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Abstract: The Liquid State Machine (LSM) is a method of computing with temporal neurons, which can be used 
amongst other things for classifying intrinsically temporal data directly unlike standard artificial neural 
networks. It has also been put forward as a natural model of certain kinds of brain functions. There are two 
results in this paper: (1) We show that the LSM as normally defined cannot serve as a natural model for 
brain function. This is because they are very vulnerable to failures in parts of the model. This result is in 
contrast to work by Maass et al which showed that these models are robust to noise in the input data. (2) We 
show that specifying certain kinds of topological constraints (such as "small world assumption"), which 
have been claimed are reasonably plausible biologically, can restore robustness in this sense to LSMs. 

1 INTRODUCTION 

Processing in artificial neurons typically is a-
temporal. This is because the underlying basic 
neuronal model, that of McCullough-Pitts 
(McCullough & Pitts, 1943) is atemporal by nature. 
As a result, most applications of artificial neural 
networks are related in one way or another to static 
pattern recognition. On the other hand, it has long 
been recognized in the brain science community that 
the McCullough-Pitts paradigm is inadequate. 
Various models of differing complexity have been 
promulgated to explain the temporal capabilities 
(amongst other things) of natural neurons and 
neuronal networks.  

However, during the last decade, computational 
scientists have begun to pay attention to this issue 
from the neurocomputation perspective e.g. (Maass 
W. , 1999; Maass, W; Natschläger, T; Markram, H, 
2004; Fernando & Sojakka, 2005), and 
investigations as to the computational capabilities of 
various models are being investigated.  

One such model, the LSM (Maass, W; 
Natschläger, T; Markram, H, 2004), has had 
substantial success recently. The LSMis a somewhat 
different paradigm of computation. It assumes that 
information is stored, not in "attractors" as is usually 
assumed in recurrent neural networks, but in the 

reverberating activity pattern in a sufficiently 
recurrent and inter-connected network. This 
information can then be retrieved by any sufficiently 
strong classifying detector. (The name "liquid state” 
comes from the idea that the history of, e.g. timings 
of rocks thrown into a pond of water, is completely 
contained in the wave structure.)  Moreover, the 
"persistence of the trace" (or as Maass put it, the 
"fading memory") allows one to recognize at a 
temporal distance the signal that was sent to the 
liquid; and sequence and timing affects of inputs. 

This is an exciting idea; and, e.g. Maass and his 
colleagues have published a series of papers on it.  
Amongst other things, they have recently shown that 
once a detector has been sufficiently trained at any 
time frame, it is resilient to noise in the input data; 
and so it can be used successfully for generalization 
(Maass, Natschläger, & Markram, 2002; Danielle & 
Bullmore, 2006; Fernando & Sojakka, 2005). 

Furthermore, there is a claim that this abstraction 
is faithful to the potential capabilities of the natural 
neurons and thus is explanatory to some extent from 
the viewpoint of computational brain science. Note 
that one of the underlying assumptions is that the 
detector works without memory; that is the detector 
should be able to classify based on instantaneous 
static information; i.e. by sampling the liquid at a 
specific time. That this is theoretically possible is the 
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result of looking at the dynamical system of the 
liquid and noting that it is sufficient to cause the 
divergence of the two classes in the space of 
activation.  

Note that the detector systems (e.g. a back 
propagation neural network, a perceptron or an 
SVM) are not required to have any biological 
plausibility; either in their design or in their training 
mechanism, since the model does not try to account 
for the way the information is used in nature. 
Despite this, since natural neurons exist in a 
biological and hence noisy environment, for these 
models to be successful in this domain, they must be 
robust to various kinds of noise. As mentioned 
above, Maass (Maass, Natschläger, & Markram, 
2002) addressed one dimension of this problem by 
showing that the systems are in fact robust to noise 
in the input. Thus small random shifts in a temporal 
input pattern will not affect on the LSM to recognize 
the pattern.  From a machine learning perspective, 
this means that the model is capable of 
generalization. 

