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Abstract: Resilient Packet Ring (RPR) is a standard that uses Ethernet switching and a dual counter-rotating ring 
topology to provide SONET-like network resiliency and optimised bandwidth usage, while it delivers 
multipoint Ethernet/IP services. An important optimisation problem arising in this context is the Weighted 
Ring Arc Loading Problem (WRALP). That is the design of a direct path for each request in a 
communication network, in such a way that high load on the arcs will be avoided, where an arc is an edge 
endowed with a direction. The load of an arc is defined as the total weight of those requests routed through 
the arc in its direction. WRALP ask for a routing scheme such that the maximum load on the arcs will be 
minimum. In this paper we study the loading problem without demand splitting and for solving it we 
propose a Hybrid Scatter Search (HSS) algorithm. Coupled with the Scatter Search algorithm we use a Tabu 
Search algorithm to locate the global minimum. We show that HSS is able to achieve feasible solutions to 
WRALP instances, improving the results obtained by previous approaches. 

1 INTRODUCTION 

The past two decades have witnessed tremendous 
research activities in optimisation methods for 
communication networks. Resilient Packet Ring 
(RPR), also known as IEEE 802.17, is a standard, 
designed to optimise the transport of data traffic 
through optical fiber ring networks (Davik et al., 
2004; RPR Alliance, 2004; Yuan et al., 2004). The 
RPR aims to combine the appealing functionalities 
of Synchronous Optical Network/Synchronous 
Digital Hierarchy (SONET/SDH) networks with the 
advantages of Ethernet networks. The load balancing 
model for RPR differs from the SONET/SDH ring 
loading. Namely, SONET/SDH demands are bi-
directional and the demands assigned to go 
clockwise compete for common span capacity with 
the demands assigned to go counter-clockwise. In 
RPR there are two distinct rings (clockwise and 
counter-clockwise) and the demands do not compete 

for common capacity. In this paper we consider the 
Weighted Ring Arc-Loading Problem (WRALP) 
which arises in engineering and planning of RPR 
systems. Specifically, for a given set of non-splitable 
and unidirectional point-to-point demands, the 
purpose is to find the routing for each demand so 
that the maximum link segment load will be 
minimised (Karunanithi and Carpenter, 1994; Cho et 
al., 2005; Kim et al., 2008; Bernardino et al., 2010a).  

There are three variants to solve this problem: (i) 
demands can be split in two parts, and then each one 
is sent in a different direction; (ii) demands are 
allowed to be split in two parts, but restricted to be 
integrally split; (iii) each demand must be entirely 
routed in either one of the two directions, clockwise 
or counter-clockwise. In this paper we study the 
third variant, where NP-hardness can be drawn from 
the results in literature (Cosares and Saniee, 1994; 
Kubat and Smith, 2005).  

Cosares and Saniee (1994) and Dell’Amico et al. 
(1998) studied a similar no-split loading problem on 
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SONET/SDH rings. For the split problem, several 
approaches have been summarised by Schrijver et al. 
(1998) and their algorithms are compared in Myung 
and Kim (2004) and Wang (2005). Recently Kim et 
al. (2008) presented an Ant Colony Optimisation 
(ACO) algorithm using different strategies to solve 
the loading problem on SONET/SDH rings. 

The non-split WRALP considered in the present 
paper is identical to the one described by Kubat and 
Smith (2005) (non-split WRALP), Cho et al. (2005) 
(non-split WRALP and split WRALP) and Yuan and 
Zhou (2004) (split WRALP), that studied the 
loading problem on RPR systems .  

We verify that the main purpose of previous 
works was to build feasible solutions for the loading 
problems in a reduced amount of time. Our purpose 
is different - we want to compare the performance of 
our algorithm with others in the achievement of the 
best-known solution. Using the same principle 
Bernardino et al. (2008, 2009a, 2009b, 2010a, 
2010b) presented several Evolutionary Algorithms 
(EAs) and a Tabu Search (TS) algorithm to solve the 
non-split loading problem on SONET/SDH rings 
and several EAs and Swarm Optimisation 
algorithms to solve the non-split WRALP. 

