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Abstract: A neural network based method called Sparse-Extreme Learning Machine (S-ELM) is used for prediction of 
Relative Solvent Accessibility (RSA) in proteins. We have shown that multiple-fold gains in speed of 
processing by S-ELM compared to using SVM for classification, while accuracy efficiencies are 
comparable to literature. The study indicates that using S-ELM would give a distinct advantage in terms of 
processing speed and performance for RSA prediction.  

1 INTRODUCTION 

Proteins perform a variety of important biological 
functions that are imperative to the wellbeing of all 
living things. Various factors determine protein 
functions, such as, its native structure, the 
information coded in its constituent amino acid 
sequences, its reactions to the surrounding solvent 
environment and the Relative Solvent Accessibility 
(RSA) values of its residues and. Evaluating RSA 
values will help to gain an insight into the structure 
and function of a protein.  

Protein structures and other related values such 
as RSA can be experimentally determined by using 
NMR spectroscopy or X-Ray crystallography. But 
these methods can be expensive in terms of cost, 
time and other factors. There is an urgent need to 
process large amounts of data (spawned by advances 
in biotechnology) accurately and speedily in order to 
decipher the information buried in biological data, 
since it is impractical to do it manually. 
Computational methods such as machine learning 
algorithms provide an alternate way by which we 
can study this data in a cost and time efficient 
manner.  Still, accuracies and processing efficiencies 
in existing methods are inadequate and there is a 
need for improvement. This study endeavours to 
attain a large gain in processing efficiencies. 

RSA prediction has contributed to  the study of 
protein functions in many applications; to determine 
protein hydration properties (Ooi, Oobatake, 
Namethy, & Scheraga, 1987), identify temperature 
sensitive residues that can be targeted for 
mutagenesis and to study contact residue 
information (Shen and Vihinen 2003), improve 
secondary structure prediction (Adamczak, Porollo 
& Meller, 2005) and for fold recognition and protein 
domain (DOMpro) prediction (Cheng and Baldi, 
2006). RSA values can be used to gauge degree of 
solvent exposure of segments of globular proteins 
(Carugo, 2003), to find residues with potential 
structural or functional (ConSeq)  importance 
(Berezin, Glaser, Rosenberg, Paz, Pupko, Fariselli, 
Casadio, & Ben-Tal, 2004), help with rationale 
design of antibodies and other proteins to improve 
binding affinities (David, Asprer, Ibana, Concepcion 
& Padlan, 2007). In general RSA values can help to 
achieve cost and time efficiencies in drug discovery 
processes and help to gain a better understanding of 
biological processes.  

Probability profiles are used by Gianese, Bossa 
& Pascarella (2003) to predict RSA values from 
single sequence and Multiple Sequence Alignment 
(MSA) data. Singh, Gromiha, Sarai & Ahmad 
(2006) estimate RSA values from an atomic 
perspective. Pollastri, Martin, Mooney & Vullo 
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(2007) use homologous structural information to 
improve RSA prediction. In addition, tertiary 
structure predictions are increasingly being 
augmented and improved with information derived 
from secondary structure and RSA predictions. 
Zarei, Arab & Sadeghi (2007) find that pairs of 
residues can influence RSA prediction accuracy.  

Knowledge-based tools which use machine 
learning techniques and statistical theory can be 
valuable in predicting RSA, especially in the 
absence of evolutionary information or where 
sequences are not well preserved. A number of 
computational methods have been used for RSA 
prediction, such as Neural Networks (NN) (Shandar 
and Gromiha, 2002; Adamczak et al., 2005; Cheng, 
Sweredoski, & Baldi, 2006; Huang, Zhu & Siew, 
2006;). Pollastri,  Baldi, Fariselli & Casadio (2002) 
use RSA values of residues for scoring remote 
homology searches and modelling protein folding 
and structure using a bidirectional recurrent neural 
network (ACCpro). Other methods include 
Information Theory (Manesh, Sadeghi, Arab & 
Movahedi, 2001), Multiple Linear Regression 
Methods (Pollastri et al. 2002; Wagner et al. 2005), 
Support Vector Machines (SVM) (Nguyen and 
Rajapakse 2005) and fuzzy k-nearest neighbour 
algorithm (Sim, Kim & Lee,  2005). Kim and Park 
(2004) have used the SVMpsi and long range 
interactions to improve RSA accuracy. Chen, Zhou, 
Hu & Yoo (2004) compare five different methods, 
decision tree (DT), Support Vector Machine (SVM), 
Bayesian Statistics (BS), Neural Network (NN) and 
Multiple Linear Regression (MLR) on the same data 
set in order to compare the capabilities of different 
methods in predicting RSA. They conclude that NN 
and SVM are among the best methods for RSA 
prediction.  

