rithm (IFBS) consists of four phases (Alg. 1). In the
first phase the algorithm adds features to an initially
empty set until its inconsistency rate falls below a cer-
tain thresholdt. This is done in a greedy way.

During the second phase as much features as pos-
sible are removed while the inconsistency rate of the
feature set doesn’t exceed the thresholdt. During both
phases the algorithm keeps track of evaluated subsets.
Subsets are evaluated once, subsets of known invalid
subsets are not evaluated.

In the third phase the algorithm starts with the full
feature set. In each round all subsets having one ele-
ment less are tested. The subsets of the first one being
invalid are excluded from further consideration. Be-
fore each round the effort to search this round and the
savings if an invalid subset is found in this round are
guessed. The phase finishes—without excluding any
features—if the search effort so far plus the estimated
effort for this round exceeds the potential savings.

Finally in phase IV the remaining possible fea-
ture subsets are searched. Let the feature set found
in phase II (the best set known so far) havel features.
In the first round feature subsets havingl elements
are checked. As soon as a subset better than the best
known set is found the algorithm preceeds to the next
round usingl = l −1.3 The algorithm continues until
l = 0 or no more valid subset is found.

3If the best known set has minimal inconsistency rate,
i.e. 0.0 or the inconsistency rate of the full set, no better set
having the same number of features can be found. Conse-
quently the algorithm preceeds with one (additional) feature
less. This also holds for the first round.

4 EVALUATION

For evaluating our approache we implemented it as a
RapidMiner operator. RapidMiner is an open source
data mining and machine learning tool freely avail-
able at http://rapid-i.com.

We compared the performance of our approach
with related work. First we compared it on artificial
data sets publically available. Afterwards we used
real life data from a feature selection challenge.

4.1 Artificial Data Sets

As first experiments we decided to run our algorithms
on artificial data sets. For these data sets the rele-
vant features were known a priori. So we were able to
judge the outcome of IFBS objectively.

For each data set IFBS was run using thresholds
of 0.10, 0.05, 0.01 and 0.00. Each combination was
executed 10 times to show effects of random steps in
IFBS and to estimate runtimes better.

We will now first describe the artificial data sets
used, then we will line out the results.

4.1.1 Data Sets

We decided on the Monk’s problems (Thrun et al.,
1991) and Parity5+5 (John et al., 1994) as artificial
data sets. These data sets have already received atten-
tion in literature and results from different feature se-
lection algorithms are available (Koller and Sahami,
1996; Liu and Motoda, 1998). The data sets are all
available from the UCI Machine Learning Reposi-
tory4 or from sgi5.

4.1.2 Results

In general the results are satisfying. IFBS returned ad-
equate feature sets in apparently no time. The results
for the respective data sets can be seen in Table 3. For

4The UCI Machine Learning Repository can be found
online at http://archive.ics.uci.edu/ml/.

5Some data sets which were previously available at the
UCI Machine Learning Repository are still available online
at http://www.sgi.com/tech/mlc/db/.
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Table 2: Selected features for artificial data sets. Resultsnot presented in this work are taken from literature (Liu andMotoda,
1998, p. 119).

Method Monk1 Monk2 Monk3 Parity5+5
(A1, A2, A5) (A1–A6) (A2,A4,A5) (2–4,6,8)

Branch & Bound A1, A2, A5 A1–A6 A1, A2, A4, A5 2–4,6,8
Quick Branch & Bound A1, A2, A5 A1–A6 A1, A2, A4, A5 2–4,6,8
Focus A1, A2, A5 A1–A6 A1, A2, A4, A5 2–4,6,8
LVF A1, A2, A5 A1–A6 A1, A2, A4, A5 2–4,6,8
IFBS (t = 0.05) A1, A2, A5 A1–A6 A2,A4,A5 2–4,6,8
IFBS (t = 0.00) A1, A2, A5 A1–A6 A1, A2, A4, A5 2–4,6,8

Table 3: Results for the different artificial data sets.t de-
notes the threshold,G the selected feature set,i the incon-
sistency rate ofG andr the average runtime in ms.

t G i r
Monk1 0.10 A1, A2, A5 0.00 199

0.05 A1, A2, A5 0.00 200
0.01 A1, A2, A5 0.00 203
0.00 A1, A2, A5 0.00 207

Monk2 0.10 A2–A6 0.09 222
0.05 A1–A6 0.00 231
0.01 A1–A6 0.00 227
0.00 A1–A6 0.00 226

Monk3 0.10 A2, A5 0.07 239
0.05 A2, A4, A5 0.05 239
0.01 A1, A2, A4, A5 0.00 245
0.00 A1, A2, A4, A5 0.00 239

Parity5+5 0.10 B2, B3, B4, B6, B8 0.00 342
0.05 B2, B3, B4, B6, B8 0.00 358
0.01 B2, B3, B4, B6, B8 0.00 348
0.00 B2, B3, B4, B6, B8 0.00 372

Monk1 and Parity5+5 the ideal feature subset com-
bination is found regardless of the threshold chosen.
For Monk2 and a threshold of 0.10 the known rele-
vant featureA1 is not part of the result. For Monk3
and a threshold lower than the innate noise (5% of the
instances are misclassified) results in selection of the
known not relevant featureA1. The algorithm seems
to be prone to overfitting.

