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Abstract: We present a framework within which Knowledge is decomposed into basic elements called knowlets so 
that it can be quantified. Knowledge becomes then a measurable quantity in very much the same way data 
and information are known to be measurable quantities. An appropriate metric is thus defined and used in 
the specific domain of learning assessment. The proposed framework may be utilized for Knowledge 
acquisition in the context of ontology learning and population. 

1 INTRODUCTION 

Students learning assessment in the context of e-
learning has been the focus of attention of several 
research studies for the last few years. A number of 
assessment environments have been developed 
(Gardner 2002, He 2006). Some related standards 
have also emerged, for example the Question-and-
Test-Interoperability from IMS, better known as 
IMS-QTI (IMS 2006). Several web sites offer now 
several tools for the generation of assessment 
material. Hot Potatoes (from the University of 
Victoria) is a well known software tool employed in 
the generation of tests especially those of the MCQ 
category. In pursuing research in this field (Cheniti-
Belcadhi et al. 2004, 2008), we have been intrigued 
by a fundamental question concerning students’ 
assessment: “how much they know?” Other 
questions relative to assessment and testing have 
been raised, for example “how we know they 
know?” (Palloff and Pratt 2006), but to the best of 
our knowledge, the question we ask has not been 
dealt with. That is precisely our objective in this 
paper. 

We define the problem (Knowledge acquisition) 
by the following algorithm. 

1. Consider a system (a certain KB for example) 
which contains at some time t>0 an amount of stored 
Knowledge denoted by KS(t) (according to some 
positive metric to be defined later). We assume 
KS(t=0) = 0. 

2. At time t’>t, some “Knowledge” denoted by 
Kin is presented to the system. 

3. The system will compare Kin to KS. Only the 
part of Kin that is novel (with respect to KS) shall be 
stored. Since the Knowledge increment is greater 
than or equal to zero, then KS(t’) ≥ KS(t). 

Three basic questions can be raised at this stage: 
• What Knowledge metric to use? 
• How can Kin and KS be compared? 
• What use can be made of this metric? 
These are the questions we intend to answer in the 
following sections. 

2 DEFINING KNOWLEDGE 
LEVELS 

The ideas we develop and consider in this work 
should be regarded within the framework of 
ontology. It is well known that ontology is relative 
to a domain of study. As explained in Section 5 
below, we consider science and engineering 
domains. This is important for concept definition 
when we consider specific documents. For example, 
certain terms such as verbs and nouns may not be 
important to us and will not be counted as 
“concepts”, whereas they may be capital for 
someone studying the English language. 

Any framework of knowledge has to make some 
assumptions about the levels of granularity because 
knowledge is necessarily hierarchical. This question 
may be debated on psychological and cognitive 
grounds. Our arguments are however purely 
technical. We define four Knowledge levels, 
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although it may be argued that more levels may 
exist. The concept of “Knowledge Level” (KL) in 
our work should not be confused with the one 
described by Newell (1981), nor with the KLs in the 
sense of philosopher J. Locke (also called degrees). 
Our KLs are defined from a logics point of view. 
They allow us to present corresponding metrics as 
we shall explain below. 
a. Knowledge of Level 1: this is basic Knowledge. 

It describes concepts, items or objects, for 
example animal, tree, person … 

b. Knowledge of Level 2: Here we have properties 
and relations defined on concepts. Elements of 
Knowledge at this level require two K-elements 
of Level 1. Examples: a parrot is-a bird; Coca-
Cola is-a soft-drink; Mozzarella cheese is-made-
in Italy, lions are-faster-than humans. It includes 
simple relations of the type 5=2+3 and 5>4 as 
well. 

c. Knowledge of Level 3: this level incorporates 
three cases:  

• Rules and inferences, for example: hasUncle ← 
hasParent^hasBrother 

• Logical structures of the type IF-THEN 
• Equations. 
d. Knowledge of Level 4: this is the highest level. 

It includes logical structures of the form IF-
THEN-ELSE such as those encountered in 
theorems. To simplify the terminology, we will 
call elements (grains or items) of Knowledge of 
any level “Knowlets,” a word inspired from 
applets and servlets in computer science. Note 
that this definition is not quite the same as Mons’ 
(2008) and knowlets are not just the smallest 
“piece” of Knowledge. They are hierarchical 
elements of Knowledge. 