More recently, Bondugula and Xu (2008) 
combine sequence and structural information to 
estimate RSA values (MUPRED) in order to predict 
RSA. Petersen, Petersen, Andersen, Nielsen and  
Lundegaard (2009) argue for the need of a reliability 
score (Z-score) for measuring the degree of trust that 
can be related to individual predictions. Meshkin 
and Ghafuri (2010) use a two-step approach, using 
feature selection on physico-chemical properties of 
residues and Support Vector Regression (SVR) to 
predict RSA. 

We propose to use a new fairly new method 
called Sparse Extreme Learning Machine (S-ELM), 
based on neural networks, which is capable of 
extreme speeds compared to traditional neural 
networks while maintaining current classification 
accuracies.  

This paper is organized as follows. Section 2 
briefly discusses the S-ELM algorithm and 
characteristics of the RSA data. Section 3 discusses 
the results of this study with performance 
comparisons with SVM and NETASA methods 
followed by conclusions in Section 4. 

2 METHODS AND DATA 

2.1 Extreme Learning Machine 

Single Layer Feed-forward Network (SLFN), with a 
hidden layer and an activation function possess an 
inherent structure suitable for mapping complex 
characteristics, learning and optimization. They have 
applications in bioinformatics for solving various 
problems like pattern classification and recognition, 
structure prediction and data mining. The free 
parameters of the network are learned from given 
training samples using gradient descent algorithms 
that are relatively slow and have many issues in 
error convergence. A modified SLFN model called 
an Extreme Learning Machine (ELM) has emerged 
recently (Huang, Zhu, & Siew 2006), where it has 
been proved theoretically that ELM can provide 
good generalization performance and overcome 
some of the problems associated with traditional 
NNs such as stopping criterion, learning rate, 
number of epochs and local minima. ELM  has good 
generalization capabilities and capacity to learn 
extremely fast.  The input weights are chosen 
randomly but the output weights are calculated 
analytically using a pseudo-inverse. Many activation 
functions such as sigmoidal, sine, Gaussian or hard-
limiting functions can be used at the hidden layer 
and the class is determined as the class which has 
the maximum output value. A comprehensive 
description of the S-ELM algorithm is given by 
Huang et. al., (2006).  

Even though the ELM algorithm requires less 
training time, the random selection of input weights 
affects the generalization performance when the data 
is sparse or data is imbalanced. Suresh, Saraswathi 
and Sundararajan (2010) and Saraswathi et al. 
(2010) offer an improved version of ELM called the 
Sparse-ELM (S-ELM) which gives better 
generalization for sparse data. Hence, we use S-
ELM algorithm for predicting the RSA of proteins 
where the imbalance in data varies with the different 
threshold values used. S-ELM is also well suited for 
RSA predictions of sequences whose structures have 
not yet been determined and where there are no 
homologs  in  existing sequences. The data is discus- 
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sed in detail in section 3. 
We call the ELM algorithm for each of the 

training data sets over several thresholds. We find 
the optimal number of hidden neurons using a 
unipolar sigmoidal activation function (lambda = 
0.001) and perform K-fold (k = 5) validations. In K-
fold validation, the training set is separated into K-
groups. K-1 groups are used for training in each of 
the K iterations and the model is tested on the 
remaining Kth group. The optimal parameters are 
stored and used during the testing phase. The 
performance of the S-ELM classifier and the time 
taken to develop the RSA S-ELM classifier model is 
compared with SVM using LIBSVM (Fan, Chen and 
Lin, 2005) approach to show that the S-ELM 
approach can achieve a slightly better performance 
within a much shorter time. Five-fold cross 
validation accuracies, processing time gains and 
comparative studies are discussed in the results 
section. 

2.2 Data 

Proteins consist of sequences of amino acid residues 
that play a key role in determining the secondary and 
tertiary structure of a protein. The sequential 
relationship among the solvent accessibilities of 
neighbouring residues can be used to improve the 
results (although solvent accessibility is considered 
evolutionarily less preserved than secondary 
structure). We use binary values and a window size 
of 8 to represent the amino acid sequences.  

