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Abstract: There is a growing interest in developing computational models of grasping action recognition. This interest
is increasingly motivated by a wide range of applications in robotics, neuroscience, HCI, motion capture and
other research areas. In many cases, a vision-based approach to grasping action recognition appears to be more
promising. For example, in HCI and robotic applications, such an approach often allows for simpler and more
natural interaction. However, a vision-based approach to grasping action recognition is a challenging problem
due to the large number of hand self-occlusions which make the mapping from hand visual appearance to
the hand pose an inverse ill-posed problem. The approach proposed here builds on the work of Santello
and co-workers which demonstrate a reduction in hand variability within a given class of grasping actions.
The proposed neural network architecture introduces specialized modules for each class of grasping actions
and viewpoints, allowing for a more robust hand pose estimation. A quantitative analysis of the proposed
architecture obtained by working on a synthetic data set is presented and discussed as a basis for further work.

1 INTRODUCTION

Over the last few years, there has been a keen in-
terest in developing computational models for action
recognition. Notably, grasping actions are of par-
ticular interest for various research areas including
robotics, neuroscience, motion capture, telemanipu-
lation, and human–computer interaction (HCI). Sev-
eral works have been proposed in literature which ad-
dress the problem of recognizing of grasping actions
(Palm et al., 2009; Ju et al., 2008; Aleotti and Caselli,
2006). More specifically, as the direct use of the hand
as input source is an attractive method, most of these
works make use of wired gloves in order to perform
input computation. Moreover, the only technology
that currently satisfies the advanced requirements of
hand-based input for HCI is glove-based sensing. For
example, recognition can be based on wired glove
kinematic information (Ju et al., 2008), or hybrid ap-
proaches in which glove information is put together
with tactile sensors information (Palm et al., 2009;
Keni et al., 2003; Aleotti and Caselli, 2006).

This technology has several drawbacks including
the fact that it hinders the natural user interactions
with the computer-controlled environment. Further-
more, it requires time-consuming calibration and se-

tup procedures.
In contrast with this, vision-based approaches

have the potential to provide more natural, non-
contact solutions, allowing for simpler and more natu-
ral interactions between user and computer-controlled
environment in HCI, as well as in robotics, where
grasping actions recognition is mainly framed in the
context of programming by demonstration (PbD).

There are approaches which make use of ad hoc
solutions, like markers, in order to simplify this task
(Chang et al., 2007). In general, as reported in (Wein-
land et al., 2010; Poppe, 2007), markless vision-based
action recognition is acknowledged to be a challeng-
ing task. In particular, a major problem with grasping
actions is the occlusion problem: hand-pose estima-
tion from an acquired image can be extremely hard
because of possible occlusions among fingers or be-
tween fingers and object being grasped.

For this reason, a body model approach seems
more appropriate in this context. A body model ap-
proach usually consists of two steps: in a first step
one estimates a 3D model of the human body (in the
case of grasping actions this step coincides with the
estimation of hand pose), in a second step recognition
is made on the basis of joint trajectories.

Vision-based hand pose estimation is itself a chal-
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lenging problem (see (Erol et al., 2007) for a review).
More specifically, addressing such a problem without
any constraints on the hand pose makes the mapping
from visual hand appearance to hand configuration
very difficult to estimate. In this work, we present
a neural network architecture composed of a series of
specialized modules, each one implementing a map-
ping from visual hand appearance to hand configura-
tion only when the hand belongs to a particular grasp-
ing action and is observed from a specific viewpoint.

The paper is organized as follows: in Section 2,
we present the functional architecture and its actual
implementation by means of Mixture Density Net-
works. In Section 3, we present the experimental set
up in which the tests of Section 4 are carried out. Sec-
tion 5 is devoted to conclusions and future work.

2 MODEL ARCHITECTURE AND
IMPLEMENTATION

The main idea behind the present approach is to de-
velop a set of specialized functional mappings tuned
to predefined classes of grasping actions, and to use
these specialized mappings to estimate hand poses of
visually presented grasping actions. This approach is
based on the assumption that grasping actions can be
subdivided into different classes of grasping actions,
and that coordinated movements of hand fingers re-
sult, during grasping actions, in a reduced number of
physically possible hand shapes (see (Santello et al.,
2002; Prevete et al., 2008)).