However, there is another component to 
robustness; that of the components of the system 
itself.  

In this paper we report on experiments 
performed with various kinds of "damage" to the 
LSM and unfortunately have shown that the LSM 
with any of the above detectors is not resistant, in 
the sense that small damages to the LSM neurons 
reduce the trained classifiers dramatically, even to 
essentially random values. 

Seeking to correct this problem, we 
experimented with different architectures of the 
liquid.  The essential need of the LSM is that there 
should be sufficient recurrent connections so that on 
the one hand, the network maintains the information 
in a signal, while on the other hand it separates 
different signals.  The models typically used are 
random connections; or those random with a bias 
towards "nearby" connections.  Our experiments 
with these topologies show that the network is very 
sensitive to damage because the recurrent nature of 
the system causes substantial feedback. 

Taking this as a clue, we tried networks with 
"hub" or "small world" (Biancon & Barabási, 2001; 
Barabás & Albert, Topology of evolving networks: 
local events and universality, 2000) architecture.  
This architecture has been claimed (Danielle & 
Bullmore, 2006; Chklovskii, 2009) to be 
"biologically feasible". 

The intuition was that the hub topology, on the 
one hand, integrates information from many 
locations and so is resilient to damage in some of 

them; and on the other hand, since such hubs follow 
a power rule distribution, they are rare enough that 
damage usually does not affect them directly.  This 
intuition was in fact borne out by our experiments.  

2 LSMS ARE NOT ROBUST 

2.1 The Experiments 

To test this resistance to noise, we downloaded the 
code of Maass et al from his laboratory site1 and 
then implemented two kinds of damage to the liquid. 
We also reimplemented the LSM code so that we 
could handle variants.  These models use a kind of 
basic neuron that is of the "leaky integrate and fire" 
variety and in Maass' work, the neurons are 
connected randomly.  In addition, some biologically 
inspired parameters are added: 20% inhibitory and a 
connectivity constraint giving a preference to 
geometrically nearby neurons over more remote 
ones.  (For precise details on these parameters, see: 
neural Circuit SIMulator1) External stimuli to the 
network were always sent to 30% of the neurons, 
always chosen to be excitatory neurons. 
Initially, we experimented with two parameters: 

 The percentage of neurons damaged 

 The kinds of damages.  

The kinds were either transforming a neuron into 
a "dead" neuron; i.e. one that never fires or 
transforming a neuron into a "generator" neuron ,i.e. 
one that fire as often as its refractory period allows 
it, regardless of its input. 

2.2 Results 

First, there was not much difference between the 
detectors (i.e Back-Propagation, SVM and 
Tempotron (Gütig & Sompolinsky, 2006)); so 
eventually we restricted ourselves to the Back-
Propagation detector which had inputs of 30 
randomly sampled time points of the entire liquid. 
(To be fair, none of units of the liquid input were 
accessed by the detectors allowed to be input 
neurons of the liquid.) 

It turned out that while the detector was able to 
learn the randomly chosen test classes successfully 
with sufficient average connectivity almost any kind 
of damage caused the detector to have a very 

                          
1 A neural Circuit SIMulator: http://www.lsm.tugraz.at/csim/. 

THE LIQUID STATE MACHINE IS NOT ROBUST TO PROBLEMS IN ITS COMPONENTS BUT TOPOLOGICAL
CONSTRAINTS CAN RESTORE ROBUSTNESS

259



 

substantial decay in its detecting ability (See Table 
1). 

Reimplementing the LSM to allow for different 
connectivities; showed the same basic responses.  In 
fact, when the network is connected randomly 
without bias for geometric closeness, the network is 
even more sensitive (Compare Table 1 and Table 2). 
After our later experiments, we returned to this point 
(see concluding remarks, below). 

