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Abstract: Recently, particle swarm optimization (PSO) has become one of the most popular approaches to clustering
problems because it can provide a higher quality result than deterministic local search method. The problem of
PSO in solving clustering problems, however, is that it is much slower than deterministic local search method.
This paper presents a novel method to speed up its performance for the partitional clustering problem—based
on the idea of eliminating computations that are essentially redundant during its convergence process. In
addition, the multistart strategy is used to improve the quality of the end result. To evaluate the performance
of the proposed method, we compare it with several state-of-the-art methods in solving the data and image
clustering problems. Our simulation results indicate that the proposed method can reduce from about 60%
up to 90% of the computation time of thkemeans and PSO-based algorithms to find similar or even better
results.

1 INTRODUCTION fined function depends, to a large extent, on the ap-
plication. For instance, for the image clustering prob-
Clustering (Xu and Wunsch, 2008) has been widely lem, Euclidean distance is widely used. For the doc-
used in a variety of areas such as information re- ument clustering problem, the angle between patterns
trieval, image processing, pattern recognition, just to is employed. Known to be NP-hard (Kogan, 2007),
name a few. The clustering problem refers to the the clustering algorithm usually takes a tremendous
process of splitting dissimilar data into disjoint clus- amount of time to find the solution. For this reason,
ters and grouping similar data into the same clus- many researchers (Xu and Wunsch, 2008) have fo-
ter based on some predefined similarity metric. The cused their attention on either finding a better solution
optimal partitional clustering is a partitioning that or accelerating its speed.
minimizes the intra-cluster distance and maximizes Recently, many partitional clustering algorithms
the inter-cluster distance. Mathematically, given a based on population-based metaheuristic (PBM) have
set of¢-dimensional patterns = {x1, Xz, ...,X}, the been proposed. Among them are the partitional clus-

output of an optimal clustering are a partitibh= tering algorithms based on genetic algorithm (GA)
{my, ..., m}! and a set of means or centroids= (Raghavan and Birchand, 1979) and particle swarm

{c1,C2,...,C} such that optimization (Omran et al., 2002). An important ad-
1 vantage of these algorithms is that they can be em-

G=— 9 X Q) ployed to avoid converging to the nearest local op-

|5 XETy timum (e.g.,k-means) from the starting position of

the search (Paterlini and Krink, 2006). But in most

cases, PBM takes much more computation time than
= {xeX|d(x,c)<d(x.cj),Vi#]j}, (2)  single-solution-based and deterministic local search
algorithms. This is one of the reasons why it is im-
portant to reduce the computation time of PBM-based
clustering algorithms.

and

whered is a predefined function for measuring the
similarity between patterns and means. The prede-

That is,X = Ul andVi # |, Ny = 0.
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This paper presents an efficient algorithm called indicates the maximum mean square intra-cluster dis-
MPREPSO (Multistart and Pattern Reduction En- tance;
hanced Particle Swarm Optimization) for enhancing Amin(pi) = min  d(Cia,Cip), (7
the speed and quality of PSO-based clustering al- vabazb
gorithms. Then, we compare the performance of indicates the minimum distance between all the cen-
MPREPSO with five state-of-the-art clustering algo- troids. MoreoverM; is the matrix representing the
rithms, with a focus on the data and image clustering assignment of patterns to the clusters encoded in the
problems. The remainder of the paper is organized i-th particle; zmax the maximum feature value in the
as follows. Section 2 gives a brief introduction to dataset (e.g., the maximum pixel value in an image
the PSO algorithms for clustering problem. Section 3 set);w1 andw; the two user defined constants.
provides a detailed description of the proposed algo-  In addition to data clustering, the PSO-based clus-
rithm. Performance evaluation of the proposed algo- tering algorithm has been successfully applied to

rithm is presented in Section 4. Conclusion is given many other problems such as gene clustering and vec-
in Section 5. tor quantization. For instance, Xiao et al. (Xiao et al.,

