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The aim of this work is to present an application of the Radial Basis Functions Nets (RBFs) for simplifying

and reducing the cost of ecological regionalization. The process speeds up and replaces the classic means
of obtaining ecological variables through field studies. The radial basis function networks were applied to
estimate field data remotely, using data captured by the Landsat satellite and correlating it with ecological
variables in order to substitute for them in the regionalization process. This approach substantially reduces
the time and cost of ecological regionalization, limiting field studies and automating the generation of the
ecological variables. The technique could be applied without restriction to map vegetation in any other area

for which satellite coverage exists.

1 INTRODUCTION

The need or sound environmental management of a
particular territory requires a sufficient and integrated
understanding of the resources there, and the interre-
lationships with the natural and human elements that
act upon it (Moreira, 2000). Nevertheless, and in spite
of the enormous effort to generate this thematic in-
formation, the reality is that the results are still unsa-
tisfactory in terms of environmental planning (Pablo,
2000).

This situation has led the majority of the spa-
nish regions to prepare their own environmental carto-
graphic information. Ecological regionalization was
developed with the aim of providing useful informa-
tion about the web of relationships between various
natural elements in an area over both space and time.
This type of mapping attempts to integrate the most
relevant environmental aspects of a territory in or-
der to identify patterns that allow the structure and
operation of a territory to be understood, classify-
ing them into a series of units called environmen-
tals. These units are characterized by the close ho-
mogeneity of the environmental variables considered
(Naiman et al., 1992). Figure 1 shows the vegetation
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map based on the ecological variables used for this
study.
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Figure 1: Vegetation map based on the ecological variables
used in this study area (Almeria and Granada, Spain).

Ecological regionalizations (also referred to as
ecoregions, biogeographic regions land classes and
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environmental classifications, environmental do-
mains, ecological land units,) play important roles in
process of resource management by grouping loca-
tions with similar environmental variables (Snelder
et al., 2010). Undertaking this kind of ecological
regionalization requires the following environmental
data (Loveland and Merchant, 2004):

Climatic: obtained from the state meteorological
agencies, and comprising time series running over
several years.

Geological: obtained from field studies to mea-
sure rainfall and soil composition.

Vegetation cover: obtained from field studies of
vegetation cover in order to tabulate the presence
of different species and vegetation types.

Land Use: obtained from field studies of land use
in the study area.

This information is used by the various technical
environmental departments for ecological regionali-
zation, using statistical techniques. Nonetheless, un-
til now, it has still been necessary to undertake va-
rious field studies to keep the environmental infor-
mation up-to-date, and this makes it quite difficult to
have an up-to-date ecological map in a short period
of time. Thus, with the dual aims of unifying the in-
formation sources used to draw ecological maps, and
simplifying and reducing the cost of obtaining many
of these data, the present study (undertaken within the
framework of the SOLERES project financed by the
Spanish Ministry of Science and Technology) applies
models of neural networks that use cheaper and up-to-
date satellite data to construct ecological maps, whilst
maintaining the procedures for constructing this car-
tography. The study is not designed to substitute one
set of ecological variables for another, but to find an
alternative procedure to construct the variables.

2 NEURAL NETS AND REMOTE
SENSING

Neural networks have proved their potential as tools
for classification and approximation of functions for
over ten years. The advantages over other analytical
and statistical techniques stems from their capacity to
handle large volumes of high-dimensional data, the
capacity to work with scarce, changing and/or contra-
dictory data, and their independence from the statis-
tical characteristics of the sample. Moreover, neural
networks exhibit a significant capacity for generalisa-
tion that means they become powerful tools for stu-
dying the dynamics of atmosphere and climate from
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Figure 2: Basic structure of an RBF.

satellite images, for classifying vegetation types and
other related activities (Richards, 1993).

Radial basis function networks (RBFs) (Poggio
and Girosi, 1990) were developed later than MLPs
and, from an operational point of view, have certain
advantages over MLPs, such as faster training and an
internal structure that allows better understanding of
the relationships between variables, and therefore, a
better understanding of how the network functions.
Figure 2 shows the three basic levels of an RBF:

An input layer, in which the characteristics vector
is applied to each and every element of the follo-
wing level.