The WRALP problem is a NP-complete 
combinatorial optimisation problem (Cosares and 
Saniee, 1994; Kubat and Smith, 2005). It means that 
we cannot guarantee to find the best solution in a 
reasonable amount of time. In practice, approximate 
methods are used to find a good solution to complex 
combinatorial optimisation problems where classical 
heuristics have failed to be efficient. The existing, 
successful methods in approximate optimisation fall 
into two classes: Local Search (LS) and population-
based search. There are many LS and population-
based optimisation algorithms. 

This paper presents an application of a 
population-based optimisation algorithm called the 
Scatter Search (SS) algorithm combined with a LS 
technique called the Tabu Search (TS). 

The SS is an EA that has recently been found to 
be promising to solve combinatorial optimisation 
problems. The SS was first introduced in 1977 by 
Fred Glover and extensive contributions have been 
made by Manuel Laguna (2002). The SS operates on 
a small set of solutions and makes only limited use 
of randomisation as a proxy for diversification when 
searching for an optimal solution. 

Embedded in the SS algorithm we use a TS 
algorithm, which is used to improve the solutions’ 
quality. The TS algorithm is a mathematical 
optimisation method, which belongs to the class of 
LS techniques.  

We compare the performance of Hybrid SS 

(HSS) algorithm with five algorithms: Probability 
Binary Particle Swarm Optimisation (PBPSO), 
Genetic Algorithm (GA), Hybrid Differential 
Evolution (HDE) algorithm, Hybrid ACO (HACO) 
algorithm and Discrete Differential Evolution 
(DDE), used in literature. 

The paper is structured as follows: in Section 2 
we present the problem definition; in Section 3 we 
describe the implemented HSS algorithm; in Section 
4 we discuss the computational results obtained and 
in Section 5 we report about the conclusions.  

2 PROBLEM DEFINITION 

An optimal loading balance in RPR systems is of 
paramount importance as it increases system 
capacity and improves the overall ring performance. 
Considering a given set of non-split and 
unidirectional point-to-point requests (weights), the 
purpose is to find the routing for each request in 
such a way that the maximum arc load will be 
minimised (Schrijver et al., 1998).  

Let Rn be a n-node bidirectional RPR ring with 
nodes {n1,n2,…,nn} labelled clockwise. Each 
edge {ek,ek+1} of Rn, 1≤ k ≤ n, is taken as two 
arcs with opposite directions, in which the data 
streams can be transmitted in either direction:  

)1kkk e,(ea +
+ =  or )e,(ea k1kk +

− = .  
A communication request on Rn is an ordered pair 
(s,d) of distinct nodes, where s is the source and 
d is the destination. We assume that data can be 
transmitted clockwise or counter-clockwise on the 
ring, without splitting. We use P+(s,d) to denote 
the directed (s,d) path clockwise around Rn, and 
P-(s,d) the directed (s,d) path counter-
clockwise around Rn.  

Often a request (s,d) is associated with an 
integer weight w>=0; we denote this weighted 
request by (s,d;w). Let Z={(s1,d1;w1), 
(s2,d2;w2),...,(sm,dm;wm)} be a set of 
integrally weighted requests on Rn. For each request 
(si,di) we need to design a directed path Pi of Rn 
from si to di. A collection P={Pi: i=1,2,…,m} 
of such directed paths is called a routing for Z. 

In this work, the solutions are represented using 
binary vectors (Table 1). If a position has the value 
1 the demand flows in the clockwise direction, if it 
has the value 0, it flows in the other way. 

We assume that weights cannot be split, that is, 
for some integer Li=1, 1≤ i ≤ m, the total amount 
of data is transmitted along P+(si,di); Li=0, the 
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total amount of data is transmitted along P-
(si,di). The vector L= (L1,L2,…,Lm)determines 
a routing scheme for Z. 

