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Abstract: A bit-encoded heuristic evolutionary optimization algorithm inspired by the Generalized Extremal 
Optimization method is presented. The proposed evolutionary approach aims at optimizing a predictive 
maintenance scheduling problem characterized by an analytically intractable objective function. A 
preliminary comparison with a standard genetic algorithm on a set of high-dimension cases of the 
considered maintenance problem shows better performance for the proposed approach. 

1 INTRODUCTION 

Evolutionary algorithms are excellent heuristic 
methods, inspired by biological evolution, to solve 
complex optimization problems with analytically 
intractable objective functions. Although 
evolutionary-based methods approximate the 
optimal solution without guaranteeing its optimality, 
the underlying principles of natural evolution ensure 
promising results (De Sousa and Ramos, 2002). This 
turns out to be useful especially in real-time 
complex optimization. 

The most popular and used methods are mainly: 
Genetic Algorithms (GA) (Goldberg, 1989), 
Simulated Annealing (SA) (Kirkpatrick et al, 1983), 
and algorithms based on Swarm Intelligence, such as 
Ant Colony Optimization (ACO) (Dorigo et al, 
1996), and Particle Swarm Optimization (PSO) 
(Kennedy and Eberhart, 1995), (although the last 

two are biological inspired heuristics, not considered 
tightly evolutionary by the survey). 

However, the aforementioned algorithms in their 
practical implementation for optimization problems 
have a problematic feature: the optimal solution is 
searched through a stochastic process sensitive to a 
suitable setting of adjustable parameters. A proper 
setting affects the performance of the algorithms 
significantly, and in many practical cases this 
becomes a costly task in itself. Moreover, most of 
them are population-based, thus their run is time-
consuming compared to other algorithms. 

By exploiting the Self-Organized Criticality state 
theory (SOC) (Bak, Tang and Wiesenfeld, 1987) in 
ecosystems, Boettcher and Percus proposed a novel 
evolutionary optimization method called Extremal 
Optimization (EO) (Boettcher and Percus, 2001), 
successfully applied to complex combinatorial 
optimization problems. EO method relies on the 
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Bak-Sneppen model (Bak and Sneppen, 1993), a 
simplified model of natural co-evolution in 
ecosystems: a number of species in a system evolves 
to reach the best adaptation; the worst adapted 
species are forced to evolve more quickly to avoid 
extinction. This mechanism determines an overall 
adaptation for the ecosystem as a whole. 

Beyond these encouraging results, the 
evolutionary approach proposed in (Boettcher and 
Percus, 2001) adds two peculiar features: only one 
setting parameter is needed and a single candidate is 
processed at each iteration. These two aspects are “a 
priori” advantages with respect to the traditional 
evolutionary approach (as GA, SA, PSO and so on). 

These noteworthy characteristics have 
encouraged the employment of EO algorithm to 
tackle different physics issues or engineering 
applications, particularly hard to face.  

Predictive maintenance scheduling belongs to 
this class of problems; it could be described in this 
way: an optimal action sequence for maintaining a 
system in order to avoid potential breakdowns is to 
be found. The terms predictive indicates that some 
problem parameters cannot be constant during the 
process, but are continuously updated in real time. 
Thus, the planned schedule (the optimal solution) 
must to be re-organized for every modification of 
the examined system state and the constraints of the 
task. Moreover, such as many maintenance 
scheduling problems, the corresponding 
optimization problem is characterized by an 
analytically intractable objective function to be 
minimized. Hence, it needs for a heuristic approach 
to search the optimal solution.  

Among the above variations of EO, the 
Generalized Extremal Optimization (GEO) 
algorithm (De Sousa, Ramos, 2002) was built to be 
applied on a wide class of complex problems. Its 
particularity lies in working on strings composed by 
bits with “fitness” proportional to the contribution to 
the quality of the whole solution generated by their 
mutation.  

