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Abstract: It is shown that application of methods from theory of inverse problems to learning from data leads to simple
proofs of characterization of minima of empirical and expected error functionals and their regularized versions.
The reformulation of learning in terms of inverse problems also enables comparison of regularized and non
regularized case showing that regularization achieves stability by merely modifying output weights of global
minima. Methods of theory of inverse problems lead to choice of reproducing kernel Hilbert spaces as suitable
ambient function spaces.

1 INTRODUCTION stabilizers have been successfully used such as semi-
norms based on derivatives (Bishop, 1995) or sum or
Supervised learning can be formally described as ansquare of output weights (Fine, 1999; Kecman, 2001).
optimization problem of minimization of error func- Regularization was developed in 1970s as a
tionals over parameterized sets of input-output func- method of improving stability of solutions of cer-
tions computable by a given computational model. tain problems from physics callddverse problems
Various learning algorithms iteratively modify param- where unknown causege.g., shapes of functions,
eters of the model until sufficiently small values of forces or distributions) dknown consequencésiea-
error functionals are achieved and the correspondingsured data) have to be found. These problems has
input-output function of the model sufficiently well been studied in applied science, such as acoustics,
fits to the training data. geophysics and computerized tomography (see, e.g.,
However, such algorithms in their best only (Hansen, 1998)). To solve such a problem, one needs
achieve good fit to the training data. It has been to know how unknown causes determine known con-
proven that for typical computational units such as sequences, which can often be described in terms of
sigmoidal perceptrons and Gaussian kernels, suffi-an operator In problems originating from physics,
ciently large networks can exactly interpolate any dependence of consequences on causes is usually de-
sample of data (Ito, 1992; Michelli, 1986). Data scribed by integral operators (such as those defining
are often noisy and networks perfectly fitting to ran- Radon or Laplace transforms (Bertero, 1989; Engl
domly chosen training samples may be too much in- et al., 1999)). As some problems do not always have
fluenced by the noise and may not perform well on exact solutions or have solutions which are unstable
data that were not chosen for training. Thus vari- with respect to noise, various methods of finding ap-
ous attempts to modify error functionals to improve proximate solutions and improving its stability has
so called “generalization capability” of the model has been developed.
been proposed. In 1990s, Girosi and Poggio (Girosi  Also minimization of empirical and expected error
and Poggio, 1990) introduced into learning theory functionals with quadratic loss functions can be for-
a method of regularization as a means of improv- mulated as inverse problems. But the operators rep-
ing generalization. They considered modifications resenting problems of finding unknown input/output
of error functionals based on Tikhonov regularization functions approximating well training data are quite
which adds an additional functional, called stabilizer, different from typical operators describing inverse
which penalizes undesired properties of input-output problems from applied science. In this paper, we
functions such as high-frequency oscillations (Girosi show that application of methods from theory of in-
et al., 1995). In practical applications, various simple verse problems to learning from data leads to choice
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od reproducing kernel Hilbert spaces as ambient func-
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R|i =1,...,m} of input-output pairs of data and a

tion spaces. In these spaces, characterization of func-discrete probability measupe= {p(i)|i=1,...,m}

tions minimizing error functionals follows easily from

on the set{1,....,m} (i.e., 3", p(i) = 1). Empiri-

basic results on pseudosolutions and regularized so-cal error is denoted, v and defined ag, pv(f) =
lutions. These characterizations have been proveny ™, p(i)V(f(x),yi). Similarly as in the case of ex-

earlier using other methods, such as Fréchet deriva-

tives (Wahba, 1990; Cucker and Smale, 2002; Poggio
and Smale, 2003) or operators with fractional powers
(Cucker and Smale, 2002), but reformulation of mini-
mization of error functionals in terms of inverse prob-
lems allows much simpler and transparent proofs. It
also provides a unifying framework showing that an
optimal regularized solution of the minimization task
differs from a non regularized one merely in coeffi-
cients of linear combinations of computational units.
Thus representation of learning as inverse problems
provides a useful tool for theoretical investigation of
properties of kernel and radial-basis networks. It
characterizes optimal input-output functions of these

computational models and enables to estimate effects

of regularization.