Table 1: Representation of the solution. 

 Pair(s, t) Demand 
 1:  (1, 2)  15 
 2:  (1, 3)  3 
 3:  (1, 4)  6    
 4:  (2, 3)  15 
 5:  (2, 4)  6 
 6:  (3, 4)  14 
 n=numberNodes=4 
 m=numberPairs=6 

 
 15  C 
 3   CC 
 6   CC 
 15  C 
 6   CC 
 14  C 
C -  clockwise 
CC - counter clockwise 

 
Representation (x) 

Pair1 Pair2 Pair3 Pair4 Pair5 Pair6

1 0 0 1 0 1 

3 SCATTER SEARCH 
ALGORITHM 

This metaheuristic technique derives from strategies 
proposed by Glover (1977) to combine decision 
rules and constraints, and was successfully applied 
to a large set of problems (Glover et al., 2003). The 
basic idea is to create a set of solutions (the 
reference set), that guarantees a certain level of 
quality and diversity. The iterative process consists 
in selecting a subset of the reference set, combining 
the corresponding solutions through a strategy, in 
order to create new solutions and to improve them 
through a LS optimisation technique. The process is 
repeated with the use of diversification techniques, 
until certain stopping criteria are met. 

In SS algorithm it is built an initial set of 
solutions (reference set) and then the elements of 
specific subsets of that set are systematically 
combined to produce new solutions, which hopefully 
will improve the best-known solution (see  Glover et 
al., 2003 for a comprehensive description of the 
algorithm).  

The basic algorithmic scheme is composed of 
five steps: 

1. Generation and improvement of solutions; 
2. Construction of the reference set; 
3. Subset selection; 
4. Combination; 
5. Reference set update. 

The standard SS algorithm stops when the reference 
set cannot be updated. However, the scheme can be 
enhanced by adding new steps in which the 
reference set is regenerated. Our algorithm uses a 
diversification mechanism after a pre-defined 

number of nid iterations without improving the best 
solution found so far. The reinitialisation can be very 
useful to refocus the search on a different search 
space region and to avoid the early convergence of 
the algorithm.  

The main steps of the HSS algorithm applied to 
the WRALP are detailed below: 

Initialise Parameters 
Generate initial set of Solutions 
Evaluate Solutions 
Apply Improvement Method  
Generate Reference Set 
WHILE TerminationCriterion() 

Select subsets 
 Apply Combination Method 
 Apply Improvement Method 
  Update Reference Set 
 IF (no new solutions) THEN 
    Regenerate Reference Set  

IF (nid iterations without improve 
best solution) THEN 

    Apply Diversification Mechanism 

The next subsections describe each step of the 
algorithm in detail. 

3.1 Initialisation Parameters 

The following parameters, must be defined by the 
user: (1) mi– number of iterations; (2) ni– number 
of initial solutions; (3) b1– number of best solutions 
in the reference set; (4) b2– number of most 
different feasible solutions in the reference set and 
(5) nid- number of iterations without improvement 
(used for diversification). 

3.2 Generation of Solutions 

The initial solutions can be randomly created or in a 
deterministic form based in a Shortest-Path 
Algorithm (SPA). The SPA is a simple traffic 
demand assignment rule in which the demand will 
traverse the smallest number of segments. 

3.3 Evaluation of Solutions 

To evaluate how good a potential solution is relative 
to other potential solutions we use a fitness function. 
The fitness function returns a positive value  (fitness 
value) that reflects how optimal the solution is.  

The fitness function is based on the fitness 
function used in (Bernardino et al., 2008, 2009a, 
2009b, 2010a, 2010b ): 
Wi,…,wm between(si,di),…,(sm,dm) (1a) 
Li, …, Lm = 0  P-(si,di)  
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            1  P+(si,di)           (1b)   

Load on arcs: 

Load(L, +
ka )= ∑

++ ∈ )d,(sPa:i
i

iik

w
      (2a)    

Load(L, −
ka )= ∑

−− ∈ )d,(sPa:i
i

iik

w      (2b)   

∀k=1,…,n;    ∀i=1,…,m                            

Fitness function: 
max {max Load(L, +

ka ),  
                   max Load(L, −

ka )}       (3) 

For a given ring, between each node pair (si,ti) 
there is a demand value >=0. Constraint sets (1) 
state that each positive demand value is routed in 
either clockwise (C) or counter-clockwise (CC) 
direction. 

