
DEVELOPMENT OF A FUZZY CALCULATOR FOR CONTINUOUS
FUNCTIONS OF NON-INTERACTIVE FUZZY VARIABLES

Karolien Scheerlinck, Hilde Vernieuwe and Bernard De Baets
Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure links 653, Ghent, Belgium

Keywords: Extension principle, Particle swarm optimization, Fuzzy calculator, Non-interactive fuzzy variables.

Abstract: The goal of this paper is to develop a Fuzzy Calculator, making it possible to calculate functions of fuzzy
intervals, as prescribed by the extension principle of Zadeh. The extension principle can be reversed, result-
ing in fixed α-levels for which the minimum and the maximum of the function has to be determined. This
optimization problem can be tackled by different algorithms: Gradient Descent, SIMPSA, Particle Swarm
Optimization and Particle Swarm optimization in combination with Gradient Descent. Two approaches are
used to determine the number ofα-levels: it is either fixed to a predetermined value, or it is initially chosen
very small and subsequently expanded according to a suitable criterion. Both a non-parallel and a parallel im-
plementation of the Fuzzy Calculator are designed. In the parallel version, communication is used to optimize
the internal workings of PSO. The Fuzzy Calculator is applied to a number of test functions. The different
combinations of optimization algorithms are evaluated, both by the final result and by the number of required
model evaluations. The results indicate that the parallel implementation of the Fuzzy Calculator starting with
a small number ofα-levels and using PSO with Gradient Descent leads to the most accurate membership
function.

1 INTRODUCTION

The concept of fuzzy information plays a central role
in many engineering applications. This type of uncer-
tainty can be captured by fuzzy intervals. Calculat-
ing with fuzzy intervals is in general a complex pro-
cess, described by the extension principle of Zadeh.
It is possible to reverse the extension principle, and
to find, for each membership degreeα ∈]0,1], the
corresponding interval of the membership function
(Nguyen, 1978).

Several practical implementations of the exten-
sion principle based on theα-level concept are avail-
able for (locally) monotone continuous functions of
non-interactive fuzzy intervals. The vertex method
is developed for computing with monotone functions
of non-interactive fuzzy intervals. This method can
be extended to non-monotone functions by doing an
extreme value analysis (Dong and Shah, 1987; Otto
et al., 1993). However, this is not always possible,
for example when dealing with complex functions.
Another approach for (locally) monotone continuous
functions is working with gradual numbers (Fortin
et al., 2008; Dubois and Prade, 2008). However, for
general functions, an optimisation algorithm is

needed to determine the minimum and maximum of
the function at each value ofα (Maskey et al., 2004;
Shrestha et al., 2007).

The objective of this paper is to develop a compu-
tationally efficient Fuzzy Calculator to construct the
membership function of a fuzzy output interval that
depends on non-interactive fuzzy intervals, through a
general continuous function. In this paper four dif-
ferent optimisation algorithms are compared to de-
termine the minimum and maximum value of the
function at the differentα-levels: (1) Gradient De-
scent based on Sequential Programming (GD) (Eaton,
2002; Nocedal and Wright, 1999), (2) the Simplex-
Simulated Annealing approach (SIMPSA) (Cardoso
et al., 1996), (3) Particle Swarm Optimisation (PSO)
(Kennedy and Eberhart, 1995) and (4) Particle Swarm
Optimisation in combination with Gradient Descent
(PSOGD). The first step is to determine the number
of α-levels. In this paper, two approaches are used.
Either we fix the number ofα-levels at the beginning
and kept constant throughout the algorithm or, alter-
natively, we start with only 3α-levels and gradually
increase this number as required by a criterion based
on linear interpolation. The next step is to implement
the Fuzzy Calculator. Both a non-parallel and a par-

14
Scheerlinck K., Vernieuwe H. and De Baets B..
DEVELOPMENT OF A FUZZY CALCULATOR FOR CONTINUOUS FUNCTIONS OF NON-INTERACTIVE FUZZY VARIABLES.
DOI: 10.5220/0003053800140020
In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation (ICFC-2010), pages
14-20
ISBN: 978-989-8425-32-4
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)



allel version are implemented. The latter application
is only important when PSO is employed, such that
several swarms simultaneously search at differentα-
levels and moreover communicate with each other as
to locate the minimum and maximum of the function
more accurately.