The paper is organized as follows. Section 2 gives
basic concepts and notations on learning from data. In
section 3, basic terminology and tools from theory of
inverse problems are introduced. In section 4, these
tools are applied to description of theoretically opti-
mal input-output functions in learning from data over
networks with kernel units.

2 ERROR FUNCTIONALSWITH
QUADRATIC LOSSFUNCTIONS

In statistical learning theory, learning from data has
been modeled as a search for a function minimiz-
ing the expected error functional defined by data de-
scribed by a probability measure. F¥ra compact
subset ofRY andY a bounded subset &, let p be

a non degenerate (no nonempty open set has measur

zero) probability measure ah= X x Y. Theexpected
error functional(sometimes also called expected risk
or theoretical error) determined lyis defined for
everyf in the sety (X) of all boundedp-measurable
functions onX aszpy (f) = [z V(f(x),y)dp, where
V:R xR — R, is aloss function The most com-
mon loss function is thejuadratic lossdefined as
V(u,v) = (u—Vv)2. We shortly denote b, the ex-
pected error with the quadratic loss, i.e.,

zo(f) = [[(F(0-y)dp.

Learning algorithms use a discretized version of
the expected error called trempirical error. It is
determined by a training sampe= {(x;,yi) € RY x

pected error, we denote by, the empirical error
with the quadratic loss function, i.e.,

ap(1) = 5 PO (106) ~)

One of many advantages of the quadratic loss
function is that it enables to reformulate minimiza-
tion of expected and empirical error as minimization
of distances from certain “optimal” functions.

It is easy to see and well-known (Cucker and
Smale, 2002) that the-minimum af, over the set
M (X) of all boundedp-measurable functions oX
is achieved at theegression function f defined for
xe Xasfy(x) = Jy ydp(y|x), wherep(y|x) is thecon-
ditional (w.r.t. x) probability measurenY.

Let px denote themarginal probability mea-
sure on X defined for everyS C X as px(S) =

p(151(S)), wherery : X x Y — X denotes the pro-

jection, and IetLgx (X) denote the Lebesgue space

of all functions onX satisfying [, f2dpx < o with
the Lgx-norm denoted byj|.||,2. It can be easily

verified thatfy € 22 (X). So min ., x) Ep(f) =

ming_ 2 x) Zo(fp) = Zp(fp) = 3. Moreover, for
X

everyf e Lgx (X) (Cucker and Smale, 2002, p.5)

2

2
L2+CP'

@)

Zp(f)

[ (100~ o(0)2dpx +03 = 1~ f, |

So on the function spacgg, (X), the expected er-
ror functionalz, with the quadratic loss can be repre-
sented as the square of théx—distance from its min-
itum pointf,.

Also the empirical error functional can be repre-
sented in terms of a distance from a certain func-
tion. LetX; = {Xq,...,Xm} with all x distinct and
h, : X; =Y be defined a$,(x) =yi. Let||.||2,m de-
note the weightetf-norm onR™ defined agx||3,, =

=21 p(i)x¢. Then

£2(f) = || fix, — el 5 me (2)

So minimization of the empirical errar, p is a search
for a function, the restriction odX; of which has a
smallest %—distance from the functioh; defined by
the sample.
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3 INVERSE PROBLEMSIN

LEARNING

The representations (1) and (2) allow us to use in
learning theory methods and tools from theory of in-
verse problems. For Bnear operator A: x — o
between two Hilbert spacés, ||.||x), (77, ]|-]ly) (in
finite-dimensional case, a matr®) aninverse prob-
lem (see, e.g., (Bertero, 1989)) determinedAis to
find for g € o (calleddata) somef € x (calledsolu-
tion) such that
A(f)=g.
If for every g € o there exists a unique solution

and letd: (#,||.|l,) — (Lgx(x), H'||L5x) denote the

inclusion operator. By the representation (1), we have
Zo(f) = If - fplligX +05=13(f) - fplligX +05.

(4)
So the problem of minimization of, over # is
equivalent to the inverse problem defined by ihe
clusion operator Jor the dataf,.