Following this simple idea, in this paper a GEO 
application is proposed for the problem of the 
predictive maintenance. After an outline of the 
proposed method, preliminary experimental results 
on a set of analytically intractable scheduling 
problems are shown in order to highlight better 
performance than a standard GA. 

2 THE PROPOSED METHOD 

In the present section, first, a formulation of 
predictive maintenance scheduling problem is 
detailed and, then, the proposed heuristic algorithm 
is presented. 

2.1 Statement of the Predictive 
Maintenance Scheduling Problem  

2.1.1 Experimental Motivations 

The maintenance scheduling formulation proposed 
in the following is to be faced under the framework 
of the industrial research project MONDIEVOB 
(Buildings Remote Monitoring and Evolutionary 
Diagnostics), granted by POR 3.17 ICT Regione 
Campania (Italy). 

The long-term goal of MONDIEVOB is a 
predictive maintenance tool for processing 
experimental information acquired from building to 
be maintained in order to assess reliability and 
predict possible future failures (Figure 1), by means 
of algorithms able to predict future status of a 
machine or a process (Stapelberg, 2009). This 
predictive information allows proactive 
responsiveness in maintenance decision-making. 

 
Figure 1: “Model of failure” module predicts probability 
of failure of the considered system, from past and present 
data. This predictive information updates the objective 
function of the maintenance scheduler, in real time. 

Essentially, the on-line available information 
about the status of the monitored systems allows 
maintenance operations to be anticipated/delayed 
according to the actual conditions. 

In order to accomplish this task, a formulation 
evaluating different maintenance scenarios by 
considering the associated cost effects of the 
resulting maintenance operations and taking into 
account the current and predicted machine 
degradation levels has been set up. The cost of 
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maintenance actions, availability and maintenance 
resource constraints are taken into account. 

2.1.2 Evaluation of Maintenance Schedule 
Effects 

The purpose of the method presented in this section 
is defining a cost function in order to evaluate the 
effects of any given maintenance operation. 

The cost function used here takes into account 
both: the cost associated to the maintenance action 
(as, for example, the replacement of a given 
component), and the cost associated to the system 
operating in the normal state (as monitoring, 
inspection and so on). 

Let n be the available resources to maintenance 
operation, and mi (for i=1,..., M) the i-th system 
component that must be maintained (for a total of M 
components). The function C, representing the total 
cost of planned maintenance, can be expressed as: 

C = ai + pi(t) * Bi( )+
i∈Gt

∑ k j + bj (t)( )
j∈Ht

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

t =1

T

∑  (1) 

in which the following notation is used: 

T       finite time horizon of planned maintenance 
t    for t = 1, ..., T, the t-th instant of the time 
          horizon T 
ai       the operating cost of the i-th component  
kj         the replacement cost for  the j-th component 
bj     time dependent maintenance cost of the j-th  
          component (Dekker et al., 1997) 
pi (t)   probability of failure of the i-th component at  
          the time t     
Bi       cost of breakdown of the i-th component 
Gt      the set of every component not maintained at 
          the time t 
Ht      the set of every maintained component at the 
          time t 
Moreover, any given planned maintenance evaluated 
by means of (1) is subject to the following 
constraints: 

(i) Each mi can be served (maintained) by only one 
of the n available resources at any time t; 

(ii) Each mi has to be served at least one time 
instant t during the total time horizon T; 

Finally, it should be noted that the probability of 
failure pi at the time t could be derived from various 
deterioration models (Djurdjanovic et al., 2003; 
Engel et al., 2000; Yu et al, 2005), depending on the 
type of monitored component, and from the nature 
of information or signals acquired. 

2.1.3 Bit encoded Solution  

In the present work, each maintenance schedule S 
(called sequence, in the following) evaluated by 
means of (1) is expressed through a binary string 
representation as: 

{ }TMTTM ssssssS ,,,;;,,, 2111211 …………=  (2) 

where ski is the value of the corresponding bit. For 
example, s13=1, means that the 3-th component is 
maintained at the time instant t =1. 

