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Abstract: It is shown that application of methods from theory of inverse problems to learning from data leads to simple
proofs of characterization of minima of empirical and expected error functionals and their regularized versions.
The reformulation of learning in terms of inverse problems also enables comparison of regularized and non
regularized case showing that regularization achieves stability by merely modifying output weights of global
minima. Methods of theory of inverse problems lead to choice of reproducing kernel Hilbert spaces as suitable
ambient function spaces.

1 INTRODUCTION

Supervised learning can be formally described as an
optimization problem of minimization of error func-
tionals over parameterized sets of input-output func-
tions computable by a given computational model.
Various learning algorithms iteratively modify param-
eters of the model until sufficiently small values of
error functionals are achieved and the corresponding
input-output function of the model sufficiently well
fits to the training data.

However, such algorithms in their best only
achieve good fit to the training data. It has been
proven that for typical computational units such as
sigmoidal perceptrons and Gaussian kernels, suffi-
ciently large networks can exactly interpolate any
sample of data (Ito, 1992; Michelli, 1986). Data
are often noisy and networks perfectly fitting to ran-
domly chosen training samples may be too much in-
fluenced by the noise and may not perform well on
data that were not chosen for training. Thus vari-
ous attempts to modify error functionals to improve
so called “generalization capability” of the model has
been proposed. In 1990s, Girosi and Poggio (Girosi
and Poggio, 1990) introduced into learning theory
a method of regularization as a means of improv-
ing generalization. They considered modifications
of error functionals based on Tikhonov regularization
which adds an additional functional, called stabilizer,
which penalizes undesired properties of input-output
functions such as high-frequency oscillations (Girosi
et al., 1995). In practical applications, various simple

stabilizers have been successfully used such as semi-
norms based on derivatives (Bishop, 1995) or sum or
square of output weights (Fine, 1999; Kecman, 2001).

Regularization was developed in 1970s as a
method of improving stability of solutions of cer-
tain problems from physics calledinverse problems,
where unknown causes(e.g., shapes of functions,
forces or distributions) ofknown consequences(mea-
sured data) have to be found. These problems has
been studied in applied science, such as acoustics,
geophysics and computerized tomography (see, e.g.,
(Hansen, 1998)). To solve such a problem, one needs
to know how unknown causes determine known con-
sequences, which can often be described in terms of
an operator. In problems originating from physics,
dependence of consequences on causes is usually de-
scribed by integral operators (such as those defining
Radon or Laplace transforms (Bertero, 1989; Engl
et al., 1999)). As some problems do not always have
exact solutions or have solutions which are unstable
with respect to noise, various methods of finding ap-
proximate solutions and improving its stability has
been developed.

Also minimization of empirical and expected error
functionals with quadratic loss functions can be for-
mulated as inverse problems. But the operators rep-
resenting problems of finding unknown input/output
functions approximating well training data are quite
different from typical operators describing inverse
problems from applied science. In this paper, we
show that application of methods from theory of in-
verse problems to learning from data leads to choice
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od reproducing kernel Hilbert spaces as ambient func-
tion spaces. In these spaces, characterization of func-
tions minimizing error functionals follows easily from
basic results on pseudosolutions and regularized so-
lutions. These characterizations have been proven
earlier using other methods, such as Fréchet deriva-
tives (Wahba, 1990; Cucker and Smale, 2002; Poggio
and Smale, 2003) or operators with fractional powers
(Cucker and Smale, 2002), but reformulation of mini-
mization of error functionals in terms of inverse prob-
lems allows much simpler and transparent proofs. It
also provides a unifying framework showing that an
optimal regularized solution of the minimization task
differs from a non regularized one merely in coeffi-
cients of linear combinations of computational units.
Thus representation of learning as inverse problems
provides a useful tool for theoretical investigation of
properties of kernel and radial-basis networks. It
characterizes optimal input-output functions of these
computational models and enables to estimate effects
of regularization.

The paper is organized as follows. Section 2 gives
basic concepts and notations on learning from data. In
section 3, basic terminology and tools from theory of
inverse problems are introduced. In section 4, these
tools are applied to description of theoretically opti-
mal input-output functions in learning from data over
networks with kernel units.