2003) integrated PSO with self organizing map for
clustering gene expression data of Yeast and Rat Hep-
atocytes. Feng et al. (Feng et al., 2007) used the fuzzy
inference method to determine which training vector

will belong to which codeword and combine it with
The conventional PSO (Kennedy and Eberhart, 1995) PSO to improve the quahty of the end result.

uses the position and velocity of particles to emulate
the social behavior. The position represents a trial
solution of the optimization problem (e.g., clustering
problem) while the velocity represents the search di-
rection of the particle. Initially, all the particles are

randomly put in the search space, and all the veloc- The proposed algorithm MPREPSO is as outlined in
ities are also randomly generated. The velocity and Fig. 1. In words, assuming is the population size

position of each particle at iteratian- 1 are defined, ~ 0f PSO, the proposed algorithm first randomly selects
respectively, by m subsets of patterns from the set of input patterns

X. Each subset is composed of a certain percent of

V= v +ard1(pt — pb) +axd2(gbf — pb), (3)  the patterns irX and is associated with a particle of
PSO. Then, MPREPSO appliksneans to each par-

1t 4l ticle and uses the result thus obtained as the initial
Pt =p vt (4) position of the corresponding particle of PSO. The in-
whereVt and pf represent the velocity and position tention of this sampling method is to improve the ac-
of thei-th particle at iteration; pbf the personal best ~ curacy rate of the clustering result. In addition to all
position of thei-th particle up to iteration; gif the ~ the operators of PSO, which include operator to up-
global best position so fap an inertial weight;p1 date the centroids, operator to assign patterns to all
and ¢, two uniformly distributed random numbers the clusters, operator to update the personal best and

used to determine the influence Ofi pimd gb;al and the gIObaI best, and Operator to Change the velocities
a, two constants indicating, respectively, the cogni- and positions, MPREPSO adds to PSO three addi-

tive and social learning rate. tional operators:detection compressionand multi-

To the best of our knowledge, the idea of the PSO- Start The detection and compression operators take
based clustering algorithm first introduced by Om- the responsibility of detecting and compressing the
ran et al. (Omran et al., 2002) is to encode the static patterns. The multi-start operator is added to
centroids as the position of a particle; that pg,=  improve the quality of the end result—by enforcing
(Gi1,Giz, - - -, Gik) Whereg;j represents thg-th centroid  the diversity of the population of MPREPSO.
encoded in thé-th particle. The fithess of each parti- )
cle is defined by 3.1 The Detection Operator

2 RELATED WORK

3 THE PROPOSED ALGORITHM

and

F(PisMi) = W Gmax(Pi, Mi) + W Zmax— dmin(Pi)]. - () gy proposed algorithm relies on two different kinds

where of detection operators to find computations that are
essentially redundant. More precisely, the first de-
dmax(Pi,Mi) = max [ d(X,Cii)} 7 ©6) te_cti_on operator (Tsai et al., 20(?7) cons.iders patterns

i=Lok |y, 1G] within a predefined radiugto their centroid as static.
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1. Randomly seleah subsets of patterns, denotgdor i = 1,2,...,m, from X by sampling.
2. Create an initial population o particles each of which encodes theentroids obtained by applyirgmeans to all ths.
3. For each particle
4., For each pattere X
5. Calculate the distance ®fo all the centroids, denoteg} for j =1,2,... k.
6. Assignx to the cluster the centroid of which is neareskto
7. End
8.  Calculate the fithess value using Eq. (5).
9.  Detect the set of patternR that are static and within a predefined radyue their centroid.
10. Compressthe set of patternRinto a single pattern and removeR; that is,X = XU {r} andX = X\ R.
11. End
12. Update the personal best pind the global best gb using Egs. (3) and (4).
13. Change the velocities and positions.
14. Perform the multi-start operator.
15. |If the stop criterion is satisfied, then stop and outpettést particle; otherwise, goto step 3.

Figure 1: Outline of MPREPSO for the clustering problem.