For an arc, the load is the sum of wi for 
clockwise or counter-clockwise between nodes ek 
and ek+1 (2). The purpose is to minimise the 
maximum load on the arcs of a ring (3). 

3.4 Generation of Reference Set 

The best b1 solutions in the initial set of solutions 
are selected to be in the reference set. The b2 
feasible solutions in the initial set of solutions that 
are the most different when compared to the 
solutions already in the reference set, are also 
selected to be in the reference set.  

As a measure of the difference between two 
solutions, we compute the total number of different 
assignments between the two solutions. 

3.5 Subset Selection 

In literature, several methods can be applied to 
generate the subsets. In our implementation, the 
subsets are formed by combining two solutions from 
the reference set: 

(1,2), (1,3), (1,4),…, (1,b1+b2), 
(2,3),…, (b1+b2-1,b1+b2).  

We adopt Type-1 (Glover et al., 2003). This 
method consists of ((b1+b2)2 - (b1+b2))/2 
pair wise combinations of the solutions. 

All pairs of solutions in the reference set are 
selected for the combination procedure (see 
subsection 3.6). 

 

3.6 Combination Method 

This method combines the solutions in each subset 
to form new solutions. 

First a random node is chosen and then the pairs 
with that node are exchanged (see Fig. 1) between 
the two solutions. 

 
Figure 1: .Combination Method – produces two combined 
solutions – example with n=4 (number of nodes) and m=6 
(number of pairs). The node chosen was “1”. 

The combination method consists of the 
following steps: 

node= random(n) 
FOR i=1 TO m DO 
IF Solution1(i) has node OR  
          Solution2(i) has node THEN 
  CombinedSolution1(i)= Solution2(i) 
  CombinedSolution2(i)= Solution1(i) 
ELSE 
 CombinedSolution1(i)= Solution1(i) 
   CombinedSolution2(i)= Solution2(i) 

The combination method produces two combined 
solutions.  

The combined solutions go through the 
improvement phase (see subsection 3.7). 

3.7 Improvement Method 

A TS algorithm is applied to each solution in the 
initial set of solutions in order to reduce its cost, if 
possible. After the combination, the TS algorithm is 
also applied to improve the quality of the combined 
solutions. 

The basic concept of TS was described by 
Glover (1986). TS allows the search to explore 
solutions that decrease the objective function value 
only in those cases where these solutions are not 
forbidden. This is usually obtained by keeping track 
of the action used to transform one solution into the 
next. When an action is performed it is considered 
tabu for the next T iterations, where T is the tabu 
status length. A solution is forbidden if it is obtained 
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by applying a tabu action to the current solution. 
In our implementation, the TS only exploits a 

part of the neighbourhood. The most common and 
simplest way to generate a neighbour is to exchange 
the direction of the traffic of one request. In our 
implementation, some positions of the solution are 
selected and their directions are exchanged (partial 
search). This method can be summarised in the 
following pseudo-code steps: 

p1 = random (m)          
p2 = random (m) 
N = neighbourhoods of ACTUAL-

SOLUTION (one neighbourhood results of 
interchange the direction of p1 and/or 
p2) 

SOLUTION = FindBest (N) 
If ACTUAL-SOLUTION is worst than 

SOLUTION 
  ACTUAL-SOLUTION = SOLUTION 

The positions which directions are exchanged are 
classified as tabu attributes. A candidate can be 
chosen as a new current solution, if the positions 
which directions are exchanged are not the same as 
those in the tabu list. Normally in TS algorithm, if a 
neighbour is the best solution found so far it could 
be selected as a move, even when it is tabu. In our 
implementation, we don’t explore neighbours when 
the two pairs chosen are in the tabu list. In 
aspiration, just the best neighbour not tabu with a 
fitness value lower than the best is selected. 