The sequence representation in (2) is suitable for 
GEO approach proposed in the present paper and 
described in the following section. 

The maintenance problem is hard to solve even 
for apparently simple cases (Stapelberg, 2009), as 
the time required for computing an optimal solution 
increases rapidly with the size of the study case. 

2.2 Generalized Extremal 
Optimization for Predictive 
Maintenance Scheduling 

2.2.1 Extremal Optimization 

The basic idea of the proposed optimization method 
is inspired by (Bak and Sneppen, 1993), as a 
simplified model of natural evolution in ecosystems: 
a number of species in a system co-evolves to reach 
the best adaptation; the worst adapted species are 
forced to evolve more quickly to avoid extinction. 
This mechanism determines an overall adaptation 
for the entire ecosystem. In fact, according to the 
Bak-Sneppen model, a macroevolutionary 
ecosystem pattern is characterized by durable 
periods of quiescence interrupted by some burst of 
rapid considerable change. In every part of this 
pattern, it is possible to observe ecological 
phenomena of different size, larger ones during the 
periods of major activity and smaller ones in the 
more quiet periods. The size and the frequency 
distributions of these events follow typically a power 
law that implies 1) dynamics is unique and it 
underlies both the large and the small events (scale 
invariance) 2) macroevolutionary behaviour of the 
global ecosystem emerges spontaneously by local 
interactions between species.Both features are 
considered as key issues of a working definition of a 
particular state, known in statistical physics as Self-
Organized Criticality (SOC) (Turcotte, 1999), in 
which system fluctuates about conditions of 
marginal stability without intervention of external 
factors (Bak, Tang and Wiesenfeld, 1987). 
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Bak-Sneppen model can be simulated through an 
algorithm in quite few steps. First, for each species, 
a fitness value in the range [0,1], is drawn from a 
random uniform distribution. Then, the worst 
adapted species (the one with least fitness) mutates 
and a new fitness value is assigned to it. The change 
of the worst adapted species disfigures the fitness 
landscape locally, involving also the fitness of its 
neighbours. For this reason, they are constrained to 
mutate too, even if they are well adapted. After some 
iteration, the whole system evolves toward a critical 
threshold value, bringing all species to a generalized 
better level of adaptation. 

The model described above directly inspires the 
Extremal Optimization algorithm (Boettcher and 
Percus, 2001). If we set C as a candidate solution to 
an examined problem composed of |C| design 
variables denoted by xi, its basic heuristic procedure 
is the following: 

1. Initialize the variables xi of C 
at will; set Cbest = C. 

2. For the current solution C, 

a) set a fitness Fi to each      
variable xi, 

b) find j such that Fj is better 
than Fi for all i, 

c) choose C’ in a neighborhood N(C) 
of C so that xj must change 

d) accept C = C’ unconditionally, 
 

e) if F(C) - the total fitness of 
the solution C - is better 
than F(Cbest) then set Cbest = C. 

3. Repeat step (2) as long as 
   desired. 

4. Return Cbest and F(Cbest). 

Although the above procedure shows good 
performance in problems where there exist many 
neighbourhood configurations of C, otherwise it 
leads to a deterministic process that damages the 
search of the optimal solution. To avoid this, the 
algorithm was modified in some steps by 
introducing into a single parameter (Boettcher and 
Percus, 2001). 

In particular, the steps 2.b and 2.c, have been 
modified as follow: in step 2b the |C| variables xi 
are ranked so that to the variable with the worst 
fitness is assigned rank 1, and to the one with the 
best fitness rank |C|. Each time the algorithm 
passes through step 2c a variable is chosen to be 
mutated according to a probability distribution of the 
k ranks, given by: 

P(k)≈k −τ , 1 ≤ k ≤ N,  (3) 

where τ is a positive setting parameter. By means of 
the parameter τ, the algorithm can choose any 
variable to evolve, although the most probable 
variables are those with worst fitness. 