This operator uses a simple approach to determiningthat all the other operators of PSO will work on the
for each cluster the top% of patterns that can be compressed space so as to get rid of computations
considered as static, by using the standard deviationthat are redundant. More precisely, MPREPSO first
0, meany, and confidence intervals of patterns in that compresses all the patternsRninto a single pattern
cluster so that no sorting is required. This cuts the r. Then, the compression operator ensures that all the
time complexity fromO(nlogn) down toO(n). For other operators will see only the pattarinstead of
instance, we are assuming that the distances of all theall the patterns irR by addingr to X and removing
patterns in a cluster to their centroid are normally dis- all the patterns iR from X. In other words, seeing
tributed. As a consequence, to find the top 16% of only the patterm, no redundant computations will be
patterns that are close to the centroid of a cluster, thedone for the patterns iR, including centroid update,
detection operator only needs to compute the averagepattern assignment, fitness value computation, parti-
distance |f) of the patterns to their centroid and the cle update.

standard deviatioa. A pattern will be in the top 16%

(i.e.,(100—68)/2%= 16%) if its distance to the cen- Mierationt

troid is smaller thary = p— 0. Note that as far as [1]1]2]1]2[ 2 2 2

this paper is concerned,= 16% is used by the first i

method. Detection  [1]1] 2] 1] 2] 2] 2] 2
The second detection operator checks to see if a !

static pattern can be eliminated by counting the num- | Compression

ber of iterations that pattern stays in the same cluster. Mterationt 4 1 \

Intuitively, the higher the number of iterations a pat-

tern remains in the same cluster, the more likely the

pattern is static. How many iterations a pattern needsFigure 2: A simple example illustrating how the compres-
to stay in the same group depend on the convergencesion operator works.

speed or the quality of the end result. If we set the

number of iterations to a large value, the accuracyrate ~ As Fig. 2 shows, one of the solutions in a par-

will be high, but the downside is that the computation ticular particle has eight patterns before compression.
time will increase. On the other hand, if we set the But after the detection, the proposed algorithm finds
number of iterations to a small value, the result will that two of the eight patterns in cluster 2 can be

be the other way around. Again, note that as far as considered as static. The compression operator will
this paper is concerned, two iterations in a row are first save away information relevant to these two pat-

used. terns and then compress them into a single pattern
After that, seven patterns (six patterns physeed
3.2 The Compression Operator to be computed by the other operators of PSO. As

such, MPREPSO can reduce the computation time by
As the name suggests, the compression operator of €liminating” on the fly patterns that are static.
MPREPSO takes care of compressing the “static” pat-
terns of each cluster into a single pattern and ensuring
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3.3 TheMulti-start Operator ing problem. The empirical analysis was conducted
on an IBM X3400 machine with 2.0 GHz Xeon CPU
In this paper, the multi-start method is used to im- and 8GB of memory running CentOS 5.0 with Linux
prove the quality of the end result—by enforcing the 2.6.18; the programs are written in Java 1.670 To
diversity of PSO. The design concept of this method evaluate the performance of MPREPSO for the PSO-
is to retain the structure of high performance solu- based algorithms, we apply it to four PSO-based al-
tions (intensification) and then use it to seek other gorithms that are: PSO (Omran et al., 2005), par-
good solutions that are similar to the current good so- ticle swarm clustering (PSC) (Cohen and de Cas-
lutions but not the same (diversification). The main tro, 2006), time-varying acceleration coefficients with
purpose of this operator is similar to that proposed in MPSO (TVAC) (Ratnaweera et al., 2004), and com-
(Larrafiaga and Lozano, 2002; Tsai et al., 2002) but parative PSO (CPSO) (Yang et al., 2008). We also
not performed once every iteration of the convergence compare the results of these algorithms vkitneans

process. (KM) (McQueen, 1967).
Two different kinds of datasets, dataset 1 (DS1)
Step 1 Step 2 Step 3 and dataset 2 (DS2), are used to evaluate the perfor-
p11[23[33 L2133 m11[23[33 mance of these algorithms, as shown in Table 1. In
8| pef1.3[21[32 b3 &1 G i3 p2[13[21[3.2 addition, all the images in DS2 are of size 54812
Sl e and in 8-bit grayscale. For DS1, the number of clus-
E| mbidss m13[2d(33 Lislas ters of KM and PSO-based algorithms are predefined
p09[4.2/4.3 CRCACT R [PEIEE by the test problems; for DS2, the number of clusters
) . . ] . are set to 8.
Figure 3: A simple example illustrating how the multistart All the simulations are carried.out for 30 runs.

operator works for MPREPSO.