The TS ends when a maximum number of 
iterations is reached. Based on preliminary 
observations, we consider a maximum number of 10 
iterations. With a higher value of iterations, the 
algorithm slows down. We also observed that a high 
number of iterations does not produce significant 
better results.  

For the tabu list, we consider m/20 elements. In 
the tests carried out with TS, it was verified that the 
number of elements in the tabu list does not have a 
significant influence on the efficiency and quality of 
the search. However, if the number of elements is 
high, the search space will be small, which may lead 
to a premature convergence of the algorithm. On the 
other hand, if the number of elements is small, the 
search space will be large, which may take a long 
time to obtain a good solution. 

The improved solutions are considered for 
inclusion in the reference set (see subsection 3.8). 

 

3.8 Reference Set Update 

The purpose is to maintain a good level of quality 
and diversity.  

We adopted the dynamic reference set update 
(Glover et al., 2003).  

A new feasible solution immediately enters in 
the reference set, if its quality is better than the 
quality of the worst solution, or if its diversity is 
greater than the diversity of the less different 
solution. Solutions that are equal to others already in 
the reference set are not allowed to enter under any 
condition. 

If the reference set is not updated, then the 
algorithm restarts the reference set (see subsection 
3.9).  

3.9 Regeneration of Reference Set  

The algorithm creates another set of solutions - Ps 
(with the same size of the initial set of solutions). 
The new solutions go through the improvement 
phase (see subsection 3.7).  

A new feasible solution immediately enters in 
the reference set, if its quality is better than the 
quality of the worst solution. 

The b2 solutions with greater diversity are 
erased from the reference set and the b2 feasible 
solutions in Ps that are the most different when 
compared to the solutions already in the reference 
set are selected to be in the reference set. 

3.10 Diversification Mechanism 

This mechanism restarts the best b1 solutions in the 
reference set.   

The algorithm creates another set of solutions - 
Pd (with the same size of the initial set of solutions). 
The new solutions go through the improvement 
phase (see subsection 3.7). 

The best (b1-1) solutions in Pd are selected to 
be in the reference set. For the following iteration, 
we kept the best solution. 

3.11 Termination Criterion 

The algorithm stops when a maximum number of 
iterations (mi) is reached. 

4 RESULTS 

We evaluate the utility of the algorithms using the 
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same instances produced by Bernardino et al. 
(2009a, 2009b, 2010a, 2010b). The studied 
examples arise by considering six different ring sizes 
– 5, 10, 15, 20, 25 or 30 nodes. A ring in a 
telecommunication network will typically contain 
between 5 and 20 nodes. The instances consider the 
5, 10 and 15 node rings to be ordinary-sized rings 
and the 20, 25 and 30 node rings to be extremely 
large rings. The demand cases are:  

 Case 1: complete set of demands between 
5 and 100 with uniform distribution; 

 Case 2: half of the demands in Case 1 set 
to zero;  

 Case 3: 75% of the demands in Case 1 set 
to zero. 

 Case 4: complete set of demand between 1 
and 500 with uniform distribution. This case was 
only used for the 30 nodes ring. 

It was generated 1 different problem instance for 
each case. This yields 3 instances for each ring size 
(4 instances for the 30 nodes ring). For 
convenience, they are labelled Cij, where 1<i<6 
represents the ring size and 1<j<4 represents the 
demand case. 

 

 
Figure 2: Number of initial solutions – Average 
Fitness/Execution Time/Number of Best-known Solutions 
- b1 =[4,8], b2=[4,8] and nid= [m/10, m/2] . 

 

 
Figure 3: Number of best solutions in the reference set 
(parameter b1) – Average Fitness/Execution Time/ 
Number of Best-known Solutions – ni=10. 