To reformulate minimization of; , as an inverse
problem, define for the input sampte= (xq,...,Xm)
anevaluation operator J: (4, |||, ) = (R™,||.|2,m)
as

Le() = (F(x0), ..., F(xm))-

f € x, which depends continuously on data, then the Itis easy to check that for everfy: X — R,

inverse problem is calledell-posed So for a well-

m
posed inverse problem, there exists a unique inverse Ezm(f) = Zp(i)(f(xi) — )% = |ILx(F) = Y5 m-
i=

operatorA*l ;9 — x. WhenA is continuous, then

by the Banach open map theorem (Friedman, 1982,

p.141)A~ 1 is continuous, too. However, a continu-

®)

ous dependence of solutions on data may not always

guarantee robustness against a noise. Stability had PSEUDOSOLUTIONSAND

been measured by behavior of eigenvalues @ind
the condition numbedefined for a well-posed prob-
lem given by an operatak as condA) = ||A[| |A~1.
Problems with large condition numbers are called
conditioned

When for somey € 9 no solution exists, at least
one can search for pseudosolution %, for which
A(f°) is a best approximation tg among elements
of the range oA, i.e.,

oy — mi .
IACE®) = glly = min[A(f) — gl -

REGULARIZED SOLUTIONS

Originally, properties of pseudoinverse and regular-

ized inverse operators were described for operators
between finite dimensional spaces, where such oper-
ators can be represented by matrices (Moore, 1920;
Penrose, 1955). In 1970s, the theory of pseudoin-
version was extended to the infinite-dimensional case
— it was shown that similar properties as the ones of
Moore-Penrose pseudoinverses of matrices also hold
for pseudoinverses abntinuous linear operatorse-

Theory of inverse problems overcomes ill-posednesstween Hilbert spaces (Groetch, 1977). The reason
by using so called normal pseudosolutions instead is that continuous operators hagejoint operators

of solutions and in addition it also overcomes ill-
conditioning by using various regularized solutions.
Tikhonov’s regularization (Tikhonov and Arsenin,
1977) replaces the problem of minimization of the
functional||A(.) — g||3. with minimization of

IAC) —gll3 +wW,

whereW is a functional calledtabilizerand thereg-
ularization parametey plays the role of a trade-off

between an emphasis on a proximity to data and a pe-

nalization of undesired solutions expressedihyA
typical choice of a stabilizer is the square of the norm
on x, for which Tikhonov regularization minimizes
the functional

IAC) =gl + VI3 @)

Let(#,||.|l,,) be aHilbert space, which is a linear
subspace otgx (X) with a possibly different norm

than the one obtained by restriction MLg to #,
X

318

A"y — x satisfying the equatioffA(f),g), =
(f,A*(g))x. These adjoints play an important role in
a characterization of pseudosolutions and regularized
solutions. In the next section, we will see that that for
proper function spaces, adjoints of evaluation and in-
clusion operators used in representations (4) and (5)
can be easily described.

First we recall some basic results from theory of
inverse problems from (Bertero, 1989, pp.68-70) and
(Groetch, 1977, pp.74-76). For evargntinuous lin-
ear operator A (x,|[.|lx = (o, ]|.]|,) between two
Hilbert spaces there exists a unique continuous lin-
ear pseudoinverse operatar : ¥ — x (when the
rangeR(A) is closed, otherwisA™ is defined only for
thoseg € o, for whichiyrea) (g) € R(A)). The pseu-
doinverseA* satisfies for everg € o, |AT(g)|lx =
Minfocgg) || F°lx, where S(g) = argmin(x, [|A(.) —
9ll,), for everyg € 97, AAT(g) = Tur(g), and

At = (AFA)TA* = A*(AA) T (6)
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Moreover, for every > 0, there exists a unique oper- kernelsK(x,y) = k(x—y) defined as translations of

ator a functionk : RY — R, for which the Fourier trans-
Ay s x form k is positive. For such kernels, the value of the
such that for everyg € o, {AV(g)} = stabilizer||.||Z at anyf € 7k (RY) can be expressed
argmin(x, [|A(.) — 9|l +vil.|13) and as 1 (o)
2 _
AY = (AA Tyl ) A = AT AN 1Y) (7) Ik = Zr0a72 Jos Ty

