From i* Models to Service Oriented Architecture
Models

Carlos Becerra?, Xavier Franch and Hernan Astudill®d

! Universitat Politécnica de Catalunya (UPC), C. Jordi Girona, 1-3 (Campus Nord, C6)
E-08034 Barcelona, Spain

2 Universidad Técnica Federico Santa Maria, Avda. Espafa 1680, Valparaiso, Chile

3 Universidad de Valparaiso, Avda. Gran Bretafia 1091, Valparaiso, Chile

Abstract. Requirements engineering and architectural design are key activities
for successful development of software systems. Specifically in the service-oriented
development systems there is a gap between the requirements description and
architecture design and assessment. This article presents a systematic process
for systematically deriving service-oriented architecture from goal-oriented mod-
els. This process allows generate candidate architectures based on i* models and
helps architects to select a solution using services oriented patterns for both ser-
vices and components levels. The process is exemplified by applying it in a syn-
thesis metadata and assembly learning objects system.

1 Introduction

Service-oriented architecture (SOA) is a flexible set of design principles used during the
phases of systems development and integration [5]. A deployed service or architecture
provides a loosely-integrated suite of services that can be used within multiple business
domains. SOA defines how to integrate widely disparate applications for a world that is
Web-based and uses multiple implementation platforms. Rather than defining an API,
SOA defines the interface in terms of protocols and functionality.

One of the main problems facing architects of service-oriented systems is the gap
between requirements description and architecture design and assessment.

This article presents a systematic process for deriving and evaluating service-oriented
architectures from goal-oriented models. This process generates candidate architectures
from i* [20] models and helps architects to select a solution, with the SOA patterns
using. The i* models are used because: facilitates reasoning about the purpose of a
proposed solution; i* models can be analyzed to demonstrate which goals realize other
goals and which goals conflict or negatively contribute to other goals; demonstrates the
contribution of the proposed and designed solution to the actual need [22].

The article is structured as follows: Section 2 presents related work; Section 2.2
describes the service oriented approach based on i*; Section 3 describes the service ori-
ented architecture representation; Section 4 presents the Learning Objects (LOs) case
study; Section 5 describes the service-oriented architecture generation process; and Sec-
tion 6 summarizes and concludes.

Becerra C., Franch X. and Astudillo H. (2010).

From i* Models to Service Oriented Architecture Models.

In Proceedings of the 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 102-113
DOI: 10.5220/0003051101020113

Copyright © SciTePress

53

2 Related Work

2.1 Requirements to Architectural Design

Several authors have proposed systematic approachesiio ahtarchitectural design
from requirements description. Liu and Yu [9] proposed tplere the combined use of
goal-oriented and scenario-based models during archiatesign; the Goal-oriented
Requirement Language (GRL) supports goal and agent-edanbdeling and reason-
ing, and the architectural design process; and Use Case(&p4) are used to express
the architectural design. The combined use of GRL and UCNSlesahe description of
both functional and non-functional requirements, bothralos requirements and con-
crete system architectural models, both intentionalegiatdesign rationales and non-
intentional details of temporal features.

Chung et al. [10] proposed the NFR Framework, which uses Narctional Re-
quirements (NFRs) as goals to systematically guide seleeiong architectural de-
sign alternatives; during the architectural design preogsals are decomposed, design
alternatives are analyzed with respect to their traded#sign decisions are made ra-
tionalized, and goal achievement is evaluated.

Brandozzi and Perry [11] proposed the use of Preskriptoreagpiptive architec-
tural specification language, and of its associated protes$reskriptor process. Ar-
chitectural prescriptions consist of the specificatiorhefsystem’s basic topology, con-
straints associated with it, and its components and intieresc The Preskriptor process
provides a systematic way to satisfy both the functional aod-functional require-
ments from the problem domain, as well as to integrate archital structures from
well known solution domains.

Van Lamsweerde [12] presented a systematic incrementedapipto deriving soft-
ware architecture from system goals; it is grounded on th©@RBAgoal-oriented method
for requirements engineering, with the intent of exploting virtues of goal orientation
for constructive guidance of software architects in thesign task. It mixes qualitative
and formal reasoning towards building software architexsthat meet both functional
and non-functional requirements.

