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Abstract: A Biased Random Key Genetic Algorithm (BRKGA) is proposed to find solutions for the unit commitment
problem. In this problem, one wishes to schedule energy production on a given set of thermal generation units
in order to meet energy demands at minimum cost, while satisfying a set of technological and spinning reserve
constraints. In the BRKGA, solutions are encoded by using random keys, which are represented as vectors
of real numbers in the interval[0,1]. The GA proposed is a variant of the random key genetic algorithm,
since bias is introduced in the parent selection procedure, as well as in the crossover strategy. Tests have
been performed on benchmark large-scale power systems of up 100 units for a 24 hours period. The results
obtained have shown the proposed methodology to be an effective and efficient tool for finding solutions to
large-scale unit commitment problems. Furthermore, form the comparisons made it can be concluded that the
results produced improve upon the best known solutions.

1 INTRODUCTION

The Unit Commitment (UC) problem is well known
in the power industry and adequate solutions for it
have the potential to save millions of dollars per year
in fuel and related costs. Therefore, the UC problem
plays a key role in planning and operation of power
systems. The UC problem is a complex decision mak-
ing process since it entails the schedule of the turn-on
and turn-off of the thermal generation units, as well
as the amount of power to be generated by each on-
line unit for each period of the generation horizon. In
addition, there are multiple technological constraints
and spinning reserve constraints that must be satisfied.
Due to its combinatorial nature, multi-period charac-
teristics, and nonlinearities this problem is computa-
tionally demanding and, thus, no exact optimization
method is capable of solving the UC problem for real-
sized systems. In the past, several traditional heuristic
approaches based on exact methods have been used,

see e.g. (Lee, 1980; Cohen and Yoshimura, 1983;
Merlin and Sandrin, 1983). However, more recently
most of the developed methods are metaheuristics,
evolutionary algorithms, and hybrids of the them,
see e.g. (Arroyo and Conejo, 2002; Valenzuela
and Smith, 2002; Jenkins and Purushothama, 2003;
Dudek, 2004; Simopoulos et al., 2006; Chen and
Wang, 2007; Maturana and Riff, 2007; Senjyu et al.,
2008; Viana et al., 2008; Abookazemi et al., 2009).
These latter types have, in general lead to better
results than the ones obtained with the traditional
heuristics. Comprehensive and detailed surveys can
be found in (Padhy, 2001; Salam, 2007; Raglend and
Padhy, 2008).

In this paper we focus on applying Genetic Algo-
rithms (GAs) to find good quality solutions for the UC
problem. The majority of the reported GA implemen-
tations to address the UC problem are based on the
binary encoding. However, studies have shown that
other encoding schemes such as real valued random
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keys (Bean, 1994) can be efficient when accompa-
nied with suitable GA operators, specially for prob-
lems where the relative order of tasks is important.
In the proposed algorithm a solution is encoded as
a vector ofn real random keys in the interval[0,1],
wheren is the number of generation units. The Bi-
ased Random Key Genetic Algorithm (BRKGA) pro-
posed in this paper is based on the framework pro-
vided by Resende and Gonçalves in (Gonçalves and
Resende, 2009). BRKGAs are a variation of the Ran-
dom key Genetic Algorithms (RKGAs), first intro-
duced by Bean (Bean, 1994). The bias is introduced
at two different stages of the GA. On the one hand,
when parents are selected we get a higher change of
good solutions being chosen, since one of the parents
is always taken from a subset including the best so-
lutions. On the other hand, the crossover strategy
is more likely to choose alleles from the best par-
ent to be inherited by offspring. In (Gonçalves and
Resende, 2009) is presented a tutorial on the imple-
mentation and use of biased random key genetic algo-
rithms for solving combinatorial optimization prob-
lems and many successful applications are reported
in the references therein.

This paper is organized as follows. In Section 2,
the UC problem is described and formulated, while in
Section 3 the genetic algorithm proposed is explained.
Section 4 presents the set of benchmark systems used
in the computational experiments and reports on the
results obtained. Finally, in Section 5 some conclu-
sions are drawn.