Moreover, view-independent recognition was ob-
tained by developing view-dependent functional map-
pings, and by combining them in an appropriate way.
Thus, the system is basically based on a set of special-
ized functional mappings, and a selection mechanism.
The specialized mapping functions perform a map-
ping from visual image features to likely hand pose
candidates represented in terms of joint angles. Each
functional mapping is tuned to a predefined viewpoint
and a predefined class of grasping actions. The selec-
tion mechanism selects an element of the set of can-
didate hand poses. In the next two subsections we
will first provide an overall functional description of
the system, followed by a detailed description of the
system neural network structure.

2.1 Functional Model Architecture

The system proposed here can functionally be subdi-
vided into three different modules: Feature Extraction
(FE) module, Candidate Hand Configuration (CHC)
module, and Hand Configuration Selection (HCS)

module. The whole functional architecture of the sys-
tem is shown in Figure 1. The functional roles of each
module can be described as follows:

FE module. This module receives anR×Sgray-
level image as input. The output of the module is a
1×D vectorx. TheFE module implements a PCA
linear dimensional reduction.

CHC module. The CHC module receives the out-
put x of FE as input. This module is composed of a
bank ofN×M sub-modulesCHCi j , with i = 1,2, ...,N
and j = 1,2, ...,M. N is the number of predefined
classes of grasping actions, andM is the number of
predefined viewpoints. Given the inputx, each sub-
moduleCHCi j provides the most likely hand config-
uration, in terms of a 1×Ndo f vectort i j . Moreover,
eacht i j is associated with an estimation errorerri j ,
assuming that the inputx is obtained during the ob-
servation of a grasping action belonging to thei-th
class from thej-th viewpoint. Thus each sub-module
CHCi j , for thei-th grasping action andj-th viewpoint,
performs a specialized mapping from visual image
features to hand poses. The basic functional unit of
each sub-moduleCHCi j is an inverse-forward model
pair. The inverse model extracts the most likely hand
configurationt i j , given x, while the forward model
gives as output an image feature vectorxi j , givent i j .
The errorerri j is computed on the basis ofx andxi j .

HCS module. TheHCSmodule receives the out-
put ofCHC as input. It extracts a hand pose estima-
tion on the basis of estimation errorserri j , by select-
ing the hand pose associated with the minimum error
value.
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Figure 1: The system is functionally composed of three dif-
ferent modules: Feature Extraction (FE) module, Candi-
date Hand Configuration (CHC) module, and Hand Config-
uration Selection (HCS) module.

2.2 Neural Network Implementation

The FE module implements a PCA linear dimen-
sional reduction by means of an autoassociative neu-
ral network (Bishop, 1995). This is a multilayer per-
ceptron composed ofR× S input nodes,D hidden
nodes, andR×Soutput nodes. Both hidden nodes and
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output nodes have linear activation and output func-
tion. The input vectors are obtained by linearizing
the gray-level input images of sizeR×S into single
vectors of size 1×R·S. The network is trained to
associate input vectors with themselves by a standard
back-propagation algorithm. Once trained, the vec-
torsx are obtained as the output of the hidden units.

As theCHCmodule is solely composed byCHCi j
modules, we focus now on a genericCHCi j module,
and describe how it can be developed by means of a
neural network. As described above, aCHCi j mod-
ule is composed of an inverse-forward model pair.
Let us firstly consider the inverse-model. This pro-
vides a hand configurationt, given a visual image
feature vectorx. A major mathematical problem aris-
ing in this context concerns the ill-posed character of
the required transformation fromx to hand configu-
rations insofar as the same visually presented hand
can be associated with various hand configurations.
Therefore the mapping fromx to hand configura-
tions t is not a functional mapping, and assumes the
form of an inverse ill-posed problem (Friston, 2005;
Kilner et al., 2007). According to (Bishop, 1995),
one can cope with this problem by estimatingp(t|x)
in terms of a Mixture Density Network (MDN) ap-
proach:p(t|x) = ∑K

i=1ci(x)φi(t|x). Theφi(x) are ker-
nel functions, which are usually Gaussian functions

of the form: φi(t|x) = 1
(2π)D/2σD

i (x)
exp

{

−
‖t−µi(x)‖

2

2σ2
i (x)

}

.

