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Abstract: This paper presents a new wavelet-network-based technique for 1D and 2D functions’ approximation. 
Classical training algorithms start with a predetermined network structure which can be either insufficient or 
overcomplicated. Furthermore, the resolutions of wavelet networks training problems by gradient are 
characterized by their noticed inability to escape of local optima. 
The main feature of this technique is that it avoids both insufficiency and local minima by including genetic 
algorithms. Simulation results are demonstrated to validate the generalization ability and efficiency of the 
proposed Multi Mother Wavelet Neural Network based on genetic algorithms. 

1 INTRODUCTION 

Wavelet neural networks (WNN) (Daubechies, 
1992), (Zhang and Benveniste, 1992) have recently 
attracted great interest, thanks to their advantages 
over radial basis function networks (RBFN) as they 
are universal approximators. Unfortunately, training 
algorithms start with a predetermined network 
structure for wavelet networks (predetermined 
number of wavelets). So, the network resulting from 
learning applied to predetermined architecture is 
either insufficient or complicated.  

Besides, for wavelet network learning, some 
gradient-descent methods are more appropriate than 
the evolutionary ones in converging on an exact 
optimal solution in a reasonable time. However, they 
are inclined to fall into local optima.  

The evolutionist algorithms bring in some 
domains a big number of solutions: practice of 
networks to variable architecture (Withleyet, 1990), 
automatic generation of Boolean neural networks for 
the resolution of a class of optimization problems       
(Gruau and Whitley, 1993). 

Our idea is to combine the advantages of 
gradient descent and evolutionist algorithms. 

In the proposed approach, an evolutionary 
algorithm provides a good solution.  

Then, we apply a gradient-descent method to 
obtain a more accurate optimal solution.   

The wavelet networks trained by the algorithm 
have global convergence, avoidance of local 
minimum and ability to approximate band-limited 
functions. 

Simulation results prove that the proposed 
initializations’ approach reduces the wavelet 
network training time and improves the robustness 
of gradient-descent algorithms. 

This paper is structured in 4 sections. After a 
brief introduction, we present in section 2 some 
basic definitions as well as initilzation problems  of 
wavenet: we focalized on two algorithms, the 
initialization step and the update one based on 
gradient-descent. In section 3, we provide the 
proposed approach to solve these problems and  we 
present some results and tables achieved from the 
application of our new approach in 1D and 2D 
functions’ approximation in the last section     
(section 4). 
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2 MULTI MOTHER WAVELET 
NEURAL NETWORK FOR 
APPROXIMATION 

2.1 Theoretical Background  

Wavelets occur in family of functions, each one is 
defined by dilation ai which controls the scaling 
parameter and translation ti which controls the 
position of a single function, named mother wavelet

( )xψ . 
Wavelets are mainly used for functions’ 

decomposition. 
Decomposing a function in wavelets consists of 

writing the function as a pondered sum of functions 
obtained from simple operations (translation and 
dilation) and performed on a mother-wavelet. 

Let's suppose that we only have a finished 
number Nw of wavelets Ψj gotten from the mother 
wavelet. 

1
( ) ( )

N

i j
j

f x w xψ
=

≈ ∑  (1)

We can consider the relation (1) as an 
approximation of the function f. The wavelet 
network has the following shape (Zhang, 1997): 

0
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ˆ ( ) 1
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j k

y w x a x with x
= =

= Ψ + =∑ ∑  (2)

Where ŷ is the network output, Nw is the number 
of wavelets, Wj is the weight of WN and                    
x = {x1, x2,…,xN} the input vector, it is often useful 
to consider, besides the wavelets decomposition, that 
the output can have a refinement component, 
coefficients ak (k=0,1,...,Ni) in relation to the 
variables. 

A WN can be regarded as a function 
approximator which estimates an unknown 
functional mapping: y = f(x) +ε , where f is the 
regression function and the error term ε is a zero-
mean random variable of disturbance. There are 
several approaches for WN construction (Bellil, Ben 
Amar, Zaied and Alimi, 2004), (Qian and Chen, 
1994). 

2.2 Training Algorithms 

The wavenet learning algorithms consist of two 
processes: the self-construction of networks and the 
minimization error. 

In the first process, the network structures 
applied to representation are determined by using   
 wavelet analysis (Lee, 1999). 

In the second process, the parameters of the 
initialized network are updated using the steepest 
gradient-descent method of minimization. 