RSA of an amino acid residue is defined 
(Mucchielli-Giorgi et al. 1999) as the ratio of the 
solvent-accessible surface area of the residue 
observed in the 3-D structure to that observed in an 
extended tripeptide (Gly-X-Gly or Ala-X-Ala) 
conformation. RSA is a simple measure of the 
degree to which each residue in an amino acid 
sequence is exposed to its solvent environment. For 
our study, we consider the well-known Manesh data 
set (Manesh, Sadeghi, Arab, & Movahedi, 2001) 
which has a high imbalance with respect to the 
number of samples per class (Table 1), where the 
number of samples belonging to one class is much 
lesser than the samples belonging to the other 
classes.   
The Manesh data set consists of 215 proteins, of 
which 30 proteins (7545 residues) with variable 
number of amino acid residues are used for classifier 
model development and the remaining 185 proteins 
(43137 residues) were used for evaluating the 
generalization performance of the S-ELM classifier 
through a 5-fold cross-validation model. The data in 

the training and testing set are cast into two-class 
and three-class problems (Table 1) by determining 
whether the RSA value is below, between or above a 
particular threshold. We use various % thresholds (0, 
5, 10, 25, 50 for two-class and between 10_20 or 
25_50 for three class), in order to compare our 
results with those existing in literature. A residue is 
considered as buried if its value is less than or equal 
to the lower range, partially buried if it is between 
the lower and the higher range and considered 
exposed if its RSA value is higher than the range of 
values (> 20 or > 50). The accuracy of the 
predictions depend on the value of the thresholds 
chosen and can vary widely with different residue 
compositions in different proteins as discussed in the 
results section. 

Table 1: Samples per class for 2-class and 3-class data 
where thresholds are set between 0 and 50% for two class 
(C0 and C1) and between 0, 10 and 50 % for 3-class (C0 
C1 and C2). 

Number of  
Training residues 

Number of  
Testing residues 

% C0 C1 C2 C0 C1 C2 

0 867 6678 ** 4713 38424 ** 

5 5796 1749 ** 32943 10194 ** 

10 2826 4719 ** 15864 27273 ** 

20 4065 3480 ** 23111 20026 ** 

50 5796 1749 ** 32945 10192 ** 

10_20 3888 831 2826 22265 5008 15864 

25_50 1750 1750 4065 10194 9832 23111 

3 RESULTS AND DISCUSSION 

We compare the results of our simulation  using S-
ELM on the Manesh data set with the SVM 
algorithm and NETASA (Shandar & Gromiha 2002) 
methods (Figure 1 and Table 2), using the same set 
of proteins for training and testing. Hence 
comparisons with literature are made only with the 
NETASA results. 

The accuracy of the RSA predictions is measured 
by the number of residues correctly classified as 
belonging to class1 (E for exposed) for the two class 
problem and as belonging to class2 (E) for the three 
class problem. Prediction accuracy for training and 
testing data sets is defined as the total number of 
correctly predicted values for each class over the 
total number of available residues in all classes. The 
data shown in Table 2 indicates that the S-ELM 
approach achieves a better accuracy for training and 
testing than the corresponding results for the 
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NETASA paper. The SVM algorithm takes a longer 
time to build the model as shown in Figure 2 and 3, 
whereas the S-ELM algorithm process data at the 
same speed for all combinations of data, showing 
that the algorithm does not slow down when 
complex data is involved. S-ELM uses optimal 
parameters that are stored during the training phase 
making it possible to run through the tests quickly. 

 

Figure 1: Accuracy comparison between NETASA and S-
ELM, shows slight improvements for S-ELM method. 

The training results for the SVM are between 
89% and 99% for a range of thresholds. The 
corresponding testing results saw gains for some of 
the thresholds, while almost same results for the 
others. The test results vary from 69% to 89% over a 
range of thresholds, for the two class problem. The 
results are much better for the S-ELM algorithm, 
where the training and testing results are closer 
together showing better generalization. The training 
results vary between 73 % and 89% while the test 
results vary between 71% and 89% which are better 
than the results for the SVM and NETASA method. 
Our interest in including the SVM in our simulations 
was to show the advantages in time factor when the 
S-ELM algorithm is used. The training results for 
the S-ELM show a little gain over the NETASA and 
the SVM results, but the testing results for S-ELM 
clearly show higher results of between .006 to 4.476 
% as seen in Figure 1 and Table 2. Similarly for the 
three-class problem, seen on the last two lines of 
Figure 3, the training accuracies for SVM are very 
high at 99%  while the testing accuracies are 68% 
and 54% for two different thresholds, which are 
slightly higher than for the NETASA results. 

For the S-ELM results, the training accuracies 
are closer to the testing accuracies, indicating better 
generalization for the 3-class problem also. Here the 
S-ELM test results show between 3 to 4% gains as 
compared to the NETASA results. As indicated by 
many results in the literature, the accuracies can vary 

widely for different thresholds and different number 
of classes into which the data is divided. A general 
trend in the literature is that the RSA prediction 
results vary between 70 % and 80%, similar to what 
is seen here. So, the S-ELM gives comparable 
results to literature.  