wherely, |, denote the identity operators. For every sg when 1M g 50 1/k(w) = o, the stabilizer]].||2
ge o, forwhichA™ (g) exists, lim_o A¥(g) = A" (g). plays a role of a high-frequency filter. Examples of
Formulas (6) and (7) combined with representa- convolution kernels with positive Fourier transforms
tions (4) and (5) provide useful tools for description are the Gaussian and Bessel kernel. Note that for
of optimal input-output functions in learning from - any convolution kernek with k(0) = 1, all functions
data. However, there is a restriction on computa- f — yM, wiK,,, which are computable by one-hidden
tional models requiring that input-output functions |ayer networks with units computing translations of
belong to suitable function spaces with an inner prod- k, satisfy|| f||x < T, [Wi| [[Ky Ik = S [wi| k(0) =
uct where evaluation functionals are continuous. The s |w;|. So the output-weight regularization widely
spacec] (X) is a Hilbert space (it has an inner prod- ysed for its simplicity in practical applications guar-
UCt) but it is easy to see that evaluation function- antees a decrease of the Stab"@éﬁ% and thus pe-

als on this space are not continuous (it contains se-nalizes solutions with high-frequency oscillations.
guences of functions with the same norm with di-

verging evaluations at zero). This space is too large,
but-it contains suitable subspaces formed by func-
tions with limited oscillations. These spaces contain 5 MINIMA OF ERROR

input-output functions computable by networks with FUNCTIONALS

kernel and radial units, in particular Gaussian radial-

basis networks with any fixed width. They have be- Reformulations (4) and (5) of minimizations of error
came popular due to the use of kernels in support functionals as inverse problems together with equa-
vector machines, but they were studied in mathemat- tions (6) and (7) allow us to describe properties of
ics since 1950 (Aronszajn, 1950). Since 1990s, they theoretically optimal solutions of minimization of er-
were considered as useful ambient function spaces inror functionals with the quadratic loss.

data analysis (Wahba, 1990). These spaces are called For a kernelK, we denote bylg : Lgx X) —
Reproducing Kernel Hilbert SpacéBKHS) because 2 (X) the integral operator defined as

each such space is uniquely determined by a symmet- Px
ric positive semidefinite kernéd : X x X — R. For
their theory and applications see, e.g., (Scholkopf and

Smola, 2002). Here we just recall that a RKHS deter- The nexttheorem describes minimima of the expected
mined byK, denotedxx (X), contains all linear com- P

binations of functions of the form(.,v) : X — R, error £, aznd of its Tikhonov regularizatiospyk =
v € X, defined asK(.,v)(u) = K(u,v) (these func- Zp + V|-l It shows t?at_f(_)r every > 0 there ex-
tions are calledepresenterand they are generators IStS @ unique functiorf minimizing £,k and that
of the linear spacei (X), see, e.g., (Wahba, 1990; this functpn is the image ofthg regression functfgn
Cucker and Smale, 2002)). The RKH&(X) is under an integral operatbk, with a modified kernel
endowed with an inner product defined on genera- Ky, defined aKy(x,y) = 3724 %cﬂ (X)@ (y), where
tors as(Ky,Ky)k = K(u,v), which induces the norm  )\; andg are the eigenvalues of the operattr.
IKullg = K(u,u).

A paradigmatic example of a kernel is tlaus-
sian kernel Ku,v) = e lU=VI>, A RKHS defined
by the Gaussian kernel contains all linear combina-
tions of translations of Gaussians, so it contains input-
output functions of radial-basis networks with Gaus-
sian radial functions with a fixed width. 3

The role of kernel norms as stabilizers in Verseoperatord: (g, (X),||.[l.2) = (2t (X), |l[[k)
Tikhonov’s regularization (3) can be intuitively well  such thatforevery g £3 (X), ¥ (g) = Tk (g), where
understood in the case @bnvolution kernelsi.e., T is the projection orvk (X),

Le(F)) = | FOOK(yx)dpx ().

Theorem1. Let X ¢ RY be compact, YC R be
bounded, K X x X — R be a continuous symmetric
positive definite kernef) be a non degenerate proba-
bility measure on X Y. Then

(i) if K is degenerate, then the inclusion operatqr:J
(21 (X), I.ll) = (£5,(X), |-l .2) has a pseudoin-
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while if K is non degenerate, then the pseudoinverse

operator J is only defined on Rk) = #k (X) and
forall g € #k (X), I (9) = 0.