2 UC PROBLEM FORMULATION

In the UC problem one needs to determine the turn-
on and turn-off times of the power generation units,
as well as the generation output subject to opera-
tional constraints, while satisfying load demands at
minimum cost. Therefore, we have two types of de-
cision variables. The binary variables, which indi-
cate the status of each unit in each time period and
the real variables, which provide the information on
the amount of energy produced by each unit in each
time period. The choices made must satisfy two sets
of constraints: the demand constraints, regarding the
load requirements and the spinning reserve require-
ments and the technical constraints, regarding gener-
ation units constraints. The costs are made up two
components: the fuel costs, i.e. production costs, and
the start-up costs.

Let us now introduce the parameters and decision
variables notation.

Ytht, j : (Thermal) Generation of unitj at time period

t, in [MW];

ut, j : Status of unitj at time periodt (1 if the unit is
on; 0 otherwise);

T: Number of time periods (hours) of the scheduling
time horizon;

N: Number of generation units;

t: Time period index;

j: Generation unit index;

Dt : Load demand at time periodt, in [MW];

Drt : System spinning reserve requirements at time
periodt, in [MW];

YthMin/Max: Minimum/maximum generation limits,
in [MW];

∆dn/up
j : maximum allowed output level de-

crease/increase in consecutive periods for
unit j, in [MW].

Ton/o f f
min, j : Minimum uptime/downtime of unitj, in

[hours];

Ton/o f f
j (t): Time periods for which unitj has been

continuously on-line/off-line until time periodt,
in [hours];

Tc, j : Number of time periods needed to cool down
unit j, in [hours];

SUH/C, j : Hot/Cold start-up cost of unitj, in [$];

2.1 Objective Function

As already said, there are two cost components: gen-
eration costs and start-up costs. The generation costs,
i.e. the fuel costs, are conventionally given by a
quadratic cost function as in equation (1), while the
start-up costs, that depend on the number of time pe-
riods during which the unit has been off, are given as
in equation (2).

Fj(Yth, j ) = a j · (Ytht, j)
2+b j ·Ytht, j + c j , (1)

wherea j ,b j ,c j are the cost coefficients of unitj.

SUt, j =

{

SUH, j if To f f
min, j ≤ To f f

j (t)≤ Tc, j

SUC, j if To f f
j (t)> Tc, j

. (2)

whereSUH, j andSUSC, j are the hot and cold start-up
costs of unitj, respectively.

Therefore, the cost incurred with an optimal
scheduling is given by the minimization of the total
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costs for the whole planning period, as in equation
(3).

Minimize
T

∑
t=1

(

N

∑
j=1

{Fj(Ytht, j) ·ut, j (3)

+SUt, j · (1−ut−1, j) ·ut, j}

)

.

2.2 Constraints

The constraints can be divided into two sets: the de-
mand constraints and the technical constraints. Re-
garding the first set of constraints it can be further
divided into load requirements and spinning reserve
requirements, which can be written as follows:

1. Power Balance Constraints. The total power
generated must meet the load demand, for each time
period.

N

∑
j=1

Ytht, j ·ut, j ≥ Dt , t ∈ {1,2, ...,T} . (4)

2. Spinning Reserve Constraints. The spinning
reserve is the total amount of real power generation
available from on-line units net of their current pro-
duction level.

N

∑
j=1

Ythmax, j ·ut, j ≥ Drt +Dt , t ∈ {1,2, ...,T} . (5)

The second set of constrains includes unit output
range, minimum number of time periods that the unit
must be in each status (on-line and off-line), and the
maximum output variation allowed for each unit.

3. Unit Output Range Constraints. Each unit has
a maximum and minimum production capacity.

Ythmin, j ·ut, j ≤Ytht, j ≤Ythmax, j ·ut, j , (6)

for t ∈ {1,2, ...,T} and j ∈ {1,2, ...,N} .

4. Ramp Rate Constraints. Due to the thermal
stress limitations and mechanical characteristics the
output variation levels of each online unit in two con-
secutive periods are restricted by ramp rate limits.

−∆dn
j ≤Ytht, j −Ytht−1, j ≤ ∆up

j , (7)

for t ∈ {1,2, ...,T} and j ∈ {1,2, ...,N} .

5. Minimum Uptime/Downtime Constraints. The
unit cannot be turned on or off instantaneously once
it is committed or uncommitted. The minimum up-
time/downtime constraints indicate that there will be
a minimum time before it is shut-down or started-up,
respectively.

Ton
j (t)≥ Ton

min, j andTo f f
j (t)≤ To f f

min, j , (8)

for t ∈ {1,2, ...,T} and j ∈ {1,2, ...,N} .