A radial basis function net level, called the hidden
layer unit, which computes the expression:

kx 6ik2
RBR(X)=e &

where ¢; is the centroid of the radial base func-
tion and s is the scope parameter (measuring the
spread) of each radial base function.

An integration or output layer, where the results of
each RBF is adjusted/weighted, to give the output
of the net, according to the function:

Y= wRBFX) b
[
where w; is the weighting parameter and b is the
threshold value.

The training phase of an RBF consists of selec-
ting the centroids c; and the values of the weights
w; that minimise the error produced by the network
for the training data set. RBFs exhibit certain ad-
vantages over other types of net like MLPs, such as
the speed of training. Nevertheless, they have certain
drawbacks, such as the fact that, to solve a particular
problem, RBFs require a greater number of neurons
and so a larger computing effort. The application of
RBFs for the present study is justified by the fact that
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many training phases are required and this would take
a long time using other methods.

3 DESCRIPTION OF THE WORK

The study area comprised the provinces of Almeria
and Granada, in south-eastern Spain (southern Eu-
rope). The study was designed in several phases:

1. Determine the ecological variables that are suita-
ble for approximation using satellite data.

2. Obtain satellite data to correspond with each value
of the ecological variable.

3. Train and run simulations of the neural networks.

4. Compare the results obtained with the expected
values.

3.1 Determine the Ecological Variables
that are Suitable for Approximation
using Satellite Data

The data for these variables were obtained from field
studies undertaken by technical staff working for the
Administration. The data are updated periodically
using field data or aerial photographs. The informa-
tion for each variable is obtained by weighting the sur-
face area of vegetation cover for each vegetation type
within each 1x1Km sector. This produces numerical
values for each 1x1Km sector and for each variable,
which represents the percentage cover of each vege-
tation type included in this study, expressed over the
interval [0,100].

The area of study includes a great diversity of
woodland landscapes, ranging from wet woodlands to
desert landscapes containing a wide range of ecosys-
tems, dominated by high mountain ranges, subtropi-
cal maritime area and subdesert plains. In this way,
the study enabled an analysis of landscapes contai-
ning a wide variety of vegetation types (Snelder et al.,
2007). Table 1 shows the ecological variables used.

3.2 Obtain Satellite Data to Correspond
with Values of Ecological Variables

Improvements in remote sensing technologies and
the use of geographic information system (GIS), are
increasingly allowing us to develop indicators that
can be used to monitor and assess ecosystem condi-
tion and change at multiple scales (Revenga, 2005).
The Landsat satellite includes a TM sensor (Thematic
Mapper) that captures data over seven bands of the
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electromagnetic spectrum. The sensor is linked to te-
rritorial studies whose principal focus is environmen-
tal. Its orbit, synchronous with the sun, is atan altitude
of 705km and has a period of 98.9 minutes, totalling
14 flights daily around the earth.

Table 1: List of ecological variables used in the study.

N Concept

01 Built-up and disturbed areas

02 Wetlands and open water

03 River corridors vegetation

04 Herbaceous crops without irrigation
05 Olive plantations

06 Other woody crops without irrigation
07 Forced crops under plastic

08  Other herbaceous crops under irrigation
09 Woody crops under irrigation

10 Herbaceous and woody crops

11 Mosaic of woody crops (no irrigation)
12 Herbaceous and woody crops (irrigation)
13 Mosaic of woody crops under irrigation
14 Mosaic of crops under irrigation or not

15 Herbaceous crops and pastures
16  Herbaceous crops and woody vegetation
17 Woody crops and pastures

18 Woody crops and woody vegetation
19  Mosaics of crops and natural vegetation

20 Abandoned woody crops

21 Mediterranean oak woodland

22 Conifers

23 Other tree species and mixtures
24 Dense matorral + dense oak wood
25 Dense matorral + scattered oaks
26 Dense matorral + dense conifers
27 Dense matorral + scattered conifers

28 Dense matorral + mixed tree species
29 Scattered matorral + dense oak wood
30 Scattered matorral and oaks

31 Scattered matorral + dense conifers
32 Scattered matorral + scattered conifers
33  Scattered matorral + mixed tree species
34  Pasture + dense Mediterranean oakwood
35  Pasture + scattered Mediterranean oaks
36 Pasture + dense conifers