Table 2: Training and Testing accuracies comparisons 
between NETASA, SVM and S_ELM for all thresholds 
using 350 hidden neurons are given. The support vectors 
are given for SVM data. 

 NET-
ASA 

SVM SVM S-ELM 

Thres -
hold % 

Accuracy % 
 

SV 
 

Accuracy 
for  350 
hidden 

neurons % 

T
ra

in
in

g 

0 89.8 99.9 3837 88.6 
5 76.1 99.9 5894 79.8 
10 75.2 99.9 6610 74.0 
20 73.1 99.9 6826 72.98 
50 80.1 99.9 5897 79.80 

10 -20 65.1 99.9 7075 67.12 
25 -50 60.9 99.9 7087 63.51 

 

T
es

ti
ng

 

0 87.9 89.1 ** 89.1 

5 74.6 76.2 ** 77.3 

10 71.2 71.2 ** 73.1 
20 70.3 69.5 ** 71.3 
50 75.9 76.3 ** 77.3 

10-20 63 64.1 ** 66.0 
25-50 55 58.1 ** 59.5 

 

 

Figure 2: Processing time for modelling: SVM Vs. S-
ELM, clear shows huge gains in time for S-ELM. 

The biggest advantage of using S-ELM comes 
from the speed at which the data can be processed 
by the algorithm, while providing us with slightly 
better accuracies. It can be clearly seen from Table 3 
that S-ELM has a clear advantage when it comes to 
processing speed. The same number of samples of 
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7545 training sample residues was used for model 
building for both algorithms. The ratio of time taken 
by SVM and S-ELM for model building, for the 
various thresholds range from 20.562 : 175 seconds 
which amounts to almost 8.51 times time gain by S-
ELM for 0% threshold data. We find that the time 
gains range from 8 times to multiple folds, the 
highest being for the 20% threshold data where the 
ratio is 20.562:1372.2 which is a gain of over 66.734 
times. Generally, the time taken for model building 
is most crucial, since the model needs to learn as 
much as possible in the shortest time. 

 

Figure 3: Processing time for testing: SVM Vs S-ELM. 

For real time applications and for batch 
processing applications it might be useful to have 
faster testing capabilities and here we see that the S-
ELM algorithm is much faster in its testing 
capabilities also. The same number of 43137 testing 
residues was used here for the test runs in both 
algorithms. Here the time gains between the testing 
times for 0 % threshold is .922:410 which amounts 
to 444.69 times fastr processing by S-ELM. We find 
similar gains for other thresholds with the highest 
gain for the 20% threshold at .937:857 which is 
914.62 times faster processing speed. Both the SVM 
and the S-ELM were run on the same computer 
running XP windows operating system with 4 GB 
RAM and Matlab software. 

Time taken for training and testing runs by SVM 
and S-ELM algorithms is given in Table 3. Figure 2 
and Figure 3 illustrate the high processing time of 
SVM and the very low and steady processing times 
of S-ELM very clearly. The time taken by S-ELM is 
very low at less than one or two seconds, shown as a 
horizontal line close to the x-axis while the time 
taken by SVM is quite high, ranging between 200 
and 1400 seconds for training and between 400 and 
900 seconds for testing. S-ELM takes very little time 
for testing since stored optimal parameters are used 
to calculate the output analytically using ELM. 

There is no processing time data available to 
compare speeds with the NETASA method. Future 
studies will concentrate on increasing the accuracy 
of S-ELM further using optimization techniques to 
tune the S-ELM parameters for RSA prediction. 

Table 3: Processing time for modelling, training and 
testing: comparison between SVM and ELM. 

 SVM S-ELM 
 Time in Seconds Time in Seconds 

T
hr

es
ho

ld
 %

 

M
od

el
li

ng
 

T
ra

in
in

g 
 

T
es

ti
ng

 
 

M
od

el
li

ng
 

 

T
ra

in
in

g 
 

T
es

ti
ng

 
 

0 175 24.6 410 20.6 0.5 0.92 
5 990 105 561 20.8 0.6 0.94 

10 1273 67 686 20.9 0.6 0.92 
20 1372 76 857 20.9 0.5 0.94 
50 977 89 645 20.9 0.6 0.95 

10-20 1239 88 723 21.0 1.1 1.08 
25-50 226 74 728 21.0 0.7 1.08 

4 CONCLUSIONS 

We have used the SVM and S-ELM methods of 
classification for RSA prediction, using the Manesh 
data set. We have compared the performance of 
these algorithms with each other and with NETASA, 
with respect to the speed of processing and have 
shown that there are multiple-fold gains  in 
computational efficiency while using S-ELM 
algorithm. It will be advantageous to use the S-ELM 
algorithm for real time and batch processing 
applications where accuracy and speed are equally 
important.  
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