2.2.2 Generalized Extremal Optimization 
and his Application  

Unfortunately, EO application to a broad class of 
problems is limited by some drawbacks. One of 
these consists in giving a general definition for the 
fitness of the single species, and this means that 
different problems have different ways to assign the 
fitness to the variables (Boettcher and Percus, 2001).  

To clear the hurdle, De Sousa and Ramos 
devised a generalization of the EO called 
Generalized Extremal Optimization (GEO) (De 
Sousa and Ramos, 2002) capable to tackle either 
continuous, discrete or integer variables. In GEO, 
the variables of the optimization problem are 
arranged in a string similar to a GA chromosome, as 
it is shown in Figure 2. 

 
Figure 2: An example of the GEO encoding: N design 
variables of 6 bits. Each bit is considered as a species (De 
Sousa and Ramos, 2002). 

This section deals with the details of a GEO 
approach to the predictive maintenance scheduling 
problem solving - that is also a direct way to 
illustrate the GEO procedure. 

The goal of the proposed method is to find the 
best sequence, expressed as in (2), that minimizes 
the objective function (1) for the problem described 
in the section 2.1. 

Let us consider a sequence (i.e., a maintenance 
schedule); as aforementioned, a sequence can be 
encoded in a binary string, denoted by S of length 
(M*T) by means of the representation shown in (2). 
This manner to express a sequence is particularly 
suitable to be faced with a GEO. Indeed, in analogy 
to what EO algorithm does, GEO works on a 
population (configuration) by muting, generation 
after generation, a single species (component) and 
by estimating the obtained candidate solution, with 
the aim to reach the optimal one. 
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Thus, if one assumes that every representation bit 
encodes a single species then an entire population 
can be expressed by means of a binary string, hence 
by a sequence in the form (2) too. Figure 3 illustrates 
the correspondence between bit-species and 
sequence-population in a visual way. 

For the above reasons, a GEO algorithm can 
straightly work on a sequence S by evaluating the 
candidate solution to the considered maintenance 
problem through the cost function (1). This means 
that the lesser is the cost of the sequence the better is 
the scheduling. Differently than the EO algorithm, at 
each bit (species) is assigned a fitness value 
proportional to the decrease of the function (1) 
computed for the sequence with that bit flipped (i.e., 
mutated from 1 to 0 or vice versa).  

Then, each bit is ranked, such that: to the one 
with the least fitness is assigned rank 1, while to the 
one with the best fitness rank N. 

Subsequently, a new sequence is generated by 
flipping a bit chosen according the probability law 
(3) defined on the rank set. 

 
Figure 3: A candidate solution in our GEO approach is a 
sequence S (evaluated by (1)), composed of (M*T) bits, as 
defined in (2). In this example, M=6 components are 
maintained by n=3 resources in the time horizon T. 

This iterative process halts after a prefixed 
number of generation, and it returns the best 
sequence Sbest which minimizes the objective 
function (1). 

The proposed procedure is described by the 
following pseudo-code: 

 

1. Initialize a bit sequence S 
     (with size M*T) randomly and 
      evaluate the objective function 
      C (as in (1)); 
      Set:  Sbest = S and Cbest = C(S); 

2.   For each generation: 
a) For each bit i of S: 

- Change the bit i (from 1 to 0, 
or vice versa) and evaluate 
the cost  C(Si)(as in (1))for 
Si; 

- Evaluates the fitness of bit i 
as ΔC(Si)=C(Si)- Cbest 

-  Restore the bit i to its 
previous value. 

b) Sort ΔC(Si) in ascending way; 
c) Choose the bit to change with 

probability (3);  
d) Set S = Si and C = C(Si); 
e) If C < Cbest then set Cbest = C, and 

Sbest = S; 
3. Return Sbest and Cbest 

It is worth underlining that, as regard to the 
traditional evolutionary algorithms (GA, SA and so 
on), the present procedure has twofold advantage: (i) 
there is only one adjustable parameter τ, so it 
simplifies the setting task and (ii) the entire 
evolution is made on one configuration solution S at 
the time, unlike the traditional evolutionary 
population based algorithm, and this entails lesser 
computational costs and a better memory 
management. 