In Figure 1 we illustrate the difference in 
reaction of the network by a raster (ISI) display.  
Note that with 10% damage, it is quite evident to the 
eye that the network diverges dramatically from the 
noise free situation.  In Table 3 one can see this as 
well with 5% noise for purely random connectivity.  
Actually, with low degrees of damage the detectors 
under even the Maass connectivity show dramatic 
decay in recognition although not to the extremes of 
random connectivity.  (See Table 2) These results 
were robust and repeatable under many trials and 
variants. 

Table 1: Maass’s implementation: distribution preferring 
local connections. 

Damage Non 5% 10% 
Dead Neurons 90.45% 80.35% 60.3 % 
Noisy Neurons 92.01% 59.08% 53.8% 

Table 2: 10% Random connections2. 

Damage Non 1% 5% 10% 
Dead Neurons 100% 53% 53% 50% 
Noisy Neurons 100% 55% 53% 52% 

 

 

Figure 1: Maass LSM Activity (a) normal operation (b) 
with 10% dead damage (c) with 10% noise. 
                          
2 For all the Tables that shown in this paper, 50% is the baseline 
of random classification. 

Accordingly, we conclude that the LSM, either 
as purely defined with random connectivity, or, as 
implemented in (Maass, W; Natschläger, T; 
Markram, H, 2004) cannot serve as a biologically 
relevant model. 

3 MODIFICATIONS OF THE LSM 

3.1 Different Kinds of Basic Neurons 

In attempts to restore the robustness to damage, we 
experimented with the possibility that a different 
kind of basic neuron might result in a more resilient 
network.  Accordingly, we implemented the LSM 
with various variants of "leaky integrate and fire 
neurons" e.g. with history dependent refractory 
period (Manevitz & Marom, 2002) and by using the 
model of neurons due to Izhikevich (Izhikevich, 
2003).  The results under these variants were 
qualitatively the same as the standard neuron.  (The 
Izhikevich model produces a much more dense 
activity in the network and thus the detector was 
harder to train but in the end the network was 
trainable and the results under damage were very 
similar.). 

3.2 Allowing Detectors with Memory 

In trying to consider how to make the model more 
robust to damage, we focused first on the fact that 
the detector has no memory. Perhaps, if we allow the 
detector to follow the development of the network 
for some time amount, both in training and running, 
it would be more robust. To check this, we took the 
most extreme other case; we assumed that the 
detector system in fact takes as input a full time 
course of its input neurons for about 30 iterations. 
This means that instead of a Neural network with 
input of 204; we had one with 30 times 204 time 
course inputs.  It seemed reasonable that (i) with so 
much information, it should be relatively easy to 
train the detector (ii) one could hope that damage in 
the liquid would be local enough that over the time 
period, the detector could correct for it. In order to 
test this, we re-implemented the LSM to allow for 
the time entry.  

Our detector was trained and tested as follows.  
There were 204 output units. At a “signal point” 
each of them was sampled for the next 30 iterations 
and all of these values were used as a single data 
point to the detector. 

Thus the detector had 204 times 30 inputs.  We 
chose separate detector points typically at intervals 
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of 80. We then used back propagation on these data 
points. This means that eventually the detector could 
recognize the signal at any of the “signal points” 
after training There was no particular importance to 
the choice of separation of the signal points except 
that there was no overlap between the data points.  

Classification of new data could then be done at 
any of the signal points; We ran experiments as 
follows: we randomly chose twenty temporal inputs; 
i.e. random sequences of 0s and 1s of length 45, 
corresponding to spike inputs over a period of time; 
and trained an LSM composed of 240 integrate and 
fire neurons to recognize ten of these inputs and 
reject the other ten. 

We tested the robustness of the recognition 
ability of the network with the following parameters: 
 The neurons in the network were either leaky 
integrate and fire neurons (Maass W. , 1999) or 
Izhikevich (Izhikevich, 2003) style neurons. 

 The damages were either "generators ",  i.e. the 
neurons issued a spike whenever their refractory 
period allowed it; or they were "dead" neurons that 
could not spike. 