2 ERROR FUNCTIONALS WITH
QUADRATIC LOSS FUNCTIONS

In statistical learning theory, learning from data has
been modeled as a search for a function minimiz-
ing the expected error functional defined by data de-
scribed by a probability measure. ForX a compact
subset ofRd andY a bounded subset ofR, let ρ be
a non degenerate (no nonempty open set has measure
zero) probability measure onZ=X×Y. Theexpected
error functional(sometimes also called expected risk
or theoretical error) determined byρ is defined for
every f in the setM (X) of all boundedρ-measurable
functions onX asEρ,V( f ) =

∫
ZV( f (x),y)dρ , where

V : R×R → R+ is a loss function. The most com-
mon loss function is thequadratic lossdefined as
V(u,v) = (u− v)2. We shortly denote byEρ the ex-
pected error with the quadratic loss, i.e.,

Eρ( f ) =
∫

Z
( f (x)− y)2dρ .

Learning algorithms use a discretized version of
the expected error called theempirical error. It is
determined by a training samplez= {(xi ,yi) ∈ R

d ×

R | i = 1, . . . ,m} of input-output pairs of data and a
discrete probability measurep= {p(i) | i = 1, . . . ,m}
on the set{1, . . . ,m} (i.e., ∑m

i=1 p(i) = 1). Empiri-
cal error is denotedE z,p,V and defined asE z,p,V( f ) =
∑m

i=1 p(i)V( f (xi),yi). Similarly as in the case of ex-
pected error, we denote byE z,p the empirical error
with the quadratic loss function, i.e.,

E z,p( f ) =
m

∑
i=1

p(i)( f (xi)− yi)
2.

One of many advantages of the quadratic loss
function is that it enables to reformulate minimiza-
tion of expected and empirical error as minimization
of distances from certain “optimal” functions.

It is easy to see and well-known (Cucker and
Smale, 2002) that the minimum ofEρ over the set
M (X) of all boundedρ-measurable functions onX
is achieved at theregression function fρ defined for
x∈X as fρ(x) =

∫
Y ydρ(y|x), whereρ(y|x) is thecon-

ditional (w.r.t. x) probability measureonY.
Let ρX denote themarginal probability mea-

sure on X defined for everyS ⊆ X as ρX(S) =

ρ(π−1
X (S)), whereπX : X ×Y → X denotes the pro-

jection, and letL 2
ρX
(X) denote the Lebesgue space

of all functions onX satisfying
∫

X f 2dρX < ∞ with
the L 2

ρX
-norm denoted by‖.‖L 2. It can be easily

verified that fρ ∈ L 2
ρX
(X). So minf∈M (X)Eρ( f ) =

minf∈L 2
ρX

(X)Eρ( fρ) = Eρ( fρ) = σ2
ρ. Moreover, for

every f ∈ L 2
ρX
(X) (Cucker and Smale, 2002, p.5)

Eρ( f ) =
∫

X
( f (x)− fρ(x))

2dρX +σ2
ρ = ‖ f − fρX‖2

L 2 +σ2
ρ.

(1)

So on the function spaceL 2
ρX
(X), the expected er-

ror functionalEρ with the quadratic loss can be repre-
sented as the square of theL 2

ρX
-distance from its min-

imum point fρ.
Also the empirical error functional can be repre-

sented in terms of a distance from a certain func-
tion. Let Xz = {x1, . . . ,xm} with all xi distinct and
hz : Xz → Y be defined ashz(xi) = yi . Let ‖.‖2,m de-
note the weightedl2-norm onRm defined as‖x‖2

2,m=
1√
m ∑m

i=1 p(i)x2
i . Then

E z( f ) = ‖ f|Xz −hz‖2
2,m. (2)

So minimization of the empirical errorE z,p is a search
for a function, the restriction onXz of which has a
smallestl2p-distance from the functionhz defined by
the samplez.
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3 INVERSE PROBLEMS IN
LEARNING

The representations (1) and (2) allow us to use in
learning theory methods and tools from theory of in-
verse problems. For alinear operator A: X → Y
between two Hilbert spaces(X ,‖.‖X ), (Y ,‖.‖Y ) (in
finite-dimensional case, a matrixA) an inverse prob-
lem (see, e.g., (Bertero, 1989)) determined byA is to
find for g∈ Y (calleddata) somef ∈ X (calledsolu-
tion) such that

A( f ) = g.