As Fig. 3 shows, the multi-start operator takes Table BfDatasets for benchmarks.

three steps. Assuming that there are four particles Dataset| Type Name of datasets
(solutions) at the current iteration, the first step is DS1 | Data iris wine  breast cancer
to remove the particles the fitness of which are be- bs2 | Image | &M@ baboon airplane
low the average fitness of all the particles such as peppers _goldhil boots

p1 and pz. In other words, the first step is respon-

sible for “intensifying” the good search directions, by For all the PSO-based algorithms, the population size
passing the fitter solutions on to later iterations. The is defaulted to 20. The number of iterations is set to
second step is to create new particles by a random1,000. The other parameter settings are summarized
clone method. For example, the remaining particles in Table 2. The mutation rate of TVAC is set to 0.8.
arepy = {C11,C12,C13} andpz = {Cp1,C22,C23} each For each particle of PSO, MPREPSO uses 2% of the
of which encodes three centroids. The first centroid input patterns as the samples to create the initial so-
of the new particle can take the value of eitber or lution. The maximum velocitymax of PSO-based al-
C21. As a result, the sub-solutions p§ arecys, cz2, gorithms is set to 0.01 (Cohen and de Castro, 2006)
andcys, respectively. This step plays the role of “di- for DS1 and 255 (Omran et al., 2005) for DS2. In
versifying” the current search trajectories to avoid the addition, the other settings of all the PSO-based al-
proposed algorithm from falling into local optimum at ~ gorithms we compared in this paper follow those de-
early iterations. The third step is to combine the par- scribed in the corresponding papers. In Table 2, the
ticles that have a high fitness valyg @ndp,) atthe ~ settings of CPSO are the same as PSO.

current iteration with the new particlgg, and p), to To simplify the discussion of the simulation re-
generate a new population for the next iteration. Note
that as far as all the experimental results given in this Table 2: Data settings for clustering algorithms.
paper are concerned, the multi-start operator is per-
formed once every one-tenth of the total number of _Algorithms The settings
iterations. PSO w=0.72 a3 =1.49 a; =149
PSC w=0.95 ay —a; =[0.1,2.05 az=[0.0051]
TVAC w=09t004 a; =25t005 a,=0.5t025

4 PERFORMANCE EVALUATION sults, we will use the following conventions. Let
B € {D,T} denote the quality of the clustering re-

In this section, we evaluate the performance of the sult (3 = D) and the computation timg3(= T), re-

proposed algorithm by using it to solve the cluster- spectively. Also, letAg denote the enhancement of
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Table 3: Enhancement of the running time of KM, PSoO, 4.1 The Simulation Results
PSC, TVAC, and CPSO with PR.

Data clustering4r)
Data KM | PSO PSC TVAC CPSQ
iris -846| -65.1 -725 -79.0 -76.§
wine -829| -684 -66.8 -821 -814
breast | -79.6 | -69.1 -629 -824  -81.7
Average | -82.4| -675 -674 -81.2 -80.0

Image clusteringXt)
Data KM | PSO PSC TVAC CPS(Q
Lena | -76.9| -729 -90.2 -90.0 -74.7
baboon | -76.2 | -72.3 -93.7 -89.6 -73.9
airplane | -79.1| -72.1 -935 -88.4 -74.0
pepper | -78.8 | -74.7 -88.0 -87.8 -74.7
goldhill | -77.0 | -72.0 -90.9 -87.4 -74.1
boots | -77.1| -72.2 -86.4 -88.3 -754
Average | -77.5| -727 -90.5 -88.6 -74.5

Table 4: Enhancement of the quality of KM, PSO, PSC,

TVAC, and CPSO with PR.