The parametersci(x) can be regarded as prior proba-
bilities of t to be generated from thei-th component
of the mixture. The coefficients of the mixture,ci(x),
and the parameters of the kernel functions,φi(t,x)
(µi(x) and σi(x) for a Gaussian kernel), depend on
the sensory inputsx. A two-layer, feed-forward neu-
ral network can be used to model the relationship
between visual inputsx and corresponding mixture
parametersci(x), µi(x) andσi(x). Accordingly, the
problem of estimating the conditional probability dis-
tribution p(t|x) can be approached in terms of neural
networks by combining a multi-layer perceptron and a
Radial Basis Function (RBF) like network. The RBF
network will be composed ofNdo f input, K hidden
nodes and one output node. The form of basis func-
tion is the same as the Gaussian functions expressed
above, with the Gaussian parameters of the first layer
set toµi(x) andσi(x), and the second layer weights
set toci(x). Thus, given a previously unseen hand vi-
sual descriptionx, one can obtain an estimate of hand
configurationt as the central value of the more prob-
able branch ofp(t|x).

The network was trained using a dataset composed
of visual feature vectorsxn and hand configurationstn

collected during the observation of grasping actions
belonging to theCi-th class from thej-th viewpoint,

and by usingE = −∑n{∑ j c j(xn)φ(tn|xn)} as error
function. Once trained, the network output, i.e., the
candidate hand configurationt i j , is obtained as the
vector µh(x) associated to the highestch(x) value.
This operation is achieved by the moduleExtract best
candidate.

The design of the forward-model, involves a
multi-layer perceptron composed ofNdo f input and
D output units. The neural network receives a hand
configurationt as input, and computes an expected
image feature vectorxi j as output. The vectorxi j is
the expected image feature vector corresponding to
the hand configurationt when the hand is observed
during a grasping action belonging to theCi-th class
from the j-th viewpoint. The network was trained us-
ing theRProplearning algorithm by exploiting again
a dataset composed of hand configurations and visual
feature vectors, collected during the observation of
grasping actions belonging to theCi-th class from the
j-th viewpoint.

The errorerri j associated with the candidate hand
configurationt i j is computed as the sum-of-square er-
ror between the vectorsx andxi j . Finally, given the
set of candidate hand configurationsxi j and associ-
ated errorserri j , with i = 1,2, ..,N and j = 1,2, ...,M,
the candidate hand configuration with the lowest as-
sociated error is identified as the output of the whole
system.

3 EXPERIMENTAL SETTING

We performed two main types of experiments to con-
trol the performance of the proposed architecture. In
the first type of experiments we used different action
classes (DA-TEST); and in the second type we used
different viewpoints (DV-TEST).

A major problem in testing the performance of a
hand pose estimation system is to obtain a ground
truth. In fact, in the case of a quantitative analysis,
one needs to know the actual hand configuration cor-
responding to the hand picture which is fed as input to
the system. This is difficult to achieve with real data.
For this reason, we decided to work with a synthetic
dataset constructed by means of a dataglove and a 3D
rendering software. The dataglove used for these ex-
periments is the HumanGlove (HumanGlove, Human-
ware S.r.l., Pontedera (Pisa), Italy) endowed with 16
sensors. This dataglove feeds data into the 3D ren-
dering software which reads sensor values and con-
stantly updates a 3D human hand model. Thus, this
experimental setting enables us to collecthand joints
configuration - hand imagepairs.

In the DA-TEST two different types of grasps

ICFC 2010 - International Conference on Fuzzy Computation

360



were used in accordance with the treatment in
(Napier, 1956): precision-grasp(PG) andpower-
grasp, the latter being also known as whole hand
grasp (WH). In performing a power grasp, the ob-
ject is held in a clamp formed by fingers and palm;
in performing a precision grasp, the object is pinched
between the flexor aspects of the fingers and the op-
posing thumb. Two different objects were used: a
tennis ball was used for the WH actions, and a pen
cup for the PG actions. We collected 20 actions for
each class of actions. In the DV-TEST we rendered
the 3D hand model of the PG grasping actions data,
from 9 different viewpoints as reported in Table 2. In
both DA-TEST and DV-TEST, the capability of the
proposed architecture in recovering a hand pose was
measured in terms of Euclidean distance between the
actual hand poset and the estimated hand poset̂, that
is ENORM =‖ t − t̂ ‖. This measure was reported in
other works such as (Romero et al., 2009). However,
due to the differences in the experimental settings it
is difficult to make a clear comparison between re-
sults. For this reason, we decided to compute a fur-
ther term, that is, the Root-Mean-Square (RMS) er-
ror, in order to obtain a more complete interpretation
of our results. The RMS error over a set of actual hand
posestn and estimated hand posest̂n is computed as:

