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Abstract: Recently, particle swarm optimization (PSO) has become one of the most popular approaches to clustering
problems because it can provide a higher quality result than deterministic local search method. The problem of
PSO in solving clustering problems, however, is that it is much slower than deterministic local search method.
This paper presents a novel method to speed up its performance for the partitional clustering problem—based
on the idea of eliminating computations that are essentially redundant during its convergence process. In
addition, the multistart strategy is used to improve the quality of the end result. To evaluate the performance
of the proposed method, we compare it with several state-of-the-art methods in solving the data and image
clustering problems. Our simulation results indicate that the proposed method can reduce from about 60%
up to 90% of the computation time of thek-means and PSO-based algorithms to find similar or even better
results.

1 INTRODUCTION

Clustering (Xu and Wunsch, 2008) has been widely
used in a variety of areas such as information re-
trieval, image processing, pattern recognition, just to
name a few. The clustering problem refers to the
process of splitting dissimilar data into disjoint clus-
ters and grouping similar data into the same clus-
ter based on some predefined similarity metric. The
optimal partitional clustering is a partitioning that
minimizes the intra-cluster distance and maximizes
the inter-cluster distance. Mathematically, given a
set ofℓ-dimensional patternsX = {x1,x2, . . . ,xn}, the
output of an optimal clustering are a partitionΠ =
{π1,π2 . . . ,πk}

1 and a set of means or centroidsC =
{c1,c2, . . . ,ck} such that

ci =
1
|πi |

∑
x∈πi

x, (1)

and

πi = {x∈ X | d(x,ci)≤ d(x,c j),∀i 6= j}, (2)

whered is a predefined function for measuring the
similarity between patterns and means. The prede-

1That is,X = ∪k
i=1πi and∀i 6= j ,πi ∩π j = /0.

fined function depends, to a large extent, on the ap-
plication. For instance, for the image clustering prob-
lem, Euclidean distance is widely used. For the doc-
ument clustering problem, the angle between patterns
is employed. Known to be NP-hard (Kogan, 2007),
the clustering algorithm usually takes a tremendous
amount of time to find the solution. For this reason,
many researchers (Xu and Wunsch, 2008) have fo-
cused their attention on either finding a better solution
or accelerating its speed.

Recently, many partitional clustering algorithms
based on population-based metaheuristic (PBM) have
been proposed. Among them are the partitional clus-
tering algorithms based on genetic algorithm (GA)
(Raghavan and Birchand, 1979) and particle swarm
optimization (Omran et al., 2002). An important ad-
vantage of these algorithms is that they can be em-
ployed to avoid converging to the nearest local op-
timum (e.g.,k-means) from the starting position of
the search (Paterlini and Krink, 2006). But in most
cases, PBM takes much more computation time than
single-solution-based and deterministic local search
algorithms. This is one of the reasons why it is im-
portant to reduce the computation time of PBM-based
clustering algorithms.
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This paper presents an efficient algorithm called
MPREPSO (Multistart and Pattern Reduction En-
hanced Particle Swarm Optimization) for enhancing
the speed and quality of PSO-based clustering al-
gorithms. Then, we compare the performance of
MPREPSO with five state-of-the-art clustering algo-
rithms, with a focus on the data and image clustering
problems. The remainder of the paper is organized
as follows. Section 2 gives a brief introduction to
the PSO algorithms for clustering problem. Section 3
provides a detailed description of the proposed algo-
rithm. Performance evaluation of the proposed algo-
rithm is presented in Section 4. Conclusion is given
in Section 5.

2 RELATED WORK

The conventional PSO (Kennedy and Eberhart, 1995)
uses the position and velocity of particles to emulate
the social behavior. The position represents a trial
solution of the optimization problem (e.g., clustering
problem) while the velocity represents the search di-
rection of the particle. Initially, all the particles are
randomly put in the search space, and all the veloc-
ities are also randomly generated. The velocity and
position of each particle at iterationt +1 are defined,
respectively, by

vt+1
i = ωvt

i +a1ϕ1(pbt
i − pt

i)+a2ϕ2(gbt − pt
i), (3)

and
pt+1

i = pt
i + vt+1

i , (4)

wherevt
i and pt

i represent the velocity and position
of the i-th particle at iterationt; pbt

i the personal best
position of thei-th particle up to iterationt; gbt the
global best position so far;ω an inertial weight;ϕ1
and ϕ2 two uniformly distributed random numbers
used to determine the influence of pbi and gb;a1 and
a2 two constants indicating, respectively, the cogni-
tive and social learning rate.