(i) for every y > 0, there exists a unique func-
tion Y € #k (X) minimizingEpyk, ¥ = L, (foy),
limy_ol[fY — foll,2 = 0, and limy_oZp(fY)
Zp(fo).

The essential part of the proof of this theorem is
showing that the adjoinl of the inclusion

I = (2 (X)) = (24, (X I1.2,)

is the integral operatdrk . This allows application of
the equations (6) and (7). The formula

fV = LKy( fp) (8)

describing the regularized solution can be called th
Representer Theorem in analogy to a similar resul
describing the minimum point of the regularized em-
pirical error functional. This theorem was derived in

(Cucker and Smale, 2002, p.42), where it was formu-

lated as
fy= (1 +yLgHfp. 9)
However, the formulation (9) might be misleading as

the inversel_g1 to Lk is defined only on a subspace
of Lgx (X). Note that it cannot be defined on any

complete subspace qxfgx (X) because in such a case

by Banach open map theorem it should be bounded

but for a non degenerate kern€| the eigenvalues
L of the inverseL * diverge. Here we derived the

The next theorem describes minima od empirical
error functional and its regularized modification. We
use the notation

2
EzpyK = Ezp+VY|-[k-

By % [X] is denoted th&ram matrix of the kernel K
with respect to the vector, xe., the matrix

K [Xi,j = K%, Xj),

by %m[X] the matrixz x [X], and byr the identitym x
m matrix.

Theorem2. Let K: X x X — R be a symmet-
ric positive semidefinite kernel, m be a positive
integer, z= (x,y) with x = (x1,...,Xn) € XM,
y=(Y1,...,Ym) €R™, with x,...,xm distinct, and p
be a discrete probability measure éf,...,m}, then

e () 7 =L5(y) is a minimum point of, p at #k (X),
4Nk < 0] for all £ < argmin(#(c(X), £2p).

and f* = Li{(y) = S".cKy, where c=
C1,..-,Cm) = X [X|*Y,
(i) for all y > 0, there exists a uniqueYfminimiz-
iNg Ezpyk over #i (X), f¥ = sM Ky, where
¢ = (Km[X| +yI1)7ty.

The essential part of the proof of this theorem
is description of the adjoinL;, : (R™,|.||l2m) —
(#k (X), |-Ik) asLi(u) = 2 5™, uiKy. This leads
to representation ofxL} : R™ — R™ by the matrix
Km[X], which together with equations (6) and (7) gives

'the description of functions minimizing the empirical

error and its regularization.
Theorem 2 shows that for every kerr€] every

description of the regularized solution (8) easily as sample of empirical data and discrete probability

a straightforward consequence of well-known prop-

erties of Tikhonov's regularization, while in (Cucker

and Smale, 2002, pp.27-28) the formula (9) was de-

rived using results on operators with fractional pow-
ers.

By Theorem 1, when the regression functify
is not in the function space(k (X) defined by the
kernelK, thenz, does not achieve a minimum on
Hk (X). However, for every regularization parame-
tery> 0, the regularized functional, y k achieves a
unique minimum equal ta, (f;). Theorem 1 also
shows how regularization modifies coefficieRts; }
in the representation of the regressign = 52, wi@
in terms of the basi§@} formed by eigenvalues of

the operatotk. Regularization replaces these coeffi-
cients with coefficients{%}. The functiona(i) =

WiAi
Aity

is decreasing to 0, so the higher frequency co-

measure, there exists a functioh™ minimizing the
empirical error functionat, , over the whole RKHS
defined byK. This function is formed by a linear
combination of the representefs, , ..., Ky, of input
datax;, i.e.,it has the form

m

ft= i;CiKXi.

Thus f* can be interpreted as amput-output func-
tion of a neural network with one hidden layer of
kernel units and a single linear output unithe co-
efficientsc = (cy,...,cm) of the linear combination
(corresponding to network output weights) satisty

% [X]"y, so the output weights can be obtained by
solving the system of linear equations. However, as
the operatoky has finite dimensional range, it is com-
pact and thus its pseudoinverse is unbounded. So the

(10)

efficients are more reduced. With the regularization Optimal solution of minimization od empirical error is

parametely decreasing to zero, the coeﬂ‘icierj\fiif:,t‘}iy
converge tav; and so the regularized solutiofiscon-
verge in.3, -norm to the regression functidf.
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is also a linear combination of functiois,, ..., Kx,. Bertero, M. (1989). Linear inverse and ill-posed problems.