3 BIASED RANDOM KEY
GENETIC ALGORITHM

Genetic Algorithms (GAs) are a optimization tech-
nique based on natural genetics and evolution mech-
anisms such as survival of the fittest law, genetic
recombination and selection (Holland, 1975; Gold-
berg, 1989). GAs provide great modeling flexibility
and can easily be implemented to search for solu-
tions of combinatorial optimization problems. Sev-
eral GAs have been proposed for the unit commit-
ment problem, see e.g. (Kazarlis et al., 1996; Cheng
et al., 2000; Swarup and Yamashiro, 2002; Arroyo
and Conejo, 2002; Xing and Wu, 2002; Dudek, 2004;
Abookazemi et al., 2009), the main differences be-
ing the representation scheme, the decoding proce-
dure, and the solution evaluation procedure (i.e. fit-
ness function).

Many GA operators have been used; the most
common being copy, crossover, and mutation. Copy
consists of simply copying the best solutions from the
previous generation into the next one, with the inten-
tion of preserving the chromosomes corresponding to
best solutions in the population. Crossover produces
one or moreoffspringsby combining the genes of so-
lutions chosen to act as their parents. The mutation
operator randomly changes one or more genes of a
given chromosome in order to introduce some extra
variability into the population and thus, prevent pre-
mature convergence.

The GA proposed here, i.e. the BRKGA, uses
the framework proposed by Resend and Gonçalves
in (Gonçalves and Resende, 2009). The algorithm
evolves a population of chromosomes that are used to
assign priorities to the generation units. These chro-
mosomes are vectors, of sizeN (number of units),
of real numbers from the interval[0,1] (called ran-
dom keys). A new population is obtained by joining
three subsets of solutions as follows: the first subset
is obtained by copying the best solutions of the cur-
rent population; the second subset is obtained by us-
ing a (biased) parameterized uniform crossover; the
remaining solutions, termed mutants, are randomly
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generated as was the case for the initial population.
The BRKGA framework is illustrated in Figure 1,
which has been adapted from (Gonçalves and Re-
sende, 2009).

Entry

Generation of
random key vectors

Decoding: Random keys vectors in
terms of the generation  scheduling 

 All 
generations?     ExitNYSort chromosomes

by fitness value

Classify chromosomes
as elit or non-elite 

Copy elite
chromosomes 

Generate mutants 

Combine elite and non- elite
to produce offspring 

Figure 1: The BRKGA framework.

Specific to our problem is the decode and repair
procedure, that is how solutions are constructed once
a population of chromosomes is given. The decoding
procedure is performed in two main steps, as it can be
seen in Figure 2. Firstly, a solution satisfying the load
demand, for each period is obtained. In this solution
the units production is proportional to their priority,
which is given by the random key value. Then, these
solutions are checked for constraints satisfaction.

3.1 Decoding Procedure

Given a vector of numbers in the interval[0,1],
say RK = (r1, r2, ..., rN) a percent vectorV =
(v1,v2, ...,vN) is computed. Each elementv j is com-
puted asv j =

r j

∑N
i r i

, i = 1,2, ...,N.

Then an output generation matrixYth is obtained,
where each elementYth(t, j) gives the production
level of unit j for time periodt and is computed as
in equation (9).

Yth(t, j) = Dt ·v j , j = 1,2, ...,N. (9)

The production level of unitj for each time pe-
riod t however, may not be admissible and there-
fore, the solution obtained may be unfeasible. Hence,
the decoding procedure also incorporates a repair
mechanism. This mechanism forces constraints sat-
isfaction, except for the minimum uptime/downtime

     Entry

Compute output level matrix for each unit
and period  proportional to random key  

 Exit

Adjust output levels to satisfy the output
range constraints

Adjust output levels  to satisfy output variation
limits in consecutive periods 

Compute penalties associated to minimum
  uptime/downtime constraints violation

Adjust output levels to satisfy demand
requirements

Adjust output levels to satisfy available
unused capacity 

For each chromosome  
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Figure 2: Flow chart of the decoder.

constraints, which are handled implicitly by using a
penalty function, as already mentioned.

The repair mechanism starts by forcing the output
level of each unit to be in its output range as given in
equation (10).