ERMS=
∑N

n=1‖t̂n−tn‖2

∑N
i=1‖tn−t̄‖2 . Heret̄ is defined as the average

of actual hand pose vectors, that is:t̄ = 1
N ∑N

n=1 tn.
In this way the RMS error approaches 1 when the
model predicts the mean value of the test data, and
approaches to 0 value when the model’s prediction
captures the actual hand poses. Thus, we expect to
have a good performance when the RMS error for our
system is very close to zero.

Moreover, we have computed the “selection error”
(ESEL) which measures how many times the input im-
age belonging to thei-th action class andj-th view-
point does not result in the lowest error for the module
CHCi j . TheESEL error is expressed as percentage of
frames (belonging to the action classi and the view-
point j) which do not give rise the lowest error for the
moduleCHCi j .

The architecture of the model used for these tests
is composed of a number ofCHCi j modules depend-
ing on the number of different action classes and
viewpoints. For eachCHCi j module the MDN com-
ponent, implementing the inverse model, was trained
using different values ofH hidden units andK ker-
nels. The feedforward neural network (FNN), imple-
menting the forward model, is instead trained with
different values of the hidden unit numberL. For both
MDN and FNN only the configuration was consid-
ered which gives rise to the highest likelihood, for the

MDN, and to the lowest error for the FNN, computed
on a validation set.

Table 1 summarizes the parameters used for both
DA-TEST and DV-TEST.

Table 1: Parameters used for both DA-TEST and DV-TEST.

DA-TEST DV-TEST
viewpoints (N) 1 9

Action class (M) 2 1
Hidden Nodes (H) From 5 to 10 at step 2

Kernels (K) From 3 to 10 at step 1
Hidden nodes (L) From 5 to 10 at step 2
Num inputs (D) 30

Input Image dim (R,S) 135×98

Table 2: Sample input images from the 9 different view-
points used for DV-TEST.

−80o −60o −40o

−20o 0o 20o

40o 60o 80o

4 DA-TEST RESULTS

In this test we used 20 PG grasping actions and
20 WH grasping actions. The architecture consists
of two CHC modules. Each of these modules was
trained on 5 of the corresponding actions (PG or WH)
whereas 5 actions have been used for validation, and
the remaining 10 actions for testing.

In Table 3 the mean and the standard deviation of
theENORM error over all hand poses contained in the
10 test actions is reported. Moreover the RMS Error
is reported there, insofar as it provides more meaning-
ful error information. Finally, we reported the error of
selectionESEL.

As one can see from theESEL error, the system
is almost always able to retrieve the correct module
CHC for processing the current input image. More-
over, the system gives a good hand pose estimation
since the RMS Error is close to zero for both PG ac-
tions and WH actions. TheENORM error is also re-
ported for comparison with other works. In Table 4
sample input images together with their hand estima-
tions1 and correspondingENORM errors are reported.
One can see that if theENORM error is close to mean

1The picture of the estimated hand configuration is ob-
tained by means of the 3D simulator.
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error (reported in Table 3), then the input and esti-
mated hand images are very similar.

Table 3: RMS error and the Mean and standard deviation of
theENORM error for test actions belonging to class PG and
WH. Moreover theESEL error is reported.

PG WH
RMS 0.24 0.12

ENORM (µ±σ) 20.1±27 11.7±19
ESEL 3% 9%

Table 4: Sample input images together with the correspond-
ing hand estimated images drawn from both PG and WH
test actions.

Actual Estimated Error

PG 118.3

PG 19.7

WH 74.9

WH 12.3

5 DV-TEST RESULTS

The DV-TEST is divided into two phases. In a first
phase, we test the system on the same viewpoint
which it was trained. Note that although test view-
points are the same as training viewpoints, when an
image frame of a test action is fed as input, the system
does not “know” what is the viewpoint correspond-
ing to that action, and must retrieve such information
from the input. In a second phase, we test the sys-
tem on viewpoints that are different with respect to
the ones it has been trained with.