 The degree of damage was systematically 
checked at 1%, 2%…15% in randomly chosen 
neurons. 

The "detectors" were three level neural networks, 
trained by back-propagation. We also did some 
experiments with the Tempotron (Gütig & 
Sompolinsky, 2006); and with a simple Adaline 
detector (Widrow & Hoff, 1960). Training for 
classification could be performed in the damage-less 
environment successfully with any of these 
detectors. 

We exhaustively ran tests on these possibilities. 
Some sample results with 5% and 10% damage for 
the neural network detectors are presented in the 
Figure 3 through Figure 6 below. (Since the results 
for the other detectors were similar, we did not run 
as many tests on them) 

Table 3: 5% Random connectivity. 

Damage Non 1% 5% 10% 
Dead Neurons 100% 61% 58% 56% 
Noisy Neurons 100% 60% 58% 57% 

Table 4: 20% Random connectivity. 

Damage Non 1% 5% 10% 
Dead Neurons 100% 79% 49% 49% 
Noisy Neurons 100% 97% 71% 63% 

 

In all of these tests, following Maass, we 
assumed  that  approximately 20% of the neurons  of 

the liquid were of the inhibitory type. The 
architecture of the neural network detector was 204 
input neurons (which were never taken from the 
neurons in the LSM which were also used as inputs 
to the LSM.) 100 hidden level neurons and one 
neuron for the output.  Results running the Maass et 
al. architecture are presented in Table 1 and can be 
compared with a random connected network of 20% 
average connectivity. See Table 4. 

The bottom line was that even with low amounts 
damage and under most kinds of connectivity, the 
networks would fail; i.e. the trained but damaged 
network loss of function was very substantial and in 
many cases could not perform substantially 
differently from a random selection.  

3.3 Changing the Architecture 

Our next approach, and ultimately the successful 
one, was to experiment with different architectures. 

We looked at many variants of the following 
ideas: 

a) Random Connectivity as a baseline.  (Note: This 
is actually the basic definition of the LSM.)  

b) Varying the amount of connectivity. Lowering 
the average degree of connectivity shows decreased 
sensitivity in all architectures. Unfortunately, 
lowering the connectivity also decreases the strength 
the network has in representability and, importantly, 
in the persistence of the signal. Thus we see, as is to 
be expected from the analysis in (Jaeger, 2001; 
Maass, W; Natschläger, T; Markram, H, 2004) that a 
higher connectivity gives a larger set of "filters" that 
separate signals, but on the other hand makes it more 
sensitive to changes. In any case, even with low 
connectivities, the random topology was not robust; 
nor was the Maass topology. While not at random 
levels of identification, as we have seen, e.g. in 
Table 1, it suffered very substantial decays with 
even small amounts of damages. 

c) "Hub" topologies (see Table 5). Here we 
designed by hand topologies with essentially one 
hub. In this case, the robustness was substantially 
increased but the persistence was weak; and under 
the algorithm chosen, there were substantial 
disconnected components in the liquid. 

d) Small world topologies (see Table 5). In this 
system the connectivity follows a power rule law. 
We constructed these networks in different ways. In 
all cases, the number of connections was chosen 
based on the average connectivity desired. 

e) Assign a link from a uniformly randomly chosen 
neuron to a second neuron chosen randomly 
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according to a power law.  In this case the input 
connectivity follows a power law; while the output 
connectivity follows a Gaussian distribution. 

f) Reversing the above. In this case the input 
connectivity is Gaussian while the output 
connectivity is power law. 

g) We also replaced Gaussian with uniform in the 
above. 

h) We also tried choosing a symmetric network 
with Power law connectivity (ipso facto for both 
input and output). (Note that in this case, the same 
neurons served as "hubs" both for input and output.)  

i) Finally, we designed an algorithm to allow 
distinct input and output connectivity but both 
obeying the same power law. (See algorithm1 
below). 