Therefore, the learning cost can be reduced. 
Classical training algorithms have two problems: in 
the definition of wavelet network structure and in 
update stage. 

2.2.1 Initialization Problems 

First, we must note that initialization step is so 
necessary: that if we have a good initialization, the 
local minimum problem can be avoided, it is 
sufficient to select the best regressions (the best 
based on the training data) from a finished set of 
regressors. 

If the number of regressors is insufficient, not 
only some local minima appear, but also, the global 
minimum of the cost function doesn't necessarily 
correspond to the values of the parameters we wish 
to find. 

For that reason, in this case, it is useless to put an 
expensive algorithm to look for the global minimum. 
With a good initialization of the network parameters 
the efficiency of training increases. As we 
previously noted, classical approaches begin often 
with predetermined wavelet networks. 
Consequently, the network is often insufficient.  

After that, new works are used to construct a 
several mother wavelets families library for the 
network construction (Bellil, Othmani and Ben 
Amar, 2007): Every wavelet has different dilations 
following different inputs. This choice has the 
advantages of enriching the library, and offering a 
better performance for a given wavelets number.  

The drawback introduced by this choice concerns 
the library size. A library with several wavelets 
families is more voluminous than the one that 
possesses the same wavelet mother. It needs a more 
elevated calculation cost during the selection stage.  

On the other hand, the resolutions of wavelet 
networks training problems by gradient are 
characterized by their noticed inability to escape of 
local optima (Michalewicz, 1993) and in a least 
measure by their slowness (Zhang, 1997). 

We propose a genetic algorithm which provides 
a good solution. Then, we apply a gradient-descent 
method to obtain a more accurate optimal solution. 

In this paper, genetic algorithm provides a good 
solution to these problems. 
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First, this algorithm will reduce the library 
dimension. Second, this algorithm will initialize the 
descent gradient in order to avoid local minima. 

2.2.2 Novel Wavelet Networks Architecture  

The proposed network structure is similar to the 
classic network, but it possesses some differences;   
the classic network uses dilation and translation 
versions of only one mother wavelet, but new 
version constructs the network by the 
implementation of several mother wavelets in the 
hidden layer.  

The objective is to maximize the potentiality of 
selection of the wavelet (Yan and Gao, 2009) that 
approximates better the signal. The new wavelet 
network structure with one output y�  can be 
expressed by equation (3). We consider wavelet 
network (Bellil et al., 2007): 

1 21 1 2 2
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(3)

Where ŷ  is the network output and x={x1,x2,..., xNi} 
the input vector; it is often useful to consider, in 
addition to the wavelets decomposition, that the 
output can have a linear component in relation to the 
variables: the coefficients ak (k = 0, 1, ... , Ni). 
Nl is the number of selected wavelets for the mother 
wavelet family lΨ . 

The index l depends on the wavelet family and 
the choice of the mother wavelet. 

3 GENETIC ALGORITHMS 

3.1 Network Initialization Parameters 

Once ti and di are obtained from the initialization by 
a dyadic grid (Zhang, 1997), they are used in 
computing a least square solution for ω, a, b. 
The variable Ni represents the number of 
displacement pair’s data. 

Using families of wavelets, we have a library 
that contains Nl wavelets. To every wavelet Ψji we 
associate a vector whose components are the values 
of  this  wavelet  according  to  the  examples of the 

(4)

training sequence. We constitute a matrix that is 
constituted of VMw of blocks of the vectors 
representing the wavelets of every mother wavelet 
where the expression is: 

] [ ][1 ,.., , 1 ,..,{ }j
M i i N j MV V

ω = ==  (5)

The  matrix is defined as follows: 
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3.2 Selection of the Best Wavelets 

The library being constructed, a selection method is 
applied in order to determine the most meaningful 
wavelet for modelling the considered signal.   
Generally, the wavelets in W are not all meaningful 
to estimate the signal. Let's suppose that we want to 
construct a wavelets network g(x) with m wavelets, 
the problem is to select m wavelets from W. 

The proposed selection is based on Orthogonal 
Least Square (OLS) (Titsias and Likas, 2001), 
(Colla, Reyneri and Sgarbi, 1999). 

3.3 Change of the Library Dimension 

3.3.1 Crossover Operators 

This algorithm used two crossover operators: 
One of them changes the number of columns of 

chromosome so it changes the number of mother 
wavelets and introduce in the library a new version 
of wavelets issued of the new mother wavelet. 

The second operator does not change the number 
of columns of each chromosome. 