This paper is organised as follows. Section 2 re-
minds the reader of the extension principle applied
to construct the membership function of a continuous
function of fuzzy intervals. Section 3 describes the
different optimisation algorithms used by the Fuzzy
Calculator. In Section 4, the implementation of the
Fuzzy Calculator and the different optimisation algo-
rithms are outlined in full detail. The test functions
used to validate the Fuzzy Calculator are presented in
Section 4. Section 5 describes the results and com-
pares them in great detail. Finally, Section 6 contains
our conclusion.

2 EXTENSION PRINCIPLE

The extension principle of Zadeh provides a general
method to transfer uncertainty described by fuzzy in-
tervals through a function. Concretely, the extension
principle of Zadeh determines the membership func-
tion µZ of a fuzzy output quantityZ that depends
onn fuzzy quantitiesX1, . . . ,Xn with known member-
ship functionsµX1, . . . ,µXn through a general function
Z = f (X1, . . . ,Xn) (Zadeh, 1975):

µZ(z) = sup
z= f (x1,...,xn)

min(µX1(x1), . . . ,µXn(xn)) (1)

In the case of a continuous functionf and up-
per semi-continuous membership functions,i.e. all
α-cuts are closed:∀α ∈]0,1], [µXj ]α is closed, with
a compact supportSXj , i.e. a bounded support, we
can reverse the extension principle. Instead of deter-
mining the membership degreeα = πZ(z) of a certain
valuez= f (x1, . . . ,xn), it is then possible to determine
the interval of valuesz∈ [zα,zα] which have a mem-
bership degreeµZ(z) ≥ α (Nguyen, 1978). Thus, by
determiningzα andzα for certain values ofα, hence-
forth calledα-levels, it is possible to reconstruct the
membership functionπZ(z). As the interval atα = 0
is not closed, we choose the firstα-level at a small
valueα = δ > 0. The range of membership degrees
[δ,1] will be subdivided inm intervals of length 1/m,
with them+1 α-levelsα j = j/m, j = δ,1, . . . ,m, as
endpoints.

To simplify the search problem to determine the
membership function of the fuzzy output quantity, we

only use convex membership functionsµX(x):

∀(x1,x2) ∈ R
2,∀α ∈]0,1] :

µX(αx1+(1−α)x2)≥ min(µX(x1),µX(x2))
(2)

Fuzzy quantities whose membership functions
satisfy the above described conditions of upper-semi
continuity and convexity and have a compact support
are henceforth called fuzzy intervals.

For functions without internal minima or maxima
for a certainα-level, the minimumzα and maximum
zα will be found on the boundary of the corresponding
α-cut of the input fuzzy intervals. For general func-
tions, however, the minimumzα and maximumzα can
either be located on the boundary or in the interior of
the correspondingα-cut of the input fuzzy intervals,
and optimisation algorithms will be necessary to try
to locate these points efficiently (Maskey et al., 2004;
Shrestha et al., 2007).

3 OPTIMISATION ALGORITHMS

As outlined in Section 2, the construction of the mem-
bership function of the fuzzy output interval of a gen-
eral function of non-interactive fuzzy input intervals
can be converted into a number of optimisation prob-
lems. Four different optimisation algorithms are ap-
plied to this problem: Gradient Descent based on
Sequential Quadratic Programming (GD), Simplex-
Simulated Annealing (SIMPSA), Particle Swarm Op-
timisation (PSO), and Particle Swarm Optimisation
based on Gradient Descent (PSOGD).