3 KNOWLEDGE ENTROPY 

Two Knowledge kinds are of interest to us: “stored 
Knowledge” (KS) and “learned Knowledge” (KL). 
The latter one is new Knowledge actually, i.e. 
Knowledge to be learned and added to KS. When a 
person (a learner in our case) is presented with some 
Knowledge Kin, the amount of gained Knowledge, 
denoted by H(KL) must be computed having the 
following properties: 
1. H(KL) is positive. 
2. H(KL) = 0 if  Kin ⊂ KS.  

Shannon in his seminal work on information 
theory (Shannon 1948) was inspired by Hartley and 

used the well-known logarithmic measure for 
information. Since then, information theoretic 
approaches have flourished (Smyth and Goodman 
1992, Lin 1998, etc.). We employ a logarithmic 
measure as well.  

Using the KLs defined earlier, we have for Kin in 
the general case: 

Kin = ܭ୧୬,ଵ ∪ ୧୬,ଶܭ ∪ ∪ ୧୬,ଷܭ  ୧୬,ସܭ

where ܭ୧୬,୬ is the knowlet of level n contained in 
Kin. In other words, Kin must be decomposed 
according to KLs before proceeding further. Let us 
assume without any loss of generality, that: 

Kin = Kin,n (just one level), n = 1, 2, 3 or 4. 

Under these assumptions, we define our 
Knowledge metric with the following fundamental 
equation: 

H(ܭ௅ ) = αn log2(1 + 
௄೔೙మ ି ௄೔೙∗ ௄ೄ ௄೔೙మ  )            (1) 

where αn is the Knowledge unit of Level n, Kin * Ks  
is a measure of correlation defined as follows: ܭ௜௡ ∗ ௜௡ܭ ,௜௡ܭ)ௌ = Simܭ    ௌ)             (2)ܭ ∩
where “Sim” represents a similarity function that we 
will discuss in more detail in Section 4 next. 

Furthermore, we use the notation: ܭ௜௡ ∗ ௜௡ܭ  =  Sim(ܭ௜௡, ௜௡ଶܭ = (௜௡ܭ   

(this is consistent with notation from the field of 
signal processing). We give H(ܭ௅ ) as defined by (1) 
the name of “Knowledge entropy” and we choose 
the “bit” as a unit of measure in line with 
information theory since logarithm base 2 is used in 
(1) and throughout. 

When we compare the Knowledge levels defined 
in Section 2 in terms of number of concepts (or 
ideas) involved, we find appropriate to take αn = nα1. 
Furthermore we set α1 = log2 21/2 = ½ (actually αn = 
log2 2n/2 = ݊/2). 

Let us go back to Equation (1) and examine its 
main properties. Two cases are to be considered:  ܭ௜௡ ⊂ ܭௌ and ܭ௜௡ ⊄  .ௌܭ
a. ܭ௜௡ ⊂ ܭௌ: in this case ܭ௜௡ ௜௡ܭ ௜௡ so thatܭ = ௌܭ ∩ ∗ ௌܭ  = ௜௡ଶܭ   and thus H(ܭ௅ ) = 0 as precisely 

desired.  
b. ܭ௜௡ ⊄ ௜௡ܭ ௌ: ifܭ  ௌ=∅ then mathematicallyܭ ∩

speaking ܭ௜௡ and ܭௌ are orthogonal (ܭ௜௡ ⊥  .(ௌܭ
In this case H(ܭ௅ ) = αn log2(2) = αn (its 
maximum value).  

If ܭ௜௡ ௅ܭ)ௌ ≠ ∅  then Hܭ ∩ ) lies anywhere between 
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zero and this maximum value. 

4 KNOWLEDGE SIMILARITY 

At this stage of the discussion, we need to define the 
similarity employed in Equation (1). Several 
similarity measures have been proposed in the 
literature, for example Lin’s (1998) and Resnik’s 
(1999). More recent similarity metrics have been 
proposed in d’Amato (2006) and Slimani et al. 
(2008). Mihalcea et al. (2005) and Warin et al. 
(2006) give comparative studies of these measures 
among others. Some of the measures are defined 
based on information theoretic approaches while 
others use a logics and/or ontology point-of-view. 