To the best of our knowledge, the idea of the PSO-
based clustering algorithm first introduced by Om-
ran et al. (Omran et al., 2002) is to encode thek
centroids as the position of a particle; that is,pi =
(ci1,ci2, . . . ,cik) whereci j represents thej-th centroid
encoded in thei-th particle. The fitness of each parti-
cle is defined by

f (pi ,Mi) = w1d̄max(pi ,Mi)+w2[zmax−dmin(pi)], (5)

where

d̄max(pi ,Mi) = max
j=1,...,k

[

∑
∀x∈πi j

d(x,ci j )

|ci j |

]

, (6)

indicates the maximum mean square intra-cluster dis-
tance;

dmin(pi) = min
∀a,b,a6=b

d(cia,cib), (7)

indicates the minimum distance between all the cen-
troids. Moreover,Mi is the matrix representing the
assignment of patterns to the clusters encoded in the
i-th particle;zmax the maximum feature value in the
dataset (e.g., the maximum pixel value in an image
set);w1 andw2 the two user defined constants.

In addition to data clustering, the PSO-based clus-
tering algorithm has been successfully applied to
many other problems such as gene clustering and vec-
tor quantization. For instance, Xiao et al. (Xiao et al.,
2003) integrated PSO with self organizing map for
clustering gene expression data of Yeast and Rat Hep-
atocytes. Feng et al. (Feng et al., 2007) used the fuzzy
inference method to determine which training vector
will belong to which codeword and combine it with
PSO to improve the quality of the end result.

3 THE PROPOSED ALGORITHM

The proposed algorithm MPREPSO is as outlined in
Fig. 1. In words, assumingm is the population size
of PSO, the proposed algorithm first randomly selects
m subsets of patterns from the set of input patterns
X. Each subset is composed of a certain percent of
the patterns inX and is associated with a particle of
PSO. Then, MPREPSO appliesk-means to each par-
ticle and uses the result thus obtained as the initial
position of the corresponding particle of PSO. The in-
tention of this sampling method is to improve the ac-
curacy rate of the clustering result. In addition to all
the operators of PSO, which include operator to up-
date the centroids, operator to assign patterns to all
the clusters, operator to update the personal best and
the global best, and operator to change the velocities
and positions, MPREPSO adds to PSO three addi-
tional operators:detection, compression, andmulti-
start. The detection and compression operators take
the responsibility of detecting and compressing the
static patterns. The multi-start operator is added to
improve the quality of the end result—by enforcing
the diversity of the population of MPREPSO.

3.1 The Detection Operator

The proposed algorithm relies on two different kinds
of detection operators to find computations that are
essentially redundant. More precisely, the first de-
tection operator (Tsai et al., 2007) considers patterns
within a predefined radiusγ to their centroid as static.
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1. Randomly selectm subsets of patterns, denotedsi for i = 1,2, . . . ,m, from X by sampling.

2. Create an initial population ofm particles each of which encodes thek centroids obtained by applyingk-means to all thesi .

3. For each particlei

4. For each patternx∈ X

5. Calculate the distance ofx to all the centroids, denotedci j for j = 1,2, . . . ,k.

6. Assignx to the cluster the centroid of which is nearest tox.

7. End

8. Calculate the fitness value using Eq. (5).

9. Detect the set of patternsR that are static and within a predefined radiusγ to their centroid.

10. Compress the set of patternsR into a single patternr and removeR; that is,X = X∪{r} andX = X \R.

11. End

12. Update the personal best pbi and the global best gb using Eqs. (3) and (4).

13. Change the velocities and positions.

14. Perform the multi-start operator.

15. If the stop criterion is satisfied, then stop and output the best particle; otherwise, goto step 3.

Figure 1: Outline of MPREPSO for the clustering problem.