3.1 Gradient Descent based on
Sequential Quadratic Programming

Gradient Descent based on Sequential Quadratic Pro-
gramming (Eaton, 2002; Nocedal and Wright, 1999),
a local optimisation algorithm, is an extension of the
Quasi Newton method in order to handle constraints.
Lagrange multipliers are used to incorporate (non-
linear and linear) equality constraints. In addition, in-
equality constraints are allowed. At the starting point,
the objective function is approximated by a quadratic
function, obtained through a Taylor expansion. The
algorithm exactly determines the minimum or max-
imum of that quadratic function, which is the new
starting point and the procedure is repeated until a
convergence criterion is fulfilled. A possible conver-
gence criterion is that the gradient is approximately
zero, which is the mathematical condition for a local
extremum (Eaton, 2002; Nocedal and Wright, 1999).

DEVELOPMENT OF A FUZZY CALCULATOR FOR CONTINUOUS FUNCTIONS OF NON-INTERACTIVE FUZZY
VARIABLES

15



3.2 Simplex-simulated Annealing

The Simplex-Simulated Annealing (SIMPSA) algo-
rithm (Cardoso et al., 1996) is an optimisation al-
gorithm based on a combination of the non-linear
Simplex algorithm (Nelder and Mead, 1965) and the
Simulated Annealing algorithm (Kirkpatrick et al.,
1983). The non-linear Simplex algorithm starts with
a randomly chosen starting point~x= (x1, . . . ,xn), for
which a simplex,i.e. a polytope determined byn+1
n-dimensional vertices, is created. In a next step, the
function values at the vertices of the simplex are com-
pared. The objective is to move away from the worst
point. However, in order to be able to find global op-
tima, wrong-way movements must sometimes be al-
lowed. This is regulated by combining the non-linear
simplex algorithm with the Simulated Annealing al-
gorithm. Simulated Annealing is a global optimisa-
tion algorithm based on the physical thermal process
of annealing (Kirkpatrick et al., 1983). New config-
urations are accepted by the Simulated Annealing al-
gorithm with a certain probabilityp, depending on the
fitness of the solution and the current system temper-
ature. In combination with the non-linear simplex al-
gorithm, the possible configurations are represented
by the vertices of the simplex. As for all heuris-
tic optimisation algorithms, the performance of the
SIMPSA algorithm largely depends on the choice of
the parameter values inherent to the algorithm (Car-
doso et al., 1996).

3.3 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) (Kennedy and
Eberhart, 1995), a population-based global optimisa-
tion algorithm, starts with the initialisation of a pop-
ulation ofN particles, numberedi = 1, . . . ,N, having
randomly chosen position vectors~xi and velocity vec-
tors~vi . The position of each particle corresponds to
a candidate solution of the optimisation problem. In
each iteration, the particle’s position vector is trans-
ported over its velocity. The velocity vector is redi-
rected toward the particle’s personal best position and
local best position. The contributions of the particle’s
personal and local best position are weighted through
the stochastic variablesc1r1 andc2r2. The positive
constantsc1 andc2 are the cognitive and social pa-
rameters, the factorsr1 and r2 are random numbers
between 0 and 1, and are regenerated in each iteration
step. When a particle is positioned outside the search
space, it is repositioned on the boundary it crossed
and its velocity in that direction is set to zero. An in-
ertia weightw is used to decelerate the particle’s ve-
locity if a suitable solution is found. As with the other

0

1

Figure 1: Linear interpolation ofα2 throughα1 andα3.

optimisation algorithms, the performance of the algo-
rithm largely depends on the choice of the parameter
values.

4 METHODOLOGY

4.1 Subdivision in α-levels

The construction of the membership function of the
output variable of a continuous function of non-
interactive fuzzy variables described by fuzzy inter-
vals can be handled through the application of the ex-
tension principle and the subdivision inα-levels. The
number ofα-levels that have to be determined is im-
portant, as for a finite number ofm+1 α-levels, only
an approximation for the true membership function
µZ(z) will be obtained. Increasing the number ofα-
levels will improve the approximation.