The choice of a particular measure depends on 
the form of the objects to be compared: texts, 
semantic maps, rules, etc. In our case, we need to 
compare knowlets (concepts, properties, 
rules/equations, theorems). We define a similarity 
measure adapted from Lin’s in the following way: 

Sim(ܭଵ , ܭଶ) =  ௄భ∩ ௄మ௄భ∪ ௄మ      (3)

We could have used cardinals but we prefer to keep 
the notation simple. Let us illustrate the use of this 
definition with an example (More on this in Section 
6).  

Let K1 = {father ≡ man ^ parent}  and   K2 = 
{mother ≡ woman ^ parent}. Then:  

Sim(ܭଵ, ܭଶ) =  ^ ା ௣௔௥௘௡௧௠௔௡ା^ ା௣௔௥௘௡௧ା௪௢௠௔௡ 

= 
ଶସ = 0.5. 

The obvious cases of ܭଵ= ܭଶ and ܭଵ ⊥  ଶ can beܭ
easily checked (maximum and minimum similarity 
values). 

In practice and for correct knowledge 
acquisition, a threshold value μ should be chosen to 
decide for new versus learned knowledge, for 
example μ=.25. 

5 KNOWLETS IN PRACTICE 

We are interested in this paper in documents (course 
materials, papers, exams) from scientific and 
engineering fields. These documents comprise four 
types of knowlets: 

(1) Concepts: in the form of one or more words. 

(2) Theorems: generally in the form of IF-THEN 
or IF-THEN-ELSE. 

(3) Equations: usually definitions or a series of 
derivations. 

(4) Examples: applications of theorems and 
equations for specific values and conditions. 

Transforms such as Fourier, Laplace, Z, may be 
considered as special cases of equations and 
transforms come in pairs (analysis and synthesis 
equations). We may extend this logic to laws of 
physics and other entities like those suggested by 
Gruber (1993). 

The case of examples is less straightforward and 
requires a more elaborate analysis. Examples may be 
applied to equations, theorems and so forth. They 
actually help us understand them. But a fundamental 
question is the following: how many examples are 
necessary to fully understand a theorem say? The 
answer is, in theory, a large number, approaching 
infinity. Of course all depends on the theorem and 
the examples themselves. It is however safe to 
assume that examples may be ranked in a decreasing 
order of usefulness. We make use of the fact that: ଵ ଶ + ଵ ସ + ଵ ଼ + ⋯ ቀଵ ଶቁ௡ + ⋯ = 1 and assume that:  

H(n examples) = β log2[1 + ଵ ଶ + ଵ ସ + ଵ ଼ + ⋯ ቀଵ ଶቁ௡
] 

where β = H(theorem) in the case of a theorem for 
example. Note that lim௡→ஶ H(n examples) = β. 

6 APPLICATIONS AND CASE 
STUDY 

The metrics that we have proposed may find 
numerous applications such as benchmarking 
ontologies, concept maps, T-Boxes and A-Boxes. 
Our own interest lies in the field of e-learning and 
student learning assessment more specifically. We 
believe that these metrics can be employed as 
effective tools to evaluate exams with respect to 
course contents. Furthermore, they may be quite 
useful in the automatic generation of assessment 
items from course material. 

We illustrate these ideas with a practical example 
using a course on information theory that we have 
been teaching for a few years now. First of all we 
need a text reference. We have chosen Shannon’s 
paper (1948) as it is known to a wide audience. 
Furthermore, it may be easily employed as a 
reference (at least in part) for any course on 
information theory. 

Let us first clarify the use of the two notions of 
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similarity measure defined in Section 4 and 
correlation metric defined in Section 3 with 
examples of concepts taken from Shannon’s paper 
which are considered different. 

Suppose Kin = {information source} and KS = 
{discrete information source}. This corresponds to 
case a of Section 3. We have then: 

 Sim(ܭ௜௡, ܭௌ) = 3/5 = 0.6,    

௜௡ܭ  ∗ ௜௡ܭ ,௜௡ܭ)ௌ = Simܭ    ௌ) = 1ܭ ∩

 and H(ܭ௅ ) = 0. 