3.3.1.1 The Crossover1 Operator 

After the selection of the two chromosomes to which 
we will apply this operator, we choose an arbitrary 
position a in the first chromosome and a position b 
in the second according to a. After that, we exchange 
the second parts of the two chromosomes. 
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Figure 1: Crossover1 operator. 

3.3.1.2 The Crossover2 Operator 

For the second operator, we choose an arbitrary 
position c in the first chromosome and a position d 
in the second chromosome according to c. 

Let Min_point= Min (c,d). First, we change the 
values of c and d to Min_point. Then, we exchange 
the second parts of the two chromosomes. 

In this case, we have necessarily first children 
having the same length as the second chromosome 
and the second children having the same length as 
the first chromosome. 

 
Figure 2: Crossover2 operator. 

3.3.2 Mutation Operator 

Generally, the initial population does not have all the 
information that is essential to the solution. The goal 
of applying the mutation operator is to inject some 
new information (wavelets) into the population.  

Mutation consists in changing one or more 
gene(s) in chromosome chosen randomly according 
to a mutation probability pm. Nevertheless, the 
muted gene may be the optimal one therefore, the 
new gene will not replace the old but it will be added 
to this chromosome. 

3.4 Change of Settings Wavelets 

In this step, we have a uniform crossover operator 
and a mutation operator applied to structural 
parameters of WN (translations and dilatations). 

3.4.1 Uniform Crossover Operator 

Let T = (t1, t2,…,tN) the vector representing the 
translations: A coefficient is chosen and a vector  
T = (t1 ', t2’ ,…,tN ') is constructed as follows: 

'
1 1 2. (1 ).t t tα α= + −  (7)
'
2 2 1. (1 ).t t tα α= + −  (8)

Where α is a real random value chosen in [-1 1]. The 
same operator is applied to the vector dilation D. 

 

3.4.2 Mutation Operator 

After crossing, the string is subject to mutation. We 
consider the optimal wavelet, we reset the network 
with these wavelets that will replace the old in the 
library and the optimization algorithm will be 
continued using new wavelets.  

Finally, after N iterations, we construct a 
network of wavelets Nw wavelet layer which hides 
the approximation signal Y. As a result, the network 
parameters are: 

{ } [ ]1... w

opt optT tipert ipert N
=

=

{ } [ ]1... w

opt optD dipert ipert N
=

=

 

{ } [ ]1... w

opt opt
ipert ipert N

ω ω=
=

 

(9)

The model f (x) can be written as:  

1 0

( ) *
Nw n

opt opt
i i k k

i k

g x v a xω
= =

= +∑ ∑  (10)

The proposed algorithm is resumed in this figure: 

 

Figure 3: Chart of genetic algorithm. 

4 EXPERIMENTS AND RESULTS 

In this section, we present some experimental results 
of the proposed Multi Mother Wavelet Neural 
Networks based genetic algorithm (MMWNN-GA) 
on approximating 1D and 2D functions. 

 First, simulations on 1D function approximation 
are conducted to validate and compare the proposed 
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algorithm with some others wavelets neural 
networks.  

The input x is constructed by the uniform 
distribution, and the corresponding output y is 
functional of y = f(x).  

Second, we approximate four 2D functions using 
MMWNN-GA and some others wavelets networks 
to illustrate the robustness of the proposed 
algorithm. 

We compare the performances using the Mean 
Square Error (MSE) defined by: 

2

1

1 ˆ ( )M
ii

MSE f x y
M =

⎡ ⎤= −⎣ ⎦∑  (11)

Where  is the network output. 

4.1 1D approximation using the 
Initialization by Genetic Algorithm 

We want to rebuild three signals F1(x), F2(x) and 
F3(x) defined by equations (12), (13) and (14). 

2.186 12.864 [ 10, 2[
1( ) 4.246 [ 2, 0[

10exp( 0.05 0.5)sin( (0.03 0.7)) [0,10[

x for x
F x x for x

x x x for x

− − ∈ − −⎧
⎪= ∈ − −⎨
⎪ − − + ∈⎩

 

(12)

[ ]2F2(x)=0.5xsin(x)+cos(x)  for 2.5, 2.5x∈ −
 

(13)

[ ]F3(x)=sinc(1.5x)  for 2.5,2.5x∈ −  (14)

Table 1 gives the MSE after 100 training for 
classical and multi-mother wavelet network and only 
40 iteration for MMWNN-GA algorithm. 