If for every g ∈ Y there exists a unique solution
f ∈ X , which depends continuously on data, then the
inverse problem is calledwell-posed. So for a well-
posed inverse problem, there exists a unique inverse
operatorA−1 : Y → X . WhenA is continuous, then
by the Banach open map theorem (Friedman, 1982,
p.141)A−1 is continuous, too. However, a continu-
ous dependence of solutions on data may not always
guarantee robustness against a noise. Stability has
been measured by behavior of eigenvalues ofA and
thecondition numberdefined for a well-posed prob-
lem given by an operatorA as cond(A) = ‖A‖‖A−1‖.
Problems with large condition numbers are calledill-
conditioned.

When for someg∈ Y no solution exists, at least
one can search for apseudosolution fo, for which
A( f o) is a best approximation tog among elements
of the range ofA, i.e.,

‖A( f o)−g‖Y = min
f∈X

‖A( f )−g‖Y .

Theory of inverse problems overcomes ill-posedness
by using so called normal pseudosolutions instead
of solutions and in addition it also overcomes ill-
conditioning by using various regularized solutions.
Tikhonov’s regularization (Tikhonov and Arsenin,
1977) replaces the problem of minimization of the
functional‖A(.)−g‖2

Y
with minimization of

‖A(.)−g‖2
Y
+ γΨ,

whereΨ is a functional calledstabilizerand thereg-
ularization parameterγ plays the role of a trade-off
between an emphasis on a proximity to data and a pe-
nalization of undesired solutions expressed byΨ. A
typical choice of a stabilizer is the square of the norm
on X , for which Tikhonov regularization minimizes
the functional

‖A(.)−g‖2
Y
+ γ‖.‖2

X . (3)

Let (H ,‖.‖H ) be a Hilbert space, which is a linear
subspace ofL 2

ρX
(X) with a possibly different norm

than the one obtained by restriction of‖.‖
L 2

ρX
to H ,

and letJ : (H ,‖.‖H )→ (L 2
ρX
(X),‖.‖

L 2
ρX
) denote the

inclusion operator. By the representation (1), we have

Eρ( f ) = ‖ f − fρ‖2
L 2

ρX
+σ2

ρ = ‖J( f )− fρ‖2
L 2

ρX
+σ2

ρ.

(4)
So the problem of minimization ofEρ over H is
equivalent to the inverse problem defined by thein-
clusion operator Jfor the datafρ.

To reformulate minimization ofE z,p as an inverse
problem, define for the input samplex = (x1, . . . ,xm)
anevaluation operator Lx : (H ,‖.‖H )→ (Rm,‖.‖2,m)
as

Lx( f ) = ( f (x1), . . . , f (xm)).

It is easy to check that for everyf : X →R,

E z,m( f ) =
m

∑
i=1

p(i)( f (xi)− yi)
2 = ‖Lx( f )− y‖2

2,m.

(5)

4 PSEUDOSOLUTIONS AND
REGULARIZED SOLUTIONS

Originally, properties of pseudoinverse and regular-
ized inverse operators were described for operators
between finite dimensional spaces, where such oper-
ators can be represented by matrices (Moore, 1920;
Penrose, 1955). In 1970s, the theory of pseudoin-
version was extended to the infinite-dimensional case
– it was shown that similar properties as the ones of
Moore-Penrose pseudoinverses of matrices also hold
for pseudoinverses ofcontinuous linear operatorsbe-
tween Hilbert spaces (Groetch, 1977). The reason
is that continuous operators haveadjoint operators
A∗ : Y → X satisfying the equation〈A( f ),g〉Y =
〈 f ,A∗(g)〉X . These adjoints play an important role in
a characterization of pseudosolutions and regularized
solutions. In the next section, we will see that that for
proper function spaces, adjoints of evaluation and in-
clusion operators used in representations (4) and (5)
can be easily described.