Now let Kin = {second-order approximation of 
English} and KS = {first-order approximation of 
English}. This corresponds to case b of Section 3. 
Then: 

 Sim(ܭ௜௡, ܭௌ) = 3/7 = 0.43,  ܭ௜௡ ∗ ௜௡ܭ ,௜௡ܭ)ௌ = Simܭ   ௌ) = 3/5 = 0.6, andܭ ∩
H(ܭ௅ ) =.24 bit. 

The analysis of Shannon’s paper (without the 
appendices) reveals at least 16 concepts, 36 
relations/properties (these two numbers can only be 
more or less subjective), 9 equations, 12 theorems 
and 17 examples. Out of the 12 theorems, 7 are of 
the form IF-THEN (equivalent to equations) and the 
rest 5 are of the form IF-THEN-ELSE. This analysis 
would have been carried out ideally with automatic 
techniques. But it was done manually due to the lack 
of appropriate tools at the present time.  

According to our metrics and using the results of 
the above analysis, we have:  

H(Sh1948)  = (16+36·2+9·3+7·3+5·4)·α1 
+ H(examples). 

The examples case is somewhat complex. Seven 
examples are for concepts (distributed as 1, 1, 1, 1, 
1, 2), five for equations (distributed as 1, 1, 3) and 
five for theorems (one If-Then and 2, 1, 1 If-Then-
Else). Therefore: 

 H(examples) =[5log2(1 + ଵ ଶ) +  log2(1 + ଵ ଶ + ଵ ସ)]α1 + [2log2(1 + ଵ ଶ) +  log2(1 + ଵ ଶ + ଵ ସ +ଵ ଼)]·3α1 + log2(1 + ଵ ଶ)·3α1 + [2log2(1 + ଵ ଶ) +  

log2(1 + ଵ ଶ + ଵ ସ)]·4α1 , 

 i.e.:   H(examples) = 19.6α1 = 9.8 bits. 

We have finally: H(Sh1948) =  175.6α1 = 87.8 
bits of Knowledge entropy.  

It may be useful to compute the average 

Knowledge entropy. In this case it is equal to 
଼଻.଼ ଽ଴  = 

.975 b/knowlet. 
This figure is relatively low (less than 1), but if 

we do not take into account the examples, it 
becomes 1.07 b/knowlet. 

We looked at exams for the last three years. We 
have found an average of 10 concepts and 4 
equations per exam. We may conclude that H(exam) 
= 22·α1 = 11 bits, i.e. 12% of Shannon’s paper. 
Although there are no standards in the literature to 
tell us what value would be acceptable, a coverage 
value of 10% minimum should be in our opinion 
teachers’ target.  

7 RELATED WORK  
AND CONCLUSIONS 

In this paper we gave a foundation for Knowledge 
metrics. Ideally, an automatic generation of 
Knowledge from text or documents should be made. 
Then documents are compared automatically as 
well. This undertaking is for that matter impractical 
at the present time as necessary tools are still under 
development. Significant progress has been made in 
the area of ontology learning and population during 
the last few years. Valuable tools have been 
proposed in this regard (Zouaq and Nkambou 2008, 
Buitelaar et al. 2003), but some time is still needed 
before they become fully operational. 

To the best of the author’s knowledge, the only 
works that grade exams and course contents using 
quantitative metrics are those based on Bloom’s six-
level knowledge taxonomy, for example Oliver et al. 
(2004) and Zheng (2008). We therefore believe that 
we have presented original ideas that would allow us 
to assess quantitatively our exams with respect to 
course contents we present to students. 

The metrics we defined may be used for 
comparative purposes but with due precaution. The 
scientific importance of any specific theorem for 
example is measured with its impact on the course of 
science and technology and is by no means an 
absolute value.  

We should note that the knowledge metrics we 
have defined open a large scope of applications 
especially those related to ontology development 
and comparison and not just learning assessment. 

Another possible further exploration can be done 
to assess the validity of theses metrics from a 
cognitive standpoint. Indeed we have refrained from 
speculation on how this work would compare 
against human perception of knowledge. We leave it 
for a future exploration. 
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