To determine the number ofα-levels, two ap-
proaches are followed. Firstly, the number ofα-levels
is set to a fixed numberm+1, determined at the be-
ginning of the algorithm. The correspondingα-levels
are equidistantly distributed at valuesα j = j/m for
j = δ, . . . ,m. Secondly, we start withm+1 = 3 and
gradually increase the number ofα-levels according
to a criterion based on linear interpolation. More
specifically, we compareα with a valueα̃ that is cal-
culated by linear interpolation. We choose to compare
α with its linear interpolatioñα based onzα, instead
of the other way around, sinceα is always in the in-
terval ]0,1] and it is thus possible to work with an
absolute tolerance levelε independent of the problem
at hand. This is illustrated in Figure 1.

Since the membership functionµZ(z) should be
upper semi-continuous and convex, it is impossible
that zα j−1

> zα j
or thatzα j−1 < zα j . Therefore, it is

not possible to determine the differentα-levels inde-
pendently and we have to correct the endpoints of the
α-levels when this situations occurs. There are two
ways to correct for these inconsistencies. If for ex-
amplezα j+1 > zα j , zα j can be reset tozα j+1. Another
possibility is to discard the old result atα-levelα j and

ICFC 2010 - International Conference on Fuzzy Computation

16



recalculatezα j . If the optimisation algorithm accepts
a starting point, then providing the locationxα j+1 will
ensure that the inconsistency is solved.

4.2 Non-parallel versus Parallel
Implementation

The Fuzzy Calculator is implemented in the program-
ming environment Octave (Eaton, 2002) and accepts
a generaln-ary function as input. Both a non-parallel,
and a parallel version were designed using the Mes-
sage Passing Interface (MPI) of Octave.

Non-parallel. As mentioned above, in theα-level
approach the number ofα-levels is fixed tom+ 1.
The non-parallel version of the algorithm then starts
with searching the optima (the minimum and maxi-
mum) of the functionf at the levelαm = 1. As this
is the smallest interval, chances are higher to find the
correct optimazαm

andzαm. The algorithm then con-
tinues with the determination of the optima for the
otherα-levels, for decreasing values ofα. When al-
lowed by the optimisation algorithm, the optima of
the function at the previousα-level can be provided
as starting point. With this approach, the inconsis-
tency mentioned in the last paragraph of Section 4.1
cannot occur.

Parallel. The parallel version of the implementation
is based on a master-slave configuration. For the fixed
number ofm+1 α-levels, we used 2m+3 processes:
one master and 2(m+1) slaves for the determination
of the left (right) sideszα j

(zα j ), for j = δ, . . . ,m. The
master sends the input intervals belonging to them+1
α-levels to the slaves and the slaves optimise the func-
tion for these intervals and send these optima back to
the master. When the master receives the optima for
all α-levels, these values are corrected for inconsis-
tencies if needed. In this part, the first correction ap-
proach is applied.

In the secondα-level approach, we start from
m+ 1 = 3 α-levels and expand this number through
linear interpolation when necessary. This algorithm
starts with searching the optima of the function at
the α-levels 1, 0.5 andδ. The obtained values are
compared and corrected if inconsistencies should oc-
cur. Next, a linear interpolation is applied to examine
whether an even finer sampling (additionalα-levels)
is required. Each time the master receives new re-
sults, it checks for possible inconsistencies and sub-
sequently examines whether it has to request the cal-
culation of additionalα-levels. The algorithm stops

when the convergence criterion of the linear interpo-
lation is fulfilled for all α-levels.

4.3 Optimisation Algorithms

Gradient Descent based on Sequential Quadratic Pro-
gramming (GD) is a standard function of Octave,
namelysqp (Eaton, 2002). This function has no extra
parameters that have to be determined and can thus be
applied directly to our optimisation problem.