 

Algorithm 1: Generate a random number with Power 
law distribution 

Input: min, max, size, How_many 
counterArry = array 
MagnifyBy = 5 //increase probability 
for  i = 1 to How_many 
 index = random(array.start,array.end) 
 end_array = array.end 
 candidate = array[index]  
 AddCells(array , MagnifyBy); 
 for t = 0 to MagnifyBy 
  array[end_array+t] = candidate 
 end for 
 shuffle(array) 
 output_Array[i] = candidate  
 counterArry[candidate]++ 
end for 
shuffle(counterArry) 

3.4 Results 

All architectures presented in section 3.3 above that 
have a power law distribution, whether on the input, 
output or both sides resulted in substantial 
improvements in the resistance to noise, except for 
case (h) where the input and output hubs were the 
same. This was even worse than the random baseline 
choice at the same connectivity. The best result was 
obtained in case (i) when both input and output 
connectivity were power law; but distinctly chosen. 
Figure 2 shows the connectivity distribution in this 
case. Table 5 shows the results in this case for some 
sample damages. 

 

Figure 2: Distribution of power-law connection. 

The results presented are the average of many 
experiments. However, since this work is about 
robustness, we thought it important to consider the 
distribution of such results over many experiments. 
Thus, instead of giving less revealing statistics, we 
display the complete histograms for the different 
kinds of networks under different amounts of 
damages. 

Table 5: Power-law distribution with small worlds. 

Damage Non 1% 5% 10% 
Dead Neurons 100% 87% 71% 68% 
Noisy Neurons 100% 88% 79% 71% 

Table 6: One hub network. 

Damage Non 1% 5% 10% 
Dead Neurons 100% 93% 66.73% 64.09%
Noisy Neurons 100% 98% 84.33% 70.77%

 

In Figure 3 through Figure 6, we display the 
histograms of hundreds of networks at different 
levels of success under each of the architectures.  
The horizontal axis is the accuracy of classification 
(50% is random guess), and the vertical axis is the 
histogram count.  

Table 4, Figure 5 and Figure 6 show the 
distribution of damage for a random connectivity 
network with average connectivity of 20%. 

Table 5, Figure 3 and Figure 4 show the 
robustness results for the power law small word 
distribution. 

 

Figure 3: Histographs of correctness results in LSM 
networks with different amounts of “dead” neuron damage 
with a power law distribution. 
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Figure 4: Histographs of correctness results in LSM 
networks with different amounts of “noise generator” 
neuron damage for power law distribution. 

 

Figure 5: Histographs of correctness results in LSM 
networks with different amounts of “dead” neuron 
damage, average connectivity of 20% with a connectivity 
of random distribution3. 

 

Figure 6: Histographs of correctness results in LSM 
networks with different amounts of “noise generator” 
neuron damage, average connectivity of 20% with a 
random connections3 distribution. 

4 DISCUSSION 

We have shown experimentally that the basic LSM 
is not robust to "damages" in its underlying neurons 
and thus without elaboration cannot be seen to be a 
good fit for a model for biological computation. We 
mention (data not shown here) that this result holds 
even if training is continued while the network is 
suffering damage. However, choosing different 
distributions of the connectivity can result in more 

                          
3 For all the Tables that shown in this paper, 50% is the baseline 
of random classification 

robust maintenance of the pertinent information over 
time. 

In the papers (Danielle & Bullmore, 2006; 
Chklovskii, 2009), a distribution was chosen for 
biological reasons to allow preference for close 
neurons.  This distribution is superior to the totally 
random one, but is still not sufficiently robust.  
Choosing a power law distribution and being careful 
to making the assignments differently for in and out 
connectivity proved to be the best.  This is thought 
of as a potentially biological arrangement (Danielle 
& Bullmore, 2006; Barabás & Albert, Emergence of 
Scaling in Random Networks, 1999); so LSM style 
networks with this additional topological constraint 
can, as of this date, are considered sufficiently 
biological.  Other distributions may also work. 
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