Ytht, j =



















Ythmax, j if Ytht, j ≥Ythmax, j

Ytht, j if Ythmin, j <Ytht, j <Ythmax, j

Ythmin, j if χ ·Ythmin, j ≤Ytht, j ≤Ythmin, j

0 otherwise,
(10)

whereχ ∈ [0,1] is a scaling factor.
At the same time that the ramp constrains are en-

sured for a specific time periodt, new output lim-
its (Ythmax

t, j and Ythmin
t, j upper and lower limits, re-

spectively) must be imposed, for the following period
t +1, since their value depends on the output level of
the current periodt. Equations (11) and (12) show
how this is done.
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Ytht, j =



















Ythmax
t, j if Ytht, j ≥Ythmax

t, j

Ytht, j if Ythmin
t, j <Ytht, j <Ythmax

t, j

Ythmin
t, j if µ·Ythmin

t, j ≤Ytht, j ≤Ythmin
t, j

0 otherwise

(11)

whereYthmax
1, j =Ythmax, j ,Ythmin

1, j =Ythmin, j and

Ythmax
t, j = min

{

Ythmax, j ,Ytht−1, j +∆up
j

}

,

Ythmin
t, j = max

{

Ythmin, j ,Ytht−1, j −∆dn
j

}

.
(12)

Since to ensure that the unit output range con-
straints and the ramp rate constraints are verified the
output level of the units may have been changed, it
is no longer guaranteed that load demands are sat-
isfied. Furthermore, for each period, it may hap-
pen that the production is either not enough or ex-
cessive. If there is excessive production, the on-line
units production is decreased to its minimum allowed
value, one at the time, until either all are set to the
minimum production or the production reaches the
load demand value. In doing so, units are consid-
ered in descending order of priority, i.e. random key
value. It should be notice that by reducing production
at time periodt the production limits at time period
t + 1 change, and the new values must be respected.
Therefore, the minimum allowed production is given

by max
{

Ythmin
t, j ,Ytht+1, j −∆up

j

}

. This is repeated no

more thanN times. If there is lack of production,
the on-line units production is increased to its max-
imum allowed value, one at the time, until either all
are set to the maximum production or the production
reaches the load demand value. In doing so, units are
considered in ascending order of priority, i.e. random
key value. It should be notice that by increasing pro-
duction at time periodt the production limits at time
periodt + 1 change, and the new values must be re-
spected. Therefore, the maximum allowed production

is given bymin
{

Ythmax
t, j ,Ytht+1, j +∆dn

j

}

. Again, this

is repeated no more thanN times.
At the end of the procedures just explained it may

happen that the production matches, is larger than or
lesser than the demand. Both in the first and second
cases, the procedure moves onto the spinning reserve
constraints phase, while in the latter case units are
turned on-line at least at the required output level (or
more if the ramp constraints require so).

Once the spinning reserve phase is reached the
production either matches or is larger than the load
demand. Therefore, the spinning reserve require-
ments can be decreased on the amount of the exces-
sive production. This new value is then compared to
the unused production capacity. If larger, then units
will be turned on-line, in descending order of priority,

at minimum output level until their cumulative capac-
ity satisfies the spinning reserve requirements.

Once these four repairing stages have been per-
formed the solutions obtained may not satisfy the up-
time or the downtime constraints. If they are not sat-
isfied then a penalty function is applied. This penalty
function is explained in Section 3.3i when the fitness
function is described.

3.2 GA Operators

In order to obtain a new population

• 20% of the best solutions (elite set) of the current
population are copied;

• 20% of the new population is obtained by intro-
ducing mutants, that is by randomly generating
new sequences of random keys, which are then de-
coded to obtain mutant solutions. Since they are
generated using the same distribution as the orig-
inal population, no genetic material of the current
population is brought in;

• Finally, the remaining 60% of the population is
obtained by biased reproduction, which is accom-
plished by having both a biased selection and a
biased crossover.

The selection is biased since, one of the parents
is randomly selected from the elite set of solutions
(of the current population), while the other is ran-
domly selected from the remainder solutions. This
way, elite solutions are given a higher chance of mat-
ting, and therefore of passing on their characteristics
to future populations. Genes are chosen by using a bi-
ased uniform crossover, that is, for each gene a biased
coin is tossed to decide on which parent the gene is
taken from. This way, the offspring inherits the genes
from the elite parent with higher probability (0.7 in
our case).