The implementation of the Simplex-Simulated
Annealing (SIMPSA) algorithm was taken from
(Donckels, 2009; Donckels et al., 2009) with the au-
thor’s permission. As mentioned in Section 3.2, the
maximal number of iterations, the cooling ratio, the
freezing temperature and the tolerance of the conver-
gence criterion have to be determined. After some test
simulations we decided to set the maximal number of
iterations for each simulated annealing cycle to 2500,
the cooling ratio to 0.7 and the freezing temperature
to 1. The tolerance level for convergence was set to
10−6.

The implementation of Particle Swarm Optimi-
sation (PSO) was taken from previous work of the
present authors (Scheerlinck et al., 2009) and appro-
priately modified. This algorithm requires the deter-
mination of a number of parameters inherent to the
algorithm. After some test simulations, we decided to
work with fixed parameter valuesc1 = 1,c2 = 1.5 and
w = 0.7, while different population sizes ofN = 10,
N = 15 andN = 20 were used. The convergence cri-
terion used requires that half of the population has
the same position (with tolerance level 10−6). Ex-
plicitly, the algorithm stops if the mean distance be-
tween the particles of the best half of the population
is smaller than 10−6. The parallel Fuzzy Calcula-
tor using PSO can be interpreted as several swarms
that search on differentα-levels at the same time and
are thus able to communicate about candidate solu-
tions. We have modified the PSO algorithm such that
each swarm broadcasts its current global best position
to the other running PSO processes. When a swarm
receives a global best position located in its search
space and which is better than its own global best po-
sition, the swarm will change its global best position.
When communication occurs, the remaining particles
are reinitialised. This is necessary to prevent slow
convergence, for example when the current swarm is
already close to converging to a local optimum (far)
away from the newly obtained optimum. In this way,
a new parameter is introduced, namely the frequency
of communication. We varied this parameter by run-
ning instances in which the swarms communicate at
every 2, 5 or 10 iterations.

DEVELOPMENT OF A FUZZY CALCULATOR FOR CONTINUOUS FUNCTIONS OF NON-INTERACTIVE FUZZY
VARIABLES

17



As it is not certain that PSO will converge to a lo-
cal/global optimum (Engelbrecht, 2006), it may be
recommended to combine PSO with a local optimi-
sation algorithm such as GD. We performed GD at
several positions in the algorithm, in order to have a
final best solution which is assured to be a local op-
timum. First, we performed GD on the initial parti-
cles. As after this, all the particles will be positioned
in a local optimum, we only kept the particle with the
best position in the population. The other particles of
the population are repositioned at their original posi-
tion received during the initialisation of the algorithm.
Then, we performed GD each time the swarm changes
its global best position through communication. Af-
ter convergence takes place, we perform GD on the
global best position of the swarm one last time.

4.4 Test Functions

In order to compare the different optimisation algo-
rithms, we made use of 9 different test functions, such
as the cosine function in one dimension, an arbitrary
function in 2 dimensions with multiple minima and
maxima, the alpine function in 2 dimensions for dif-
ferent intervals and the alpine function in 3, 4 and 5
dimensions.

The membership functions of the non-interactive
fuzzy input intervals are chosen to be normal,i.e.
∃x ∈ R such thatµX(x) = 1, and have a trapezoidal
shape. The interval[xi,δ,xi,δ] at α = δ, corresponds
to the intervals of the test functions. Atα = 1, this
interval is reduced to[xi,1,xi,1] with

xi,1 =
xi,δ + xi,δ

2
−

1
10

(

xi,δ − xi,δ
)

,

xi,1 =
xi,δ + xi,δ

2
+

1
10

(

xi,δ − xi,δ
)

.

In general, our implementation can deal with any
upper semi-continuous membership functions. When
the fuzzy intervalsXj are interactive,i.e. a joint mem-
bership function can be specified, however, using the
Fuzzy Calculator for such type of membership func-
tion will be harder, as the search region at eachα-level
is no longer hyper-rectangular.