First we recall some basic results from theory of
inverse problems from (Bertero, 1989, pp.68-70) and
(Groetch, 1977, pp.74-76). For everycontinuous lin-
ear operator A: (X ,‖.‖X → (Y ,‖.‖Y ) between two
Hilbert spaces there exists a unique continuous lin-
ear pseudoinverse operatorA+ : Y → X (when the
rangeR(A) is closed, otherwiseA+ is defined only for
thoseg∈ Y , for whichπclR(A)(g) ∈ R(A)). The pseu-
doinverseA+ satisfies for everyg∈ Y , ‖A+(g)‖X =
minf o∈S(g) ‖ f o‖X , where S(g) = argmin(X ,‖A(.)−
g‖Y ), for everyg∈ Y , AA+(g) = πclR(g), and

A+ = (A∗A)+A∗ = A∗(AA∗)+. (6)
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Moreover, for everyγ > 0, there exists a unique oper-
ator

Aγ : Y → X
such that for every g ∈ Y , {Aγ(g)} =
argmin(X ,‖A(.)−g‖2

Y
+ γ‖.‖2

X
) and

Aγ = (A∗A+ γIX )−1A∗ = A∗(AA∗+ γIY )−1 (7)

whereIX , IY denote the identity operators. For every
g∈ Y , for whichA+(g) exists, limγ→0 Aγ(g)=A+(g).

Formulas (6) and (7) combined with representa-
tions (4) and (5) provide useful tools for description
of optimal input-output functions in learning from
data. However, there is a restriction on computa-
tional models requiring that input-output functions
belong to suitable function spaces with an inner prod-
uct where evaluation functionals are continuous. The
spaceL 2

ρX
(X) is a Hilbert space (it has an inner prod-

uct) but it is easy to see that evaluation function-
als on this space are not continuous (it contains se-
quences of functions with the same norm with di-
verging evaluations at zero). This space is too large,
but it contains suitable subspaces formed by func-
tions with limited oscillations. These spaces contain
input-output functions computable by networks with
kernel and radial units, in particular Gaussian radial-
basis networks with any fixed width. They have be-
came popular due to the use of kernels in support
vector machines, but they were studied in mathemat-
ics since 1950 (Aronszajn, 1950). Since 1990s, they
were considered as useful ambient function spaces in
data analysis (Wahba, 1990). These spaces are called
Reproducing Kernel Hilbert Spaces(RKHS) because
each such space is uniquely determined by a symmet-
ric positive semidefinite kernelK : X ×X → R. For
their theory and applications see, e.g., (Schölkopf and
Smola, 2002). Here we just recall that a RKHS deter-
mined byK, denotedHK(X), contains all linear com-
binations of functions of the formK(.,v) : X → R,
v ∈ X, defined asK(.,v)(u) = K(u,v) (these func-
tions are calledrepresentersand they are generators
of the linear spaceHK(X), see, e.g., (Wahba, 1990;
Cucker and Smale, 2002)). The RKHSHK(X) is
endowed with an inner product defined on genera-
tors as〈Ku,Kv〉K = K(u,v), which induces the norm
‖Ku‖2

K = K(u,u).
A paradigmatic example of a kernel is theGaus-

sian kernel K(u,v) = e−‖u−v‖2
. A RKHS defined

by the Gaussian kernel contains all linear combina-
tions of translations of Gaussians, so it contains input-
output functions of radial-basis networks with Gaus-
sian radial functions with a fixed width.

The role of kernel norms as stabilizers in
Tikhonov’s regularization (3) can be intuitively well
understood in the case ofconvolution kernels, i.e.,

kernelsK(x,y) = k(x− y) defined as translations of
a functionk : Rd → R, for which the Fourier trans-
form k̃ is positive. For such kernels, the value of the
stabilizer‖.‖2

K at any f ∈ HK(R
d) can be expressed

as

‖ f‖2
K =

1

(2π)d/2

∫
Rd

f̃ (ω)2

k̃(ω)
dω.

So when lim‖ω‖→∞ 1/k̃(ω) = ∞, the stabilizer‖.‖2
K

plays a role of a high-frequency filter. Examples of
convolution kernels with positive Fourier transforms
are the Gaussian and Bessel kernel. Note that for
any convolution kernelK with k(0) = 1, all functions
f = ∑m

i=1wiKui , which are computable by one-hidden
layer networks with units computing translations of
k, satisfy‖ f‖K ≤ ∑m

i=1 |wi |‖Kui‖K = ∑m
i=1 |wi |k(0) =

∑m
i=1 |wi |. So the output-weight regularization widely

used for its simplicity in practical applications guar-
antees a decrease of the stabilizer‖.‖2

K and thus pe-
nalizes solutions with high-frequency oscillations.