In Table 2 the results of IFBS are contrasted with
results from other feature selection methods. Our new
approache is not worse than the other approaches.

Input: featuresF , thresholdt

G ← SelectFeatures(F , t) (Phase I)

G ← EliminateFeatures(G , t) (Phase II)

inv← InvalidSubset(F , t) (Phase III)

G ← SearchFinalLevels(F , G , inv, t) (Phase IV)

return G

Algorithm 1: IFBS.

Table 4: Properties of real world data sets.

Data Set Features Instances Class Feature
Type Type

Arcene 10,000 100 binary integer
Gisette 5,000 6,000 binary integer
Dexter 20,000 300 binary integer
Dorothea 100,000 800 binary binary
Madelon 500 2,000 binary integer

4.2 Real World Data Sets

After evaluating IFBS and IFBSc on artificial data
sets we used real life data, too. For having compa-
rable results at hand we decided to use the data sets
from 2003’s feature selection challenge organized by
the Feature Extraction Workshop at the Neural Infor-
mation Processing Systems Conference (NIPS)6.

Evaluation on the real world data sets is a two
step process. First we conducted the feature selection
and reduced the data sets accordingly, then we learned
classifiers using a decision tree approach and applied
those to the unlabeled challenge data sets. The final
results were submitted to the challenge’s homepage
using the nameIFBS-DT. After describing the data
sets we will give both types of results: the selected
features and achieved classification quality.

4.2.1 Data Sets

The five data sets provided for this challenge are ob-
fuscated versions of real world data sets with added
random attributes. All data sets were split into train-
ing, test, and validation set by the callenge organizers.
Test and validation sets were unlabeled. All data sets
are available at the challenge’s homepage. Table 4
summarizes the used data sets.

To run IFBS on the data sets having integer-valued
features these features were discretized based on en-
tropy (Fayyad and Irani, 1993). For all data sets fea-
tures having only one value were excluded.

6http://www.nipsfsc.ecs.soton.ac.uk
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Table 5: Selected features for NIPS data sets. Used is the number of features after discretizing and eliminating single-values
features, Probes the number of false positives among selected features

Data Set Features Probes BER
Initial Used Selected # % Training Validation Test

Arcene 10,000 758 6 2 33.33 0.000 0.387 0.369
Gisette 5,000 1,396 23 0 0.00 0.035 0.073 0.064
Dexter 20,000 45 20 0 0.00 0.073 0.143 0.145
Dorothea 100,000 88,120 11 3 27.27 0.078 0.238 0.187
Madelon 500 13 13 0 0.00 0.081 0.210 0.192

4.2.2 Results

Selected Features. Selection of Madelon features
run in a few seconds. The other selection experi-
ments were stopped after several days. Selection for
Dorothea stopped in phase II others in phase III or IV.
Table 5 shows the decrease of feature count during
the selection process. For all data sets the percentage
of features selected was less than 3%. For Gisette,
Dexter and Madelon no irrelevant features were se-
lected. For Arcene and Dorothea high percentages of
false positives were scored. Nevertheless the absolute
number is small (2 and 3, respectively). This is even
more promising as most runs hadn’t finished.

Classification Accuracy. The classification accu-
racy is measured as balanced error rate (BER) which
is the average of the errors for each class. BERs for
the data sets are shown in Table 5. For Arcene there
seems to be some overfitting as a full discriminating
feature set (no inconsistency) isn’t sufficient for pre-
dicting unseen instances. For all data sets IFBS plus
a decision tree learner was ranked in the third quar-
tile of the challenge’s submissions. A more elaborate
classification schema might produce better results.

5 CONCLUSIONS

IFBS has substantial skills to select features for a clas-
sification task. Results are not worse, but also not
better than other feature selection methods. Further
evaluation is needed. Also new findings in current re-
search should be taken into account.

The results for the NIPS classification task showed
that IFBS can be applied in a practical setting. The
quality of the classification could clearly be improved
using a more sophisticated learning procedure.

It could not be shown that IFBS is applicable
for high-dimensional data sets. Further work should
tackle this issue first.
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