We perform comparisons between all parameters 
(using all instances) in order to establish the correct 
parameter setting for the HSS algorithm.  

We consider the same instance – C41 (a problem 
with average difficulty) to show the comparisons 
between parameters. To compute the results we use 
50 iterations. 

The best results obtained with the HSS algorithm 
use ni between 40 and 100, b1 between 4 and 10, 
b2 between 4 and 10 and nid between m/10 and 
m/2. These parameters were experimentally 
considered good and robust for the problems tested. 

The number of initial solutions was set to {10, 
20, 30, 40, 50, 60, 70, 80, …, 200}. We studied 
the impact on the execution time, the average fitness 
and the number of best-known solutions found. The 
number of solutions has a significant impact on the 
execution time (see Figure 2).  

The best results obtained with HSS use ni 
between 40 and 100. With these values, the 
algorithm can reach, in a reasonable amount of time, 
a reasonable number of best-known solutions (see 
Figure 2). With a higher number of solutions, the 
algorithm is more time consuming. 

The number of solutions in the reference set is 
typically small - 20 solutions or less (Glover et al., 
2003). In our experiments the number of solutions 
b1 and the number of solutions b2 were set to {1, 
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2, 3, 4, 5, 6, 7, 8, 9, 10}. We studied 
the impact on the execution time, the average fitness 
and the number of best-known solutions found. The 
number of solutions in the reference set has a 
significant impact on the execution time (see Figure 
3 and Figure 4). 

 

 
Figure 4: Number of most different feasible solutions in 
the Reference Set (parameter b2) – Average 
Fitness/Execution Time/Number of Best-known Solutions 
– ni=10. 

The results show that the best results obtained use 
b1>=4 and b2>=4 (see Figure 3 and Figure 4). 
These parameters were experimentally found to be 
good and robust for the problems tested. With 
b1+b2>20 the algorithm can reach a better average 
fitness but it is more time consuming.  

We observe that a small number of solutions in 
the reference set allows an initial faster convergence, 
but a worse final result, following to an increased 
amount of suboptimal values. This can be explained, 
because the quality of the initial best-located 
solution previous to the first restart highly depends 
on the reference set size: they need more diversity to 
avoid premature stagnation. 

For parameter nid, the number of iterations 
used for diversification, the values between m/10 

and m/2 have been shown to be experimentally 
more efficient.  

Phenomena of stagnation and insufficient 
intensification have been observed for values of nid 
lesser than m/10 and greater than m/2. 

In general, the experiments have shown that the 
proposed parameter setting is very robust to small 
modifications. 

In this paper, we only compare our algorithm 
with: PBPSO (Bernardino et al., 2009a), GA 
(Bernardino et al., 2008), HDE (Bernardino et al., 
2009b), HACO (Bernardino et al., 2010a) and DDE 
(Bernardino et al., 2010b) because the authors: (1) 
use the same test instances; (2) adopt the same 
fitness function; (3) implement the algorithms using 
the same language (C++) and; (4) adopt the same 
representation (binary).  

Suggestions from literature helped us to guide 
our choice of parameter values for PBPSO, GA 
HDE, HACO and DDE (Bernardino et al., 2008, 
2009a, 2009b, 2010a, 2010b).  

PBPSO was applied to populations of 40 
particles and we consider the value 1.49 for the 
parameters C1 and C2, and for the inertia velocity 
(W) values in the range [0.6,0.8]. 

GA was applied to populations of 200 
individuals; it uses “Uniform” as recombination 
method, “Multiple” as mutation method and 
“Tournament” as selection method. For GA, we 
consider crossover probability in the range 
[0.6,0.9] and mutation probability in the range 
[0.5,0.7]. 

HDE was applied to populations of 50 
individuals, it uses the “Best1Bin” strategy, CR in 
the range [0.3,0.5] and factor F in the range 
[0.5,0.7].  

For the HACO, we consider populations of 40 
individuals, 30 modifications, Q=100, x1 in the 
range [0.6,0.8], x2 in the range [0.7,0.8] 
and q in the range [0.7,0.8].  