3.3 Fitness Function

The fitness function used for the evaluation of the
solutions is composed of two terms. The first term
TC represents the total thermal system operating cost,
while the second term is the penalty associated with
the violation of the uptime and downtime constraints.
Recall that the total thermal system operating cost is
given by the cost of the fuel needed to produce the
energy and the units startup costs, see equation (13).

TCt, j =Fj(Ytht, j)·ut, j +SUt, j ·(1−ut−1, j)·ut, j . (13)

The penalty function is proportional to the number
of violated uptime and downtime constraints, as well
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as to the magnitude of the violation, and is computed
as follows (equation (14)).

Pent, j =































µ1

∣

∣

∣
Ton

min, j −Ton
j (t)

∣

∣

∣
if ut, j = 0&ut−1, j = 1,

µ2

∣

∣

∣
To f f

min, j −To f f
j (t)

∣

∣

∣
if ut, j = 1&ut−1, j = 0,

0 otherwise,
(14)

whereµ1 andµ2 are penalty multipliers associated
with minimum uptime and minimum down time con-
straints, respectively.

Therefore, the fitness function is given by:

f it (Yth) =
T

∑
t=1

N

∑
j=1

{

TCt, j +Pent, j
}

. (15)

4 NUMERICAL RESULTS

A set of benchmark systems has been used for the
evaluation of the proposed algorithm. Each of the
problems in the set considers a scheduling period of
24 hours. The set of systems comprises six systems
with 10 up to 100 units. A base case with 10 units
was initially chosen, and the others have been ob-
tained by considering copies of these units. The base
10 units systems and corresponding 24 hours load de-
mand are given in (Kazarlis et al., 1996). To gener-
ate the 20 units problem, the 10 original units have
been duplicated and the load demand doubled. An
analogous procedure was used to obtain the problems
with 40, 60, 80, and 100 units. In all cases, the
spinning reserve requirements were set to 10% of the
load demand. The BRKGA was implemented with
biased crossover probability as main control param-
eter. The parameter ranges used in our experiments
were 0.5≤ Pc ≤ 0.8 with step size 0.1 which gives 4
possible values for biased crossover probability. Sev-
eral computational experiments were made in order
to choose the other parameters values. The results
obtained have shown no major differences. Never-
theless, the results reported here refer to the best ob-
tained ones, for which the number of generations was
set to 10N, the population size was set to 2N, biased
crossover probability was set to 0.7, and the scaling
factor χ = 0.4. Due to the stochastic nature of the
BRKGA, each problem was solved 20 times.

The BRKGA has been implemented on Matlab
and executed on a Pentium IV Core Duo personal
computer T 5200, 1.60GHz and 2.0GB RAM. We
compare the results obtained with the best results re-
ported in literature. In tables 1, 2, and 3, we compare

the best, average, and worst results obtained, for each
of the six problems, with the best of each available
in literature. As it can be seen, for four out of the
six problems solved our best results improve upon the
best known results, while for the other two it is within
0.15% and 0.27% of the best known solutions.

For each type of solution presented (best, aver-
age, and worst) we compare each single result with
the best respective one (given in bold) that we were
able to find in the literature. The results used have
been taken from a number of works as follows: MR-
CGA (Sun et al., 2006), LRGA (Cheng et al., 2000),
SM(Simopoulos et al., 2006), and GA (Senjyu et al.,
2002).

Another important feature of the proposed algo-
rithm is that, as it can be seen in Table 4, the variabil-
ity of the results is very small. The difference between
the worst and best solutions found for each problem
is always below 0.65%, while if the best and the av-
erage solutions are compared this difference is never
larger than 0.25%. The maximum standard deviation
over the average is 0.21%. This allows for inferring
the robustness of the solution since the gaps between
the best and the worst solutions are very small. Fur-
thermore our worst solutions, when worse than the
best worst solutions reported are always within 0.6%
of the latter, see Table 4. This is very important since
the industry is reluctant to use methods with high vari-
ability as this may lead to poor solutions being used.