5 RESULTS

The membership functions of the fuzzy output in-
tervals of the test functions are constructed with the
Fuzzy Calculator using the optimisation algorithms
discussed above. As for eachα-level, the error on the
determination ofzα andzα will depend on the opti-
misation algorithm, the lowest minimum and highest

maximum found by any of the optimisation algorithm
can be used as reference. We can thus use the area un-
der the membership function as a global quality mea-
sure. The Fuzzy Calculators are also compared on
the level of number of function evaluations. To allow
for a statistical comparison between the Fuzzy Calcu-
lators using different optimisation algorithms or be-
tween the non-parallel and parallel implementation,
each algorithm is repeated 50 times. To compare the
different Fuzzy Calculators, a mixed ANOVA model
with the test functions as random effect and a Satterth-
waite correction for unequal variances is used (Neter
et al., 2004).

5.1 Fixed Number of α-levels

In this section, the number ofα-levels is fixed at a
value ofm+1= 11.

5.1.1 Non-parallel Implementation

This paragraph examines the capability of GD,
SIMPSA, PSO with a population of 10, 15 and 20 par-
ticles and PSOGD with a population of 10, 15 and 20
particles to construct the membership functions of the
fuzzy output intervals of the 9 test functions. Firstly, a
mixed ANOVA model with the different test functions
as random effect is applied on the data of the area un-
der the membership function composed by the Fuzzy
Calculator using these optimisation algorithms. This
test indicates that the application of the Fuzzy Calcu-
lator using the algorithms PSOGD with a population
size of 15 and 20 particles and SIMPSA are signif-
icantly better in constructing the membership func-
tions than the Fuzzy Calculator using the other opti-
misation algorithms.

The number of function evaluations needed to
construct the membership function is a measure for
the computational cost. The number of function eval-
uations of the Fuzzy Calculator using PSOGD with
a population size of 15 particles (28551) and 20 parti-
cles (37662) and SIMPSA (72390) are significantly
different. As the Fuzzy Calculator using SIMPSA
needs a very high mean number of function evalua-
tions, we can conclude that this algorithm is computa-
tionally inefficient. Therefore, the SIMPSA algorithm
will not be used in the parallel Fuzzy Calculator.

5.1.2 Parallel Implementation

For the parallel Fuzzy Calculator, we restrict to the
optimisation algorithms PSO and PSOGD.

Again, a mixed ANOVA model with the test func-
tions as random effect is performed. Since the factors
population and communication are available in our

ICFC 2010 - International Conference on Fuzzy Computation

18



two optimisation algorithms, we can put them in this
model as nested factors. This leads to a more correct
estimate of thep-values in our model. The results of
the mixed ANOVA model indicate that in all possible
combinations of population size and communication
strategy, PSOGD is significantly better than PSO.
Furthermore, communication at every 5 iterations and
a population size of 20 particles is significantly better
than the other parameter combinations. This leads to
the conclusion that for the parallel Fuzzy Calculator
using PSOGD with a population size of 20 particles
and communication at every 5 iterations is the best
algorithm to construct the membership functions of
the test functions. For the number of function evalu-
ations, more frequent communication or a larger pop-
ulation size needs significantly more function evalua-
tions.

The last step is the comparison of the parallel
results with the non-parallel results. We compared
the results of the non-parallel Fuzzy Calculator using
PSOGD with a population size of 15 and 20 particles
and the parallel Fuzzy Calculator using PSOGD with
a population size of 20 particles and communication
at every 5 iterations. The mean area obtained with the
parallel Fuzzy Calculator using PSOGD with a pop-
ulation size of 20 particles is significantly higher than
the mean areas obtained with the non-parallel Fuzzy
Calculator using PSOGD with a population size of
15 and 20 particles, which leads to the conclusion
that our parallel implementation gives the best results.
However, the number of function evaluations of the
parallel Fuzzy Calculator using PSOGD with com-
munication at every 5 iterations is significantly higher
than the non-parallel Fuzzy Calculator using PSOGD
with a population size of 15 and 20 particles.