For the DDE, we consider populations of 50 
individuals, 5 perturbations, pc in the range 
[0.1,0.2], pp in the range [0.6,0.8] and the 
LS method “Exchange Direction”. 

Finally, the parameters of the HSS algorithm 
were set to ni=50, b1 between 4 and 8, b2 
between 4 and 8, number of iterations of the TS =3 
and nid between m/10 and m/2. The six 
algorithms were executed using a processor Intel 
Quad Core Q9450. The initial solutions of the six 
algorithms were created using random solutions. For 
the  instance  C64  the  SPA  was used to create the 
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Table 2: Best obtained results. 

Instance Nodes Pairs Best Fitness Iterations
C11 5 10 161 25 
C12 5 8 116 10 
C13 5 6 116 10 
C21 10 45 525 50 
C22 10 23 243 25 
C23 10 12 141 10 
C31 15 105 1574 100 
C32 15 50 941 50 
C33 15 25 563 25 
C41 20 190 2581 300 
C42 20 93 1482 100 
C43 20 40 612 50 
C51 25 300 4265 500 
C52 25 150 2323 400 
C53 25 61 912 250 
C61 30 435 5762 1500 
C62 30 201 2696 1000 
C63 30 92 1453 500 
C64 30 435 27779 500 

Table 3: WRALP results – run times and number of iterations. 

Inst. PBPSO GA HDE HACO DDE HSS 
Time IT Time IT Time IT Time IT Time IT Time IT 

C11 <0.001 2 <0.001 2 <0.001 2 <0.001 2 <0.001 2 <0.001 2 
C12 <0.001 2 <0.001 2 <0.001 2 <0.001 2 <0.001 2 <0.001 2 
C13 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 
C21 <0.001 15 <0.001 15 <0.001 10 <0.001 20 <0.001 10 <0.001 10 
C22 <0.001 3 <0.001 5 <0.001 3 <0.001 3 <0.001 3 <0.001 3 
C23 <0.001 3 <0.001 3 <0.001 3 <0.001 3 <0.001 3 <0.001 3 
C31 0. 1 20 0. 1 30 0. 1 15 0. 1 30 0. 1 10 0. 1 10 
C32 <0.001 8 <0.001 15 <0.001 5 <0.001 10 <0.001 5 <0.001 5 
C33 <0.001 5 <0.001 5 <0.001 5 <0.001 5 <0.001 3 <0.001 3 
C41 0.2 50 0.1 50 0.1 30 0.15 50 0.1 25 0.1 20 
C42 0.075 20 0.075 40 0.05 10 0.06 25 0.05 8 0.05 10 
C43 <0.001 5 <0.001 10 <0.001 5 <0.001 5 <0.001 3 <0.001 5 
C51 0.75 80 0.75 80 0.75 40 0.6 100 0.5 30 0.5 30 
C52 0.1 25 0.1 40 0.1 15 0.1 30 0.1 15 0.1 15 
C53 0.01 15 0.01 25 0.01 10 0.01 20 0.01 8 0.01 10 
C61 2 130 1.75 130 1.75 40 1.75 150 1.5 50 1.3 40 
C62 0.4 50 0.2 60 0.25 20 0.4 60 0.25 25 0.25 20 
C63 0.075 15 0.075 30 0.075 10 0.075 20 0.06 10 0.05 10 
C64 0.5 40 0.3 30 0.25 5 0.5 5 0.1 3 0.1 5 

Table 4: WRALP results – Average Fitness / Average Time / Standard Deviation. 