The best approximated functions F1, F2 and F3 
are displayed in Figure 4. 

For F1, the MSE of Mexhat is 1.39e-2, 
comparing to 4.20e-3 for MMWNN-GA. 

Beta2 approximates F2 with an MSE equal to 
9.25e-7 where the MSE using the MMWNN-GA is  

Table 1: Comparison between CWNN, MMWNN and 
MMWNN-GA in term of MSE for 1D functions 
approximation. 

Function S1 S2 S3 
Nb of wavelets 8 10 10 

CWNN 
(100 

iterations) 

Mexhat 1.39e-2 2.64e-5 6.53e-4 
Pwog1 4.70 e-2 2.63e-5 2.50e-4 
Slog1 2.08e-3 3.70e-6 3.40e-4 
Beta1 1.93e-2 9.24e-7 1.04e-3 
Beta2 1.92e-2 9.25e-7 1.04e-3 
Beta3 1.93e-2 1.39e-5 1.33e-2 

MLWN 
(100 iterations) 3.46e-4 8.81e-11 4.58e-6 

MMWNN-GA  
(40 iterations) 4.20e-3 1 .01e-10 2.72e-6 

equal to 1.01e-10. Finally, the MSE is 4.58e-6 for 
MMWNN comparing to 2.72e-6 for MMWWN-GA. 

From these simulations we can deduce the 
superiority of the MMWNN-GA algorithm over 
classical WNN and MLWN in term of 1D functions’ 
approximation as they much reduce the number of 
gradient iterations since initialization step has 
already achieved acceptable results.  

 
Figure 4: Approximated 1-D function. The mutation 
probability is equal to 0.0001. 

4.2  2D Approximation 

The Table 2 gives the final mean square error after 
100 training for classical networks and multi-mother 
wavelet network and only 40 iteration for 
MMWNN-GA 4 levels decomposition to 
approximate some 2D functions (S1, S2, S3 and S4 
given on figure 5). 

 
Figure 5: 2D functions. 
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Table 2: Comparison between the MSE of CWN, 
MMWNN and MMWNN-GA in term of 2D functions 
approximation. 

Function S1 S2 S3 S4 
Nb of wavelets 17 19 14 9 

CWNN 
(100 

iterations) 

Mexhat 2.58e-3 1.00e-2  4.93e-2  1.05e-2 
Pwog1 4.06e-3 1.73e-2  4.94e-2  1.08e-3 
Slog1 2.31e-3 2.60e-3  4.88e-2  6.37e-3 
Beta1 4.22e-3 1.44e-2  4.63e-2  2.25e-4 
Beta2 2.80e-3 6.19e-3  4.56e-2  3.94e-4 
Beta3 4.23e-3 6.19e-3  4.65e-2  4.85e-4 

MLWNN 
(100 iterations) 

 3.49e-7 1.50e-5  2.54e-4 8.4e-3 

MMWNN-GA  
(40iterations ) 

 8.48e-7 5.78e-7 7.89e-4  4.86e-3 

From table 2, we can see that MLWNN-GA are 
more suitable for 2D function approximation then 
the others wavelets neural networks.  

For example we have an MSE equal to 8.4877e-7 
to approximate the surface S1 using MMWNN-GA 
after 40 iterations over 2.5803e-3 if we use the 
Mexican hat wavelet after 100 iterations. 

The MMWNN approximates S2 with an MSE 
equal to 1.50e-5 where the MSE using the 
MLWNNGA is 5.78e-7. 

For S3, the MSE is equal to 4.65e-2 for Beta3 
WNN comparing to 7.89e-4 for MLWWN-GA. 

Finally, Slog1 approximates S4 with MSE equal 
to 6.37e-3 comparing to 4.86e-3 with MMWNN-
GA. 

5 CONCLUSIONS 

In this paper, we presented a genetic algorithm for 
the design of wavelet network. 

The problem was to find the optimal network 
structure and parameters. In order to determine the 
optimal network, the proposed algorithms modify 
the number of wavelets in the library. 

The performance of the algorithm is achieved by 
evolving the initial population and by using 
operators that alter the structure of the wavelets 
library. 

Comparing to classical algorithms, results show 
significant improvement in the resulting 
performance and topology. 

As future work, we propose to combine this 
algorithm with GCV (Othmani, Bellil, Ben Amar 
and Alimi, 2010) to optimize the number of wavelets 
in hidden layer. 
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