5.2 Starting from 3 α-levels

A disadvantage of working with a fixed number of
α-levels is that this number has to be determined in
advance. Consequently, it is possible that too many
α-levels are used to determine the membership func-
tion of the fuzzy output interval of a simple func-
tion whereas too fewα-levels are used for more dif-
ficult functions. A solution to this problem is starting
with 3 α-levels and expanding this number through
linear interpolation when necessary. For this linear
interpolation, a convergence criterion has to be de-
termined. As convergence criterion, we decided to
set a tolerance of 0.01 betweenα and the guess of̃α
calculated through linear interpolation. With the use
of the mixed ANOVA model with the different test
functions as random effect, we compared the parallel
Fuzzy Calculator starting with 3α-levels with the pa-

rallel Fuzzy Calculator using the fixed number of 11
α-levels. The difference between the mean area un-
der the membership function for the Fuzzy Calculator
starting with 3α-levels and the Fuzzy Calculator us-
ing 11α-levels is significant, which leads to the con-
clusion that the Fuzzy Calculator starting with 3α-
levels and expanding this number through linear inter-
polation gives a more accurate membership function
than the Fuzzy Calculator using 11α-levels.

The number of function evaluations is signifi-
cantly higher for the Fuzzy Calculator starting with
3 α-levels (145074 versus 45119). An explanation is
that much moreα-levels are optimised when starting
with 3 α-levels and expanding this number through
linear interpolation (Table 1).

Table 1: Mean number ofα-levels needed to construct the
left (# αmin levels) and right (#αmax levels) side of the mem-
bership function of the fuzzy output interval for the different
test functions with the Fuzzy Calculator starting with 3-α-
levels.

Test function # αmin levels #αmax levels
1 21 3
2 6.2 37.6
3 33.6 40.72
4 31.16 19.88
5 21.12 43.56
6 40.28 46.24
7 44.32 62.6
8 45.8 64.16
9 49.64 72.4

As mentioned in Section 4.2, there are two ways
to correct for inconsistencies between theα-levels.
In the previous results, the optima of allα-levels are
compared and replaced by the optima of a higherα-
level if necessary. The other approach is to recalcu-
late the optima of the inconsistentα-levels with as
starting point the location of the optima of the above
lying α-level. We used this last approach in combi-
nation with the Fuzzy calculator starting from 3α-
levels and expanding this number through linear inter-
polation when necessary. We compared these results
to those of the Fuzzy Calculator starting with 3α-
levels, using the first approach to correct for inconsis-
tencies between theα-levels. The difference between
the mean area under the possibility distribution, ob-
tained with the two approaches, is very small and not
significant (p-value> 0.05).

The difference between the number of function
evaluations, however, is significant (p-value< 0.05).
The second approach for dealing with inconsistent
α-levels needs significantly less function evaluations
(102101 versus 145074). This is caused by the fact

DEVELOPMENT OF A FUZZY CALCULATOR FOR CONTINUOUS FUNCTIONS OF NON-INTERACTIVE FUZZY
VARIABLES

19



that in general lessα-levels are needed when using
the second approach for dealing with inconsistencies
betweenα-levels (Table 2).

Table 2: Mean number ofα-levels needed to constructing
the left (#αmin levels) and right (#αmax levels) side of the
membership function of the fuzzy output interval for the
different test functions with the Fuzzy Calculator starting
with an expanding number ofα-levels with recalculating
incorrectly found optima.