5 MINIMA OF ERROR
FUNCTIONALS

Reformulations (4) and (5) of minimizations of error
functionals as inverse problems together with equa-
tions (6) and (7) allow us to describe properties of
theoretically optimal solutions of minimization of er-
ror functionals with the quadratic loss.

For a kernelK, we denote byLK : L 2
ρX
(X) →

L 2
ρX
(X) the integral operator defined as

LK( f )(y) =
∫

X
f (x)K(y,x)dρX(x).

The next theorem describes minimima of the expected
errorEρ and of its Tikhonov regularizationEρ,γ,K =

Eρ + γ‖.‖2
K. It shows that for everyγ > 0 there ex-

ists a unique functionf γ minimizing Eρ,γ,K and that
this function is the image of the regression functionfρ
under an integral operatorLKγ with a modified kernel

Kγ, defined asKγ(x,y) = ∑∞
i=1

λi
λi+γ φi(x)φi(y), where

λi andφi are the eigenvalues of the operatorLK .

Theorem 1 . Let X ⊂ R
d be compact, Y⊂ R be

bounded, K: X ×X → R be a continuous symmetric
positive definite kernel,ρ be a non degenerate proba-
bility measure on X×Y. Then
(i) if K is degenerate, then the inclusion operator JK :
(HK(X),‖.‖K) → (L 2

ρX
(X),‖.‖L 2) has a pseudoin-

verse operator J+K : (L 2
ρX
(X),‖.‖L 2)→ (HK(X),‖.‖K)

such that for every g∈ L 2
ρX
(X), J+K (g)= πK(g), where

πK is the projection onHK(X),
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while if K is non degenerate, then the pseudoinverse
operator J+K is only defined on R(JK) = HK(X) and
for all g ∈ HK(X), J+K (g) = g.
(ii) for every γ > 0, there exists a unique func-
tion fγ ∈ HK(X) minimizingEρ,γ,K , f γ = LKγ( fρX ),
limγ→0‖ f γ − fρ‖L 2 = 0, and limγ→0Eρ( f γ) =
Eρ( fρ).

The essential part of the proof of this theorem is
showing that the adjointJ∗K of the inclusion

JK : (HK(X),‖.‖K)→ (L 2
ρX
(X),‖.‖

L 2
ρX
)

is the integral operatorLK . This allows application of
the equations (6) and (7). The formula

fγ = LKγ( fρ) (8)

describing the regularized solution can be called the
Representer Theorem in analogy to a similar result
describing the minimum point of the regularized em-
pirical error functional. This theorem was derived in
(Cucker and Smale, 2002, p.42), where it was formu-
lated as

fγ = (I + γL−1
K ) fρ. (9)

However, the formulation (9) might be misleading as
the inverseL−1

K to LK is defined only on a subspace
of L 2

ρX
(X). Note that it cannot be defined on any

complete subspace ofL 2
ρX
(X) because in such a case

by Banach open map theorem it should be bounded,
but for a non degenerate kernelK, the eigenvalues
1
λi

of the inverseL−1
K diverge. Here we derived the

description of the regularized solution (8) easily as
a straightforward consequence of well-known prop-
erties of Tikhonov’s regularization, while in (Cucker
and Smale, 2002, pp.27-28) the formula (9) was de-
rived using results on operators with fractional pow-
ers.

By Theorem 1, when the regression functionfρX

is not in the function spaceHK(X) defined by the
kernel K, thenEρ does not achieve a minimum on
HK(X). However, for every regularization parame-
ter γ > 0, the regularized functionalEρ,γ,K achieves a
unique minimum equal toLKγ( fρ). Theorem 1 also
shows how regularization modifies coefficients{wi}
in the representation of the regressionfρX = ∑∞

i=1wiφ
in terms of the basis{φi} formed by eigenvalues of
the operatorLK . Regularization replaces these coeffi-
cients with coefficients{ wiλi

λi+γ}. The functionα(i) =
wiλi
λi+γ is decreasing to 0, so the higher frequency co-
efficients are more reduced. With the regularization
parameterγ decreasing to zero, the coefficientswiλi

λi+γ
converge towi and so the regularized solutionsfγ con-
verge inL 2

ρX
-norm to the regression functionfρ.

The next theorem describes minima od empirical
error functional and its regularized modification. We
use the notation

E z,p,γ,K = E z,p+ γ‖.‖2
K.