In the first phase, we used 20 PG grasping actions
rendered from 9 different viewpoints. The model ar-
chitecture consists of 9CHCi j modules, one for each
viewpoint, with i = 1 and j = 1, . . . ,9. The forward
and inverse models of theCHCi j module were trained
on data related to thej-th viewpoint only. In partic-
ular, 5 actions were used for training and 5 other ac-
tions for validation. Once trained, the remaining 10
actions for each viewpoint were fed as input to the
system.

Table 5 shows the selection errorESEL together

with the two estimation errors,ENORM and RMS for
DV-TEST. One can see that the system is able to re-
trieve the right viewpoint for the hand input image
(ESEL almost 0 for all viewpoints) and is able to give
a reasonable hand pos estimation as confirmed by the
RMS error which is close enough to zero.

Table 5: Selection errorESEL, estimation errorENORM, and
RMS error for test viewpoints used in DV-TEST first phase.

viewpoint 0o 20o 40o

RMSError 0.02 0.04 0.2
ENORM (µ±σ) 9.1±9 12.4±15 25.2±38

ESEL 0% 0% 1%
viewpoint 60o 80o −20o

RMSError 0.08 0.13 0.06
ENORM (µ±σ) 15.9±24 21.2±30 14.9±21

ESEL 0% 1% 0%
viewpoint −40o −60o −80o

RMSError 0.19 0.08 0.03
ENORM (µ±σ) 23.6±37 16.5±23 12.1±14

ESEL 0% 0% 0%

In the second phase of the DV-TEST we used five
CHC modules only, corresponding to the viewpoints
at 0, 40, 80,−40, and−80 degrees. The system was
tested on the remaining viewpoints at 20, 60,−20,
and−60 degrees.

Table 6 reports errors in recovering hand pose
from viewpoints that the system was not trained on:
only for viewpoint corresponding to−20 degrees the
error is acceptable, in the other cases, the error is high.

Table 6: Selection errorESEL together with estimation error
ENORM and RMS error for all test viewpoints used in DV-
TEST second phase.

viewpoint 20o 60o

RMSError 1.69 2.22
ENORM (µ±σ) 119±58 137.5±65

viewpoint −20o −60o

RMSError 0.42 1.47
ENORM (µ±σ) 59.8±28 114.5±46

6 CONCLUSIONS

The neural architecture described in this paper was
deployed to address the problem of vision-based hand
pose estimation during the execution of grasping ac-
tions observed from different viewpoints. As stated
in the introduction, vision-based hand pose estima-
tion is, in general, a challenging problem due to
the large amount of self-occlusions between fingers
which make this problem an inverse ill-posed prob-
lem. Even though the number of degrees of free-
dom is quite large, it has been showed (Santello et al.,
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2002) that a hand, during grasping action, can effec-
tively assume a reduced number of hand shapes. For
this reason it is reasonable to conjecture that vision-
based hand pose estimation becomes simpler if one
“knows” which kind of action is going to be executed.
This is the main rationale behind our system. The re-
sults of the DA-TEST show that this system is able
to give a good estimation of hand pose in the case of
different grasping actions.

In the first phase of the DV-TEST comparable re-
sults with respect to the DA-TEST have been ob-
tained. It must be emphasized, moreover, that al-
though the system has been tested on the same view-
points it was trained on, the system does not know in
advance which viewpoint a frame drawn from a test
action belongs to.

In the second phase of the DV-TEST an accept-
able error was obtained from one viewpoint only. This
negative outcome is likely to depend on excessively
high differences in degrees between two consecutive
training viewpoints. Thus a more precise investiga-
tion must be performed with a more comprehensive
set of viewpoints. A linear combination of the out-
puts of the CHC modules, on the basis of the produced
errors, can be investigated too. Furthermore, the FE
module can be replaced with more sophisticated mod-
ules, in order to extract more significant features such
as Histograms of Oriented Gradients (HOGs) (Dalal
and Triggs, 2005). A comparison with other ap-
proaches must be performed. In this regard, however,
the lack of some benchmark datasets make meaning-
ful comparisons between different systems difficult to
produce. Finally, an extension of this model might
profitably take into account graspable object proper-
ties (Prevete et al., 2010) in addition to hand visual
features.
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