37 Pasture + scattered conifers

38 Pasture + other tree species or mixed
39  Zones subject to fierce erosion or fires

40 Dense matorral

41 Scattered matorral with pasture
42 Scattered matorral (pasture and rock)
43 Continuous pasture

44 Pasture with rock or soil clearings
45 Beaches, dunes and sandbanks
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In order to capture all of the study area, we needed
three Landsat scenes. These satellite images were
used to make a mosaic, and the image was trimmed
with a vector of the outline of Almeria and Granada
provinces, giving the processed image that served as
the basis for our study (vegetation data and remote
sensing matching).

To do this, the original image was trimmed using a
window of 33x33 pixels (990m2). The displacement
error (the 10m2 missing from the 1000m2) was co-
rrected by alternating the 33x33 pixel window with
another measuring 34x34 pixels, every two passes.
The result was an image of 241x157 pixels, with a
spatial resolution of 1000x1000m.

Following the same procedure, the median, mean
and 30 percentile of each window of the original
image was also calculated. This was stored, for each
of its seven layers, in a matrix. By this means, we
generated 21 variables with which to calculate each
of the ecological variables of vegetation cover. Figure
3 shows Almeria and Granada provinces in LandSat
data.

Figure 3: Detail of the study area using LandSat data.

3.3 Train and Run Simulations of the
Neural Networks

The next step was to train a series of RBF neural net-
works to relate each ecological variable to the pro-
cessed satellite data. For each ecological variable,
there are 21,905 ground surface samples available,
each representing 1x1 Km, for which statistical in-
formation from the seven satellite bands has been ge-
nerated. In this way, each sector yields 21 characte-
ristics describing it. So, for each variable we have a
data model of 21,905x21, with 21,905 desired results,
which are the data from which we will train the neural
net.

Modelling of each of the 45 ecological variables
involved repeating the construction of an RBF net 32
times, using 70% of the data as the training data set
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Figure 4: Detail of the process undertaken by the neural net.

and the remaining 30% as the calibration data set. The
division of data into these two datasets was done at
random in every case. In total, 1440 networks were
trained.

Once trained, the input to the neural net is changed
to the satellite data, and its output offers an approxi-
mate value of the environmental variable for which it
has been trained. This technique increases the possi-
bility of finding a net that satisfactorily approximates
to the ecological variable. The radial basis function
network uses a random parameter over the interval [0,
1.5]. Figure 4 shows the process undertaken by the
neural net.

3.4 Compare the Results obtained with
the Expected Values

Once the networks are constructed, the results ob-
tained for the calibration data set are compared with
the expected values and two measures are calculated:

1. The precision, obtained using the formula:
Pr= ik

where e is the number of times that the output of
the neural net coincides with the expected output,
with an error of  0:005, and C is the calibration
data set. The training data set is not taken into
consideration because the precision obtained with
the training set would be close to 1 and this would
distort the precision of the calibration data set.

2. The variance between the expected results and
those obtained indicates the ecological variables
for which confidence in the approximation is
sufficiently high. To calculate variance, both ex-
pected and obtained results are normalised to a
range [0,1] and the variance of the difference in
the absolute values is calculated.

The process was programmed in Matlab, using a
desktop computer with 4 core architecture and 8 GB
of memory. The program took 48 hours of inten-
sive calculations. An improvement in the calculation
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time would be achieved using other computer archi-
tectures.

4 RESULTS

The most obvious finding of the experiment is that
the result was positive for all the ecological variables,
except variable 34 (pasture and dense Mediterranean
oak woodland) and variable 37 (pasture with scattered
conifers). The neural networks obtained fit the be-
haviour of the ecological variables with a precision of
0.8 and variance of less than 0.03 in every case. For
the remaining two ecological variables that could not
be simulated, had given training networks with a peak
precision of 0.70 for the first and 0.42 in the second.
Figure 5 shows the distribution of the experiment pre-
cision by variable.