By K [x] is denoted theGram matrix of the kernel K
with respect to the vector x, i.e., the matrix

K [x]i, j = K(xi ,x j ),

byKm[x] the matrix 1
mK [x], and byI the identitym×

m matrix.

Theorem 2 . Let K : X × X → R be a symmet-
ric positive semidefinite kernel, m be a positive
integer, z= (x,y) with x = (x1, . . . ,xm) ∈ Xm,
y= (y1, . . . ,ym) ∈ R

m, with x1, . . . ,xm distinct, and p
be a discrete probability measure on{1, . . . ,m}, then
(i) f + = L+

x (y) is a minimum point ofE z,p at HK(X),
‖ f+‖K ≤ ‖ f o‖K for all f o ∈ argmin(HK(X),E z,p),
and f+ = L+

x (y) = ∑m
i=1ciKxi , where c =

(c1, . . . ,cm) = K [x]+y,
(ii) for all γ > 0, there exists a unique fγ minimiz-
ing E z,p,γ,K over HK(X), f γ = ∑m

i=1cγ
i Kxi , where

cγ = (Km[x]+ γ I )−1y.

The essential part of the proof of this theorem
is description of the adjointL∗

x : (Rm,‖.‖2,m) →
(HK(X),‖.‖K) asL∗

x(u) =
1
m ∑m

i=1 ui Kxi . This leads
to representation ofLx L∗

x : Rm → R
m by the matrix

Km[x], which together with equations (6) and (7) gives
the description of functions minimizing the empirical
error and its regularization.

Theorem 2 shows that for every kernelK, every
sample of empirical dataz and discrete probability
measurep, there exists a functionf+ minimizing the
empirical error functionalE z,p over the whole RKHS
defined byK. This function is formed by a linear
combination of the representersKx1, . . . ,Kxm of input
dataxi , i.e.,it has the form

f+ =
m

∑
i=1

ciKxi . (10)

Thus f+ can be interpreted as aninput-output func-
tion of a neural network with one hidden layer of
kernel units and a single linear output unit. The co-
efficientsc = (c1, . . . ,cm) of the linear combination
(corresponding to network output weights) satisfyc=
K [x]+y, so the output weights can be obtained by
solving the system of linear equations. However, as
the operatorLx has finite dimensional range, it is com-
pact and thus its pseudoinverse is unbounded. So the
optimal solution of minimization od empirical error is
unstable. The regularized solution

f γ =
m

∑
i=1

cγ
i Kxi
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is also a linear combination of functionsKx1, . . . ,Kxm.
But the coefficients of these two linear combinations
are different: in the regularized casecγ = (K [x] +
γI )−1y, while in the non-regularized onec= K [x]+y.

The characterization of regularized solution min-
imization of empirical error in reproducing kernel
Hilbert spaces was derived in (Wahba, 1990) us-
ing Fréchet derivatives (see also (Cucker and Smale,
2002), (Poggio and Smale, 2003)). Our proof based
on characterization of the adjointL∗

x of the evaluation
operatorLx is much simpler and it also include the
non regularized case and thus it shows the effect of
regularization.

Theorem 2 shows that increase of “smoothness”
of the regularized solutionf γ is achieved by merely
changing the coefficients of the linear combination.
In the non regularized case, the coefficients are ob-
tained from the output data vectory using the Moore-
Penrose pseudoinverse of the Gram matrixK [x],
while in the regularized one, they are obtained using
the inverse of the modified matrixK [x]+ γI . So the
regularization merely changes amplitudes, but it pre-
serves the finite set of basis functions from which the
solution is composed.

In many practical applications, there are used net-
works with much smaller numbern of units than the
size of the training sample of datam. However, char-
acterization of theoretically optimal solutions achiev-
able over networks with large numbers of units (equal
to the sizesm of training data) can be useful in inves-
tigation on dependence of quality of approximation of
such optimal solutions by suboptimal ones obtainable
over smaller models (Vito et al., 2005; Kůrková and
Sanguineti, 2005a; Kůrková and Sanguineti, 2005b).

As mentioned above, for convolution kernels we
have‖ f γ‖K ≤ ∑m

i=1 |c
γ
i |. Instead of calculating‖.‖2

K
norm, it is easier to use as a stabilizer theℓ1-norm of
an output weight vector. For linear combinations of
functions of the formKx, this also leads to minimiza-
tion of ‖.‖2

K norm.
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