Inst It PBPSO GA HDE HACO DDE HSS 
  AF AT SD AF AT SD AF AT SD AF AT SD AF AT SD AF AT SD

C41 50 2594,36 0,26 7,70 2587,62 0,17 3,46 2584,31 0,27 1,15 2591,23 0,16 7,73 2582,06 0,16 1,18 2581,50 0,22 0,71
C51 75 4291,52 0,86 16,85 4273,18 0,43 2,97 4271,27 0,7 5,10 4279,49 0,76 10,10 4268,96 0,53 5,71 4265,68 0,65 1,16
C61 100 5837,58 3,10 23,19 5784,62 1,34 10,05 5783,18 1,87 7,45 5793,68 2,23 14,17 5781,52 1,39 9,78 5763,72 1,44 2,25
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Figure 5: Percentage of best-known solutions obtained by the six algorithms – instance C41 (50 iterations). 

initial populations. Table 2 presents the best 
obtained results. The first column represents the 
instance number (Instance), the second and third 
columns show the nodes’ number (Nodes) and the 
pairs’ number (Pairs), the fourth column 
demonstrates the minimum fitness values obtained 
and the fifth column demonstrates the number of 
iterations used to test each instance. The number of 
iterations was selected based upon preliminary 
observations. 

Table 3 presents the best WRALP results 
obtained with the six implemented algorithms. The 
first column represents the instance number (Inst.) 
and the remaining columns demonstrate the obtained 
results (Time – Run Times, IT – Iterations) by the 
six algorithms. The presented values have been 
computed based on 100 different executions for 
each test instance, using the best combination of 
parameters found and different seeds. Table 4 only 
considers the 30 best executions. The six algorithms 
reach feasible solutions for all test instances and all 
the algorithms reach the best-known solutions before 
the run times and the number of iterations presented. 

In comparison, the HSS algorithm produces a 
higher number of best-known solutions using the 
same number of iterations (Figure 5). The DDE 
algorithm obtains a reasonable number of best-
known solutions and a good average fitness in a 
better running time (Figure 5, Table 4). The PBPSO 
is the slowest algorithm and it obtains a smaller 
number of best-known solutions comparing with the 
other algorithms (Figure 5). 

When using the SPA to create the initial 
solutions, the times and number of iterations 
decrease – instance C64. This instance is 
computationally harder than the C61 however the 
best-known solution is obtained faster. Based on 
preliminary observations we consider more efficient 

to initially apply a SPA and after, a metaheuristic to 
improve the solutions. 

Table 4 presents the WRALP average fitness and 
the WRALP average time obtained with PBPSO, 
GA, HDE, HACO and DDE using a limited number 
of iterations for the instances C41, C51 and C61 
(harder instances). The first column represents the 
instance number (Instance), the second column 
demonstrates the number of iterations used to test 
each instance and the remaining columns show the 
obtained results (AF – Average Fitness, AT – 
Average Time, ST – Standard Deviation) by the six 
algorithms. The results have been computed based 
on 100 different executions for each test instance 
using the best combination of parameters found and 
different seeds.  

As it can be seen, the average fitness and 
standard deviations for the HSS are smaller. It 
means that the HSS is more robust than the other 
algorithms. DDE also presents a good average 
fitness and a good standard deviation.  

5 CONCLUSIONS 

In this paper we present a Hybrid Scatter Search 
algorithm to solve the WRALP. The Hybrid Scatter 
Search Algorithm is an evolutionary optimisation 
technique, able to perform simultaneous local and 
global search. 

The performance of' Hybrid Scatter Search 
algorithm is compared with five algorithms from 
literature, namely: PBPSO, GA, HDE, HACO and 
DDE.  

Relatively to the problem studied, the Hybrid 
Scatter Search algorithm presents better results. The 
computational results show that it had a stronger 
performance, improving the results obtained by 
previous approaches. Moreover, in terms of standard 
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deviation, the algorithm also proved to be more 
stable and robust than the other algorithms. 

Experimental results demonstrate that the 
proposed algorithm is an effective and competitive 
approach in composing satisfactory results with 
respect to solution quality and execution time for the 
WRALP.  
In literature the application of Scatter Search 
algorithm for this problem is nonexistent. For that 
reason, this article shows its enforceability in the 
resolution of this problem.  

The continuation of this work will be the search 
and implementation of new methods to speed up the 
optimisation process.  
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