This operator uses a simple approach to determining
for each cluster the topα% of patterns that can be
considered as static, by using the standard deviation
σ, meanµ, and confidence intervals of patterns in that
cluster so that no sorting is required. This cuts the
time complexity fromO(nlogn) down toO(n). For
instance, we are assuming that the distances of all the
patterns in a cluster to their centroid are normally dis-
tributed. As a consequence, to find the top 16% of
patterns that are close to the centroid of a cluster, the
detection operator only needs to compute the average
distance (µ) of the patterns to their centroid and the
standard deviationσ. A pattern will be in the top 16%
(i.e.,(100−68)/2%= 16%) if its distance to the cen-
troid is smaller thanγ = µ−σ. Note that as far as
this paper is concerned,α = 16% is used by the first
method.

The second detection operator checks to see if a
static pattern can be eliminated by counting the num-
ber of iterations that pattern stays in the same cluster.
Intuitively, the higher the number of iterations a pat-
tern remains in the same cluster, the more likely the
pattern is static. How many iterations a pattern needs
to stay in the same group depend on the convergence
speed or the quality of the end result. If we set the
number of iterations to a large value, the accuracy rate
will be high, but the downside is that the computation
time will increase. On the other hand, if we set the
number of iterations to a small value, the result will
be the other way around. Again, note that as far as
this paper is concerned, two iterations in a row are
used.

3.2 The Compression Operator

As the name suggests, the compression operator of
MPREPSO takes care of compressing the “static” pat-
terns of each cluster into a single pattern and ensuring

that all the other operators of PSO will work on the
compressed space so as to get rid of computations
that are redundant. More precisely, MPREPSO first
compresses all the patterns inR into a single pattern
r. Then, the compression operator ensures that all the
other operators will see only the patternr instead of
all the patterns inR by addingr to X and removing
all the patterns inR from X. In other words, seeing
only the patternr, no redundant computations will be
done for the patterns inR, including centroid update,
pattern assignment, fitness value computation, parti-
cle update.

1 1 2 1 2 2 2 2

1 1 2 1 2 2 2 2

1 1 2 1 22 2 2

1 1 2 1 22 2 2

Detection

Compression

Iterationt

Iterationt +1

Figure 2: A simple example illustrating how the compres-
sion operator works.

As Fig. 2 shows, one of the solutions in a par-
ticular particle has eight patterns before compression.
But after the detection, the proposed algorithm finds
that two of the eight patterns in cluster 2 can be
considered as static. The compression operator will
first save away information relevant to these two pat-
terns and then compress them into a single patternr.
After that, seven patterns (six patterns plusr) need
to be computed by the other operators of PSO. As
such, MPREPSO can reduce the computation time by
“eliminating” on the fly patterns that are static.
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3.3 The Multi-start Operator

In this paper, the multi-start method is used to im-
prove the quality of the end result—by enforcing the
diversity of PSO. The design concept of this method
is to retain the structure of high performance solu-
tions (intensification) and then use it to seek other
good solutions that are similar to the current good so-
lutions but not the same (diversification). The main
purpose of this operator is similar to that proposed in
(Larrañaga and Lozano, 2002; Tsai et al., 2002) but
not performed once every iteration of the convergence
process.

0.1 3.2 5.3

0.2 4.2 4.3

p3

p4

1.1 2.2 3.3

1.3 2.1 3.2

p1

p2

1.1 2.2 3.3

1.3 2.1 3.2

p1

p2

1.1 3.32.1p′3

1.3 2.1 3.3p′4

Step 1 Step 2 Step 3

F
itn

es
s

1.3 2.1 3.3p′4

1.1 3.32.1p′3
c11 c22 c13

c21 c22 c13

Figure 3: A simple example illustrating how the multistart
operator works for MPREPSO.