But the coefficients of these two linear combinations Advances in Electronics and Electron Physi€s:1-

are different: in the regularized casé= (% [x] + 120.

y])—ly, while in the non-regularized ore= K[x]+y. Bishop, C. (1995). Training with noise is equivalent
The characterization of regularized solution min- to Tikhonov regularization. Neural Computation

imization of empirical error in reproducing kernel 7(1):108-116.

Hilbert spaces was derived in (Wahba, 1990) us- Cucker, F.and Smale, S. (2002). On the mathematical foun-
ing Fréchet derivatives (see also (Cucker and Smale, ~ dations of learmningBulletin of AMS 39:1-49.

2002), (Poggio and Smale, 2003)). Our proof based Engl, E. W., Hanke, M., and Neubauer, A. (1998kgular-

on characterization of the adjoibj of the evaluation ization of Inverse ProblemKluwer, Dordrecht.
operatorLy is much simpler and it also include the Fine, T. L. (1999).Feedforward Neural Network Methodol-
non regularized case and thus it shows the effect of ogy. Springer-Verlag, Berlin, Heidelberg.

regularization. Friedman, A. (1982)Modern AnalysisDover, New York.
Theorem 2 shows that increase of “smoothness” Girosi, F., Jones, M., and Poggio, T. (1995). Regulariza-

of the regularized solutioriY is achieved by merely tion theory and neural networks architecturiigural

changing the coefficients of the linear combination. Computation 7:219-269.

In the non regularized case, the coefficients are ob- Girosi, F. and Poggio, T. (1990). Regularization algorighm

tained from the output data vectpusing the Moore- for learning that are equivalent to multilayer networks.

Penrose pseudoinverse of the Gram matiXx], Science247(4945):978-982.

while in the regularized one, they are obtained using Groetch, C. W. (1977)Generalized Inverses of Linear Op-

the inverse of the modified matrix [x| +yz. So the erators Dekker, New York.

regularization merely changes amplitudes, but it pre- Hansen, P. C. (1998Rank-Deficient and Discrete lll-Posed

serves the finite set of basis functions from which the Problems SIAM, Philadelphia.

solution is composed. Ito, Y. (1992). Finite mapping by neural networks and truth
In many practical applications, there are used net- functions. Mathematical ScientistL7:69-77.

works with much smaller numberof units than the  Kecman, V. (2001). Learning and Soft ComputingMIT

size of the training sample of data However, char- Press, Cambridge.

acterization of theoretically optimal solutions achiev- Koirkova, V. and Sanguineti, M. (2005a). Error estimates

able over networks with large numbers of units (equal for approximate optimization by the extended Ritz

to the sizesn of training data) can be useful in inves- method.SIAM Journal on Optimizatigri.5:461-487.

tigation on dependence of quality of approximation of Kirkova, V. and Sanguineti, M. (2005b).  Learning
such optimal solutions by suboptimal ones obtainable with generalization capability by kernel methods with
over smaller models (Vito et al., 2005; Kiirkova and bounded complexityJournal of Complexity13:551~
Sanguineti, 2005a; Klirkova and Sanguineti, 2005b). 55_9' )
As mentioned above, for convolution kernels we M'Ch‘g'_" C. A. (1986). In(}erpog;}t_lon ﬁf scat_tt_erec:j df‘."‘tf"“
: tance matrices and conditiona y posmve efinite
have| fY|x < ¥, |c|. Instead of calculating].||? Isal 5 onar
s = £l= - functions. Constructive Approximatiqr2:11-22.
norm, it is easier to use as a stabilizer thenorm of bp et fo _
an output weight vector. For linear combinations of Moorgég. H. (1920). AbstractBulletin of AMS 26:394~
functions of the fornKy, this also leads to minimiza- '

tion 0f|\-||ﬁ norm. Penrose, R. (1955). A generalized inverse for matri-

ces.Proceedings of Cambridge Philosophical Society
51:406-413.

Poggio, T. and Smale, S. (2003). The mathematics of learn-
ing: dealing with dataNotices of AMS50:537-544.
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