3 EXPERIMENTAL RESULTS 

Preliminary experimental tests are carried out in 
order to validate the effectiveness of the proposed 
GEO algorithm in comparison with a standard GA 
(SGA) on four high dimension scheduling cases of 
the problem described in section 2.1. The problem 
parameters are reported in Table 1, while the 
parameter settings for both algorithms are reported 
in Table 2. 

Table 1: Problem parameters: the bit encoded solution 
length, as defined in (2), is evaluated by means of (M*T) 
bits.  

Problem parameters 
# M n T Solution length 

(2) [bit] 
1 6 2 6 36 
2 8 3 8 64 
3 10 4 10 100 
4 10 4 15 150 
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As it should be noted from Table 2, the 
population size for both algorithms are not reported. 
This because the proposed GEO works only on 1 
individual and performs a number of evaluations as 
the solution length. Therefore, for example, in the 
problem #1 the proposed GEO performs 36 
evaluations at each iteration, while, for the problem 
#3 it performs 100 evaluations at each iteration. 
Therefore, in order to compare the proposed GEO 
and SGA, the population size of the last algorithm 
has been set to: 36 for the problem #1, 64 for the 
problem #2, 100 for the problem #3 and, finally, was 
150 for the problem #4. 

For each problem, it was performed 50 runs for 
both algorithms. 

In Table 3 and Table 4 are reported the 
preliminary experimental results. 

In particular, Table 3 shows a comparison 
between the costs of the best solutions (mean value 
and standard deviation) achieved for GEO and SGA. 
As one can see, both algorithms have the same 
performance on the first two cases (#1 and #2), but 
GEO outperforms SGA better and better while 
increasing the size of the sequence. 

However, in Table 4, the difference between the 
algorithm presented in this work and SGA is 
noticeable.  

Table 2: Parameter settings for the GEO application and 
the standard GA. 

Proposed GEO GA 

τ = 0,75 

Mutation mechanism Uniform 

Crossover mechanism Single point 

Crossover fraction 0.8 

Selection mechanism Roulette 

In particular, the proposed approach obtains the best 
solution in lesser number of iteration on the average, 
highlighting appreciable results. 

Table 3: Best solution achieved (mean and standard 
deviation) by means of the GEO algorithm and the 
standard GA, for the 4 scheduling cases of Table 1. 

Comparison test: best solution cost 
# Mean Standard deviation 
 GEO GA GEO GA 
1 70 70 0 0 
2 104 104 10-3 10-3

3 164,04 170,1 3,97 4,06 
4 219,54 400,01 4,95 4,12 

Table 4: Number of iteration on average and standard 
deviation to achieve the best solution by means of the 
GEO application and a standard GA, for the 4 scheduling 
cases of Table 1. 

Comparison test: number of iteration 
# Mean Standard deviation 
 GEO GA GEO GA 
1 65,12 3876 60,06 2177,16 
2 1804,12 3636,6 1589,75 1961,98 
3 3081,18 5306,5 1979,98 2062,98 
4 8513,54 16667,3 5761,65 9164,24 

4 CONCLUSIONS 

In the present paper, a Generalized Extremal 
Optimization (GEO) based algorithm for a 
predictive maintenance scheduling problem has been 
proposed. 

Preliminary tests on a set of high dimension 
scheduling problems for the GEO algorithm 
compared with a standard GA shown encouraging 
performance of the proposed approach. 

In particular, the proposed GEO reaches the best 
solution in lesser number of iteration on average, 
compared with the standard GA. 

Finally, as previously mentioned, the proposed 
GEO has a peculiar feature: a single candidate is 
processed at each iteration.  

For this reason, a comparison between an 
evolutionary algorithm having the same feature (as, 
for example, Simulated Annealing) and the proposed 
one, should be carried out in the future research.  
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