As Fig. 3 shows, the multi-start operator takes
three steps. Assuming that there are four particles
(solutions) at the current iteration, the first step is
to remove the particles the fitness of which are be-
low the average fitness of all the particles such as
p1 and p2. In other words, the first step is respon-
sible for “intensifying” the good search directions, by
passing the fitter solutions on to later iterations. The
second step is to create new particles by a random
clone method. For example, the remaining particles
are p1 = {c11,c12,c13} and p2 = {c21,c22,c23} each
of which encodes three centroids. The first centroid
of the new particle can take the value of eitherc11 or
c21. As a result, the sub-solutions ofp′3 arec11, c22,
andc13, respectively. This step plays the role of “di-
versifying” the current search trajectories to avoid the
proposed algorithm from falling into local optimum at
early iterations. The third step is to combine the par-
ticles that have a high fitness value (p1 andp2) at the
current iteration with the new particlesp′3 and p′4 to
generate a new population for the next iteration. Note
that as far as all the experimental results given in this
paper are concerned, the multi-start operator is per-
formed once every one-tenth of the total number of
iterations.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed algorithm by using it to solve the cluster-

ing problem. The empirical analysis was conducted
on an IBM X3400 machine with 2.0 GHz Xeon CPU
and 8GB of memory running CentOS 5.0 with Linux
2.6.18; the programs are written in Java 1.6.007. To
evaluate the performance of MPREPSO for the PSO-
based algorithms, we apply it to four PSO-based al-
gorithms that are: PSO (Omran et al., 2005), par-
ticle swarm clustering (PSC) (Cohen and de Cas-
tro, 2006), time-varying acceleration coefficients with
MPSO (TVAC) (Ratnaweera et al., 2004), and com-
parative PSO (CPSO) (Yang et al., 2008). We also
compare the results of these algorithms withk-means
(KM) (McQueen, 1967).

Two different kinds of datasets, dataset 1 (DS1)
and dataset 2 (DS2), are used to evaluate the perfor-
mance of these algorithms, as shown in Table 1. In
addition, all the images in DS2 are of size 512×512
and in 8-bit grayscale. For DS1, the number of clus-
ters of KM and PSO-based algorithms are predefined
by the test problems; for DS2, the number of clusters
are set to 8.

All the simulations are carried out for 30 runs.

Table 1: Datasets for benchmarks.

Dataset Type Name of datasets

DS1 Data iris wine breast cancer

DS2 Image
Lena baboon airplane

peppers goldhill boots

For all the PSO-based algorithms, the population size
is defaulted to 20. The number of iterations is set to
1,000. The other parameter settings are summarized
in Table 2. The mutation rate of TVAC is set to 0.8.
For each particle of PSO, MPREPSO uses 2% of the
input patterns as the samples to create the initial so-
lution. The maximum velocityvmax of PSO-based al-
gorithms is set to 0.01 (Cohen and de Castro, 2006)
for DS1 and 255 (Omran et al., 2005) for DS2. In
addition, the other settings of all the PSO-based al-
gorithms we compared in this paper follow those de-
scribed in the corresponding papers. In Table 2, the
settings of CPSO are the same as PSO.

To simplify the discussion of the simulation re-

Table 2: Data settings for clustering algorithms.

Algorithms The settings

PSO ω = 0.72 a1 = 1.49 a2 = 1.49

PSC ω = 0.95 a1 = a2 = [0.1,2.05] a3 = [0.005,1]

TVAC ω = 0.9 to 0.4 a1 = 2.5 to 0.5 a2 = 0.5 to 2.5

sults, we will use the following conventions. Let
β ∈ {D,T} denote the quality of the clustering re-
sult (β = D) and the computation time (β = T), re-
spectively. Also, let∆β denote the enhancement of
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Table 3: Enhancement of the running time of KM, PSO,
PSC, TVAC, and CPSO with PR.

Data clustering (∆T )
Data KM PSO PSC TVAC CPSO
iris -84.6 -65.1 -72.5 -79.0 -76.8

wine -82.9 -68.4 -66.8 -82.1 -81.4
breast -79.6 -69.1 -62.9 -82.4 -81.7

Average -82.4 -67.5 -67.4 -81.2 -80.0

Image clustering (∆T )
Data KM PSO PSC TVAC CPSO
Lena -76.9 -72.9 -90.2 -90.0 -74.7

baboon -76.2 -72.3 -93.7 -89.6 -73.9
airplane -79.1 -72.1 -93.5 -88.4 -74.0
pepper -78.8 -74.7 -88.0 -87.8 -74.7
goldhill -77.0 -72.0 -90.9 -87.4 -74.1
boots -77.1 -72.2 -86.4 -88.3 -75.4

Average -77.5 -72.7 -90.5 -88.6 -74.5

Table 4: Enhancement of the quality of KM, PSO, PSC,
TVAC, and CPSO with PR.