Test function # αmin levels #αmax levels
1 21 3
2 4.9 34.76
3 26.26 38.38
4 19.54 19.22
5 10.24 45.56
6 51.92 54.78
7 25.58 42.82
8 23.4 43.36
9 22.28 46.64

6 CONCLUSIONS

The results indicate that the parallel Fuzzy Calcula-
tor is the best way to construct the membership func-
tion of the fuzzy output interval of a continuous func-
tion of non-interactive fuzzy intervals. The best ap-
proach is an expanding number ofα-levels, with Par-
ticle Swarm Optimisation in combination with Gradi-
ent Descent as optimisation algorithm, using a popu-
lation size of 20 particles and communication at ev-
ery 5 iterations, and by recalculating inconsistentα-
levels. The number of function evaluations, however,
can be quite high, depending on the number ofα-
levels that will be constructed. This can be regulated
by the tolerance level in the criterion that determines
the insertion of additionalα-levels. In addition, as the
implementation is parallel and several processors can
be used, an elevated number of function evaluations
will not pose a major problem for most applications if
a high performance facility is available.

ACKNOWLEDGEMENTS

This work was supported by the Special Research
Fund of Ghent University and the Belgian Science
Policy (STEREO-project SR/00/100).

REFERENCES

Cardoso, M., Salcedo, R., and de Azevedo, S. F. (1996).
The simplex-simulated annealing approach to contin-
uous non-linear optimization.Computers and Chemi-
cal Engineering, 20:1065–1080.

Donckels, B. (2009).Optimal experimental design to dis-
criminate among rival dynamic mathematical models.
PhD thesis, Ghent University.

Donckels, B., De Pauw, D., Vanrolleghem, P., and De Baets,
B. (2009). A kernel-based method to determine opti-
mal sampling times for the simultaneous estimation
of the parameters of the rival mathematical models.
Journal of Computational Chemistry, 30:2064–2077.

Dong, W. and Shah, H. (1987). Vertex method for com-
puting functions of fuzzy variables.Fuzzy Sets and
Systems, 24:65–78.

Dubois, D. and Prade, H. (2008). Gradual elements in a
fuzzy set.Soft Computing, 12:165–175.

Eaton, J. W. (2002).GNU Octave Manual. Network Theory
Limited.

Engelbrecht, A. (2006).Fundamentals of Computational
Swarm Intelligence. John Wiley & Sons Ltd.

Fortin, J., Dubois, D., and Fargier, H. (2008). Gradual num-
bers and their application to fuzzy interval analysis.
IEEE Transactions on Fuzzy Systems, 16:388–402.

Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. InIEEE International Conference on Artifi-
cial Neural Networks, pages 1942–1948, Piscataway,
NJ.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Opti-
mization by Simulated Annealing.Science, 220:671–
680.

Maskey, S., Guinot, V., and Price, R. (2004). Treatment of
precipitation uncertainty in rainfall-runoff modelling:
a fuzzy set approach.Advances in Water Resources,
27:889–898.

Nelder, J. and Mead, R. (1965). A simplex method for func-
tion minimization.Computer Journal, 7:308–313.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasser-
man, W. (2004). Applied Linear Statistical Models.
McGraw-Hill/Irwin.

Nguyen, H. (1978). A note on the extension principle for
fuzzy sets.Mathematical Analysis and Applications,
64:369–380.

Nocedal, J. and Wright, S. (1999).Numerical Optimization.
Springer Verlag.

Otto, K., Lewis, A., and Antonsson, E. (1993). Approxi-
matingα-cuts with the vertex method.Fuzzy Sets and
Systems, 55:43–50.

Scheerlinck, K., Pauwels, V., Vernieuwe, H., and De Baets,
B. (2009). Calibration of a water and energy balance
model: Recursive parameter estimation versus particle
swarm optimization.Water Resources Research, 45,
W10422.

Shrestha, R. R., Brdosst, A., and Nestmann, F. (2007).
Analysis and propagation of uncertainties due to the
stage-discharge relationship: a fuzzy set approach.
Hydrological Sciences, 52:595–610.

Zadeh, L. (1975). The concept of a linguistic variable and
its application to approximate reasoning.Information
Sciences, 8:199–249.

ICFC 2010 - International Conference on Fuzzy Computation

20