A priori, the result is not explained by the na-
ture of the variable and we find the explanation in
the procedure used to choose the training and cali-
bration sets: the choice is made at random and with a
relatively small frequency of non-null data, the distri-
bution between the training and calibration data sets
is significant for the precision of the net. Thus, for
example, if we use all the non-null data in the training
phase, we will obtain a precision of 0.9998 and a va-
riance of 0.0001 for variable 34; and a precision of
0.9983 and variance of 0.0016 for variable 37. Ta-
ble 2 shows the relative frequency of non-null data by
variable.

Excluding variables 34 and 37, the number of ex-
periments that generated networks of an acceptable
precision was, on average, 68%. 70% of the varia-
bles developed at least 53% precise neural networks.
This finding permits discussion of whether the model
of fitting ecological variable using Landsat data and
RBF networks is sound. A significant number of ex-
periments were undertaken for each variable, varying
the training data set and this achieved good results,
in the majority of cases, improving as the quantity of
non-null data increases for the ecological variable in
question.

With respect to the parameters of the network,
within the interval [0,1.5] the parameter scope does
not appear to be a determining factor in achieving a
better result. It is relevant to point out that, in a sig-
nificant proportion of cases, the neural networks did
not manage to approximate to the associated ecologi-
cal variable. This situation is due to the nature of the
data for each variable and the randomness of selecting
data during each training process.

From an environmental point of view, organiza-
tion of the data into ecological variables and its subse-
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Table 2: Relative frequency of non-null data.

id01 | id02 | id03 | id04 | id 05
0,115 | 0,036 | 0,024 | 0,308 | 0,179
id06 | id07 | id08 | id09 | id 10
0,164 | 0,052 | 0,129 | 0,057 | 0,176
id11 | id12 | id13 | id14 | id15
0,030 | 0,128 | 0,021 | 0,061 | 0,013
id16 | id17 | id18 | id19 | id20
0,083 | 0,004 | 0,093 | 0,049 | 0,014
id21 | id22 | id23 | id24 | id25
0,017 | 0,145 | 0,015 | 0,012 | 0,018
id26 | id27 | id28 | id29 | id30
0,015 | 0,024 | 0,006 | 0,066 | 0,097
id31 | id32 | id33 | id34 | id35
0,166 | 0,174 | 0,046 | 0,003 | 0,004
id36 | id37 | id38 | id39 | id40
0,002 | 0,006 | 0,001 | 0,091 | 0,048
id41l | id42 | id43 | id44 | id45
0,116 | 0,583 | 0,049 | 0,011 | 0,006

quent substitution using satellite data can be success-
fully achieved, as proved by the experience in the
classification of vegetation types using the LandSat
data.

In addition, at least in the study zone, there is
no noticeable interaction between various vegetation
covers to complicate the training of the networks
which, in other situations, would have to be studied.
This situation may be due in part to the values ob-
tained: for each quadrat of land, the values indicate a
dominant vegetation type, so that 90% of the samples
have a vegetation cover of more than 41.9, while 50%
of cases have an vegetation cover exceeding 68.8. In
such a situation, the information obtained from the
satellite data is representing, in the majority of cases,
the dominant characteristic and for this reason, there
are no undesired interactions. In addition, the matrix
contains a large number of nil or very low data values:
92.3% of data are zero and only 55,800 data of a total
of 985,725 in the matrix, have values above 5.

5 CONCLUSIONS

As a final point, the approximation functions of the
ecological variables developed here using radial basis
function networks could be used in subsequent years
to study changes in vegetation cover. Although the
vegetation cover changes seasonally, it is also true that
the experiment could be repeated for different seasons
of the year, so long as this cover existed.

The use of Landsat data in this case reduces field
studies in at least 30%. Neural networks can recog-
nize geographical locations with similar vegetation
characteristics at any given time. This situation will
allow work teams to to study the Landsat information
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previously available and improve the work on a sur-
face, saving costs.

From a technical point of view, the study also co-
rroborates the need for a precise study of the training
data set in order to achieve a precise training so
that the results are consistent with the environmen-
tal model simulated. The results confirm our working
hypothesis that supports the viability of a computation
process of ecological variables that uses satellite data
that could substitute for the traditional field studies.
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