Data clustering (∆AR)
Data KM PSO PSC TVAC CPSO
iris -4.9 0.1 0.8 -3.0 0.1

wine -4.8 -0.4 -0.1 -0.1 -0.1
breast -0.1 0.2 -0.6 -2.0 0.2

Average -3.3 -0.04 0.01 -1.7 0.1

Image clustering (∆PSNR)
Data KM PSO PSC TVAC CPSO
Lena 0.1 5.0 3.4 2.6 -0.5

baboon 1.4 3.2 1.3 -1.1 5.2
airplane 0.1 0.2 -1.1 0.5 -0.1
pepper -0.9 1.3 1.0 0.5 -0.9
goldhill 0.2 0.6 0.5 0.4 -0.5
boots 3.2 6.3 -5.0 -2.1 4.0

Average 0.7 2.8 0.02 0.1 1.2

βφ (new algorithm) with respect toβψ (original algo-
rithm) in percentage, and it is defined by

∆β =
βφ −βψ

βψ
×100% (8)

Note that forβ = D, the larger the value of∆β, the
greater the enhancement; forβ = T, the smaller the
value of∆β, the greater the enhancement. In addition,
for DS1, the quality of the clustering result is mea-
sured in terms of the accuracy rate (AR) defined by

AR =
∑n

i=1Ai

n
, (9)

whereAi assumes one of the two values 0 and 1, with
Ai = 1 representing the patternxi is assigned to the
right cluster andAi = 0 representing the patternxi is
assigned to the wrong cluster. For DS2, the quality of
the end result is measured using peak-signal-to-noise
ratio (PSNR).

4.1 The Simulation Results

Our simulation contains KM, PSO, PSC, TVAC,
CPSO, and MPREPSO for both the data and image
clustering problems in terms of both the running time
and the quality (measured, respectively, by AR and
PSNR). The detection operator of MPREPSO consid-
ers a pattern as static if its distance to the centroid is
no larger thanγ = µ− σ and if it stays in the same
group for two iterations. Our simulation results show
thatk-means (KM) is faster than the other PSO-based
algorithms in most cases. However, our simulation re-
sults show further that all the PSO-based algorithms
give better results than KM for most of the datasets
evaluated.

Tables 3 and 4 compare the proposed algorithm
MPREPSO with the other algorithms in terms of both
the running time and the quality. Table 3 shows that
the proposed algorithm can reduce the computation
time of these clustering algorithms from 67% up to
90% on average, especially for large datasets. For ex-
ample, as the results of Table 4 show, the proposed
algorithm can reduce more of the computation time
of PSO for DS2 than for DS1 because the data size of
DS2 is larger than that of DS1. Moreover, for some
datasets, the proposed method will degrade the qual-
ity of the end results, though by no more than 4%
on average. For the others, the proposed method can
even enhance the quality of the end result by about
0.01% up to 2.78%, especially for DS2. Our obser-
vation shows that these enhancements are due to the
fact that both sampling and multi-start are used by
the proposed algorithm to improve the quality of the
end result. A closer look at the results shows that the
proposed algorithm can reduce most of the computa-
tion time of PSO and its variants in computing fitness
and updating membership of patterns. However, since
each PSO-based algorithm may use different opera-
tors, the amount of time that MPREPSO can reduce
is different.

5 CONCLUSIONS

This paper presents a method, based on the notion of
pattern reduction, to reduce the running time of PSO-
based clustering algorithms. The simulation result
shows that many of the computations on the conver-
gence process of PSO are essentially redundant and
can be detected and eliminated. The simulation re-
sult shows further that the proposed algorithm can
not only significantly reduce the computation time of
PSO-based algorithms for clustering problems, it can
also provide better results than the other algorithms
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we compared in this paper. In the future, our goal is
to focus on finding an even more efficient detection
and multi-start method to enhance the quality.
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