Data clustering&ar)
Data KM | PSO PSC TVAC CPSQ
iris -4.9 0.1 0.8 -3.0 0.1
wine -48| -04 -01 -0.1 -0.1
breast | -0.1 0.2 -0.6 -2.0 0.2
Average | -3.3 | -0.04 0.01 -1.7 0.1
Image clusteringpsnR)
Data KM | PSO PSC TVAC CPSQ
Lena 0.1 5.0 34 2.6 -0.5
baboon | 1.4 3.2 13 -11 5.2
airplane | 0.1 0.2 -11 0.5 -0.1
pepper | -0.9 1.3 1.0 0.5 -0.9
goldhill 0.2 0.6 0.5 0.4 -0.5
boots 3.2 6.3 -5.0 -2.1 4.0
Average| 0.7 28 0.02 0.1 1.2

By (new algorithm) with respect By (original algo-

rithm) in percentage, and it is defined by

Ag

Bo— By

W

x 100%

8

Note that for3 = D, the larger the value dig, the

greater the enhancement; 8= T, the smaller the
value ofAg, the greater the enhancement. In addition,
for DS1, the quality of the clustering result is mea-
sured in terms of the accuracy rate (AR) defined by

whereA; assumes one of the two values 0 and 1, with
A = 1 representing the pattexp is assigned to the

n
AR = 214
n

1A

9)

right cluster andy; = O representing the patteris
assigned to the wrong cluster. For DS2, the quality of sult shows further that the proposed algorithm can

the end result is measured using peak-signal-to-noisenot only significantly reduce the computation time of
ratio (PSNR).
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Our simulation contains KM, PSO, PSC, TVAC,
CPSO, and MPREPSO for both the data and image
clustering problems in terms of both the running time
and the quality (measured, respectively, by AR and
PSNR). The detection operator of MPREPSO consid-
ers a pattern as static if its distance to the centroid is
no larger thary = p— o and if it stays in the same
group for two iterations. Our simulation results show
thatk-means (KM) is faster than the other PSO-based
algorithms in most cases. However, our simulation re-
sults show further that all the PSO-based algorithms
give better results than KM for most of the datasets
evaluated.

Tables 3 and 4 compare the proposed algorithm
MPREPSO with the other algorithms in terms of both
the running time and the quality. Table 3 shows that
the proposed algorithm can reduce the computation
time of these clustering algorithms from 67% up to
90% on average, especially for large datasets. For ex-
ample, as the results of Table 4 show, the proposed
algorithm can reduce more of the computation time
of PSO for DS2 than for DS1 because the data size of
DS2 is larger than that of DS1. Moreover, for some
datasets, the proposed method will degrade the qual-
ity of the end results, though by no more than 4%
on average. For the others, the proposed method can
even enhance the quality of the end result by about
0.01% up to 2.78%, especially for DS2. Our obser-
vation shows that these enhancements are due to the
fact that both sampling and multi-start are used by
the proposed algorithm to improve the quality of the
end result. A closer look at the results shows that the
proposed algorithm can reduce most of the computa-
tion time of PSO and its variants in computing fithess
and updating membership of patterns. However, since
each PSO-based algorithm may use different opera-
tors, the amount of time that MPREPSO can reduce
is different.

5 CONCLUSIONS

This paper presents a method, based on the notion of
pattern reduction, to reduce the running time of PSO-
based clustering algorithms. The simulation result
shows that many of the computations on the conver-
gence process of PSO are essentially redundant and
can be detected and eliminated. The simulation re-

PSO-based algorithms for clustering problems, it can
also provide better results than the other algorithms
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we compared in this paper. In the future, our goal is Ratnaweera, A., Halgamuge, S. K., and Watson, H. C.
to focus on finding an even more efficient detection (2004).  Self-organizing hierarchical particle swarm

and multi-start method to enhance the quality. optimizer with time-varying acceleration coefficients.
IEEE Transactions on Evolutionary Computatjon

8(3):240-255.
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