5 CONCLUSIONS

A Biased Random Key Genetic Algorithm, follow-
ing the ideas presented in (Gonçalves and Resende,
2009), for finding solutions to the unit commitment
problem has been presented. In the solution method-
ology proposed real valued random keys are used to
encode solutions, since they have been proved to per-
form well in problems where the relative order of
tasks is important. The proposed algorithm was ap-
plied to systems with 10, 20, 40, 60, 80, and 100
units with a scheduling horizon of 24 hours. The nu-
merical results have shown the proposed method to
improve upon current state of the art, since only for
two problems it was not capable of finding better so-
lutions. Furthermore, the results show a further very
important feature, lower variability as was refered in
section 4. This is very important since methods to be
used in industrial applications are required to be ro-
bust, therefore preventing the use of very low quality
solutions.

A BIASED RANDOM KEY GENETIC ALGORITHM APPROACH FOR UNIT COMMITMENT PROBLEM

337



Table 1: Comparison between best results obtained by the BRKGA and the best ones reported in literature.

Size GA MRCGA LRGA BRKGA Ratio
10 563977 564244 564800 564806 100.15
20 1125516 1125035 1122622 1120481 99.81
40 2249715 2246622 2242178 2248205 100.27
60 3375065 3367366 3371079 3358379 99.73
80 4505614 4489964 4501844 4483842 99.86
100 5626514 5610031 5613127 5608875 99.98

Table 2: Comparison between average results obtained by theBRKGA and the best averages reported in literature.

Size MRCGA SM BRKGA Ratio
10 564467 566787 565056 100.12
20 1126199 1128213 1121655 99.59
40 2249609 2249589 2253117 100.16
60 3371036 – 3364051 99.79
80 4497346 4494378 4485831 99.80
100 5616957 5616699 5615193 99.97

Table 3: Comparison between worst results obtained by the BRKGA and the best worst ones reported in literature.

Size GA MRCGA SM BRKGA Ratio
10 565606 565756 567022 565672 100.01
20 1128790 1128326 1128403 1123746 99.59
40 2256824 2252076 2249589 2262701 100.58
60 3382886 3375815 – 3374920 99.97
80 4527847 4505511 4494439 4494916 100.01
100 5646529 5623248 5616900 5628072 100.20

Table 4: Analysis of the variability of the results and execution time.

Size Best Average Worst Av−Best
Best % Worst−Best

Best % St. deviation(%) Av.Time(s)
10 564806 565056 565672 0.044 0.153 0.04 5.6
20 1120481 1121655 1123746 0.105 0.291 0.1 24.6
40 2248205 2253117 2262701 0.219 0.645 0.21 115.5
60 3358379 3364051 3374920 0.169 0.493 0.19 292.6
80 4483842 4485831 4494916 0.044 0.247 0.1 656.2
100 5608875 5615193 5628072 0.113 0.342 0.11 1201.9

ACKNOWLEDGEMENTS

The financial support by FCT, POCI 2010
and FEDER, through project PTDC/EGE-
GES/099741/2008 is gratefully acknowledged.

REFERENCES

Abookazemi, K., Mustafa, M., and Ahmad, H. (2009).
Structured Genetic Algorithm Technique for Unit
Commitment Problem.International Journal of Re-
cent Trends in Engineering, 1(3):135–139.

Arroyo, J. M. and Conejo, A. (2002). A parallel repair ge-

netic algorithm to solve the unit commitment problem.
IEEE Transactions on Power Systems, 17:1216–1224.

Bean, J. (1994). Genetic Algorithms and Random Keys
for Sequencing and Optimization.ORSA Journal on
Computing, 6(2).

Chen, Y. and Wang, W. (2007). Fast solution technique
for unit commitment by particle swarm optimisation
and genetic algorithm.International Journal of En-
ergy Technology and Policy, 5(4):440–456.

Cheng, C., Liu, C., and Liu, G. (2000). Unit commitment by
Lagrangian relaxation and genetic algorithms.IEEE
Transactions on Power Systems, 15:707–714.

Cohen, A. I. and Yoshimura, M. (1983). A Branch-and-
Bound Algorithm for Unit Commitment.IEEE Trans-
actions on Power Apparatus and Systems, 102:444–
451.

ICEC 2010 - International Conference on Evolutionary Computation

338



Dudek, G. (2004). Unit commitment by genetic algorithm
with specialized search operators.Electric Power Sys-
tems Research, 72(3):299–308.

Goldberg, D. E. (1989).Genetic Algorithms in Search, Op-
timization, and Machine Learning. New York / USA,
Addison-Wesley.
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