Lucena et al. [13] presented an approach based on modefdnanations to gen-
erate architectural models from requirements models. dhece and target languages
are respectively the i* modeling language and Acme architatdescription language
[21]. Gross and Yu [14] proposed a systematic treatment dR®\NiR descriptions of
patterns and when applying patterns during design. Theoapprorganizes, analyzes
and refines non-functional requirements, and providesagaiel and reasoning support
when applying patterns during the design of a software Byste

Grau and Franch [2] explored the suitability of the i* goaleated approach for
representing software architectures. For doing so, theypeoed i*'s representation
concepts against those representable in common ArchieeBtescription Languages
and defined some criteria to close the gap among these refadgas. They clarified
the use of the i* constructs for modeling components and ectuons: actors and de-
pendencies provide an architecture-oriented semantibglpthe process; added the
notions of role, position and agent models in order to helpdability of the architec-
tural representation; proposed adding of attributes toracdnd model dependencies

54

to store information for later analysis; and suggested geaf structural metrics to
analyze the properties of the final system.

All of these approaches offer systematic processes toalegyuirements from ar-
chitectural designs, but are not appropriate for servidentation, because they do not
provide guidelines to describe basic structures or intedetween services. Several
SOA specific characteristics demand a special approach oraguirements to ar-
chitectural design alternatives, namely: 1)reuse, geaityl modularity, composabil-
ity, componentization and interoperability; 2) standacdsmpliance (both common and
industry-specific); 3) Services identification and catégdion, provisioning and de-
livery, and monitoring and tracking. To our knowledge, oRlstrada [1] has done so,
proposing to address the enterprise modeling activityguginEstrada’s [1] approach
is based on using business services as building blocks @apsulating organizational
behaviors, and proposes a specific business modeling mattamtordance with the
concept of business service. The use of services as buitdiegs enables the analyst
to represent new business functionalities by composingatsaxf existing services. He
proposed starting activity elicitation, the actual imptartations of the services offered
and requested by the analyzed enterprise, are used asdpkiy & very relevant role
in the discover process, and for a formal definition of theidasncepts and process
design SOAs. Unfortunately, this proposal only went so fabasiness services, and
said nothing about architectural components and conrector

2.2 Estrada’s Approach Service-orientation from i*

Estrada [1] aimed to define service-oriented architectinssaddress the complexity of
large i* models in real-life cases. The proposed architeatlistinguishes three abstrac-
tions levels (services, process and protocols) and a mekbgidal approach to align
the business models produced at these abstraction levels.

The approach includes : a) a conceptual modeling languagegdon i*, which de-
fines the modeling concepts and their corresponding relstiips; b) a service-oriented
architecture specific for the i* models that define the serem@mmponents and the model-
ing diagrams. c) a business modeling method to represarntsgemt the organizational
level.

The key idea of the approach is to used business servicesldmgiblocks that
encapsulate internal and social behaviors. Complementaels allow to reify the
abstract concept of service to low level descriptions ahifglementation.

The business service architecture is descrited by thre@leonentary models (see
Figure 1) that offer a view of what an enterprises offers $oeitvironment and what
enterprise obtains in return:

— Global Model. The organizational modeling process starts with the dedmitf a
high-level view of the services offered and used by the gnigs. The global model
permits the representation of the business services arattbethat plays the role
of requester and provider. In this model are defined basicanmpound services.

— Process ModelOnce business services have been elicited, they must bendeco
posed into a set of concrete processes that perform themisTtone with a pro-
cess model that represents the functional abstractiorsediusiness process for a

55

specific service; this model provides the mechanisms requé describe the flow
of multiple processes.

— Protocol Model. Finally, the semantics of the protocols and transactionsach
business process is represented in an isolated diagramthsiiit conceptual con-
structs. This model provides a description of a set of stinect and associated
activities that produce a specific result or product for dress service.

N A A -
&) , — /’ (A .
|Enterprise | .| Enterprise | Customer | =)
\) . /" (Goal \ /] L A ceap
/ Semice 4 N b - g P

y

ask -
18K

y
/,/ Process| |, z y N A i

(Goal) [\ ﬁji A Task | “Task

=y ‘ \ Process| pef Service { Goal } +\/Cust0me \‘ » asky | KTas
\ T] .

r
4

i
J{ \ . <(Task»
y N \ Process / "\m/ R P
/ \ \ 4 - / N
| Customer | - _ N (s)
.) —_ 4 s _{Enterprise |
4) Service I L 4

- i

Global Model(A) Process Model(B) Protocol Model(C)

Fig. 1. A Service Oriented Approach for the i*.

The proposed approach enables the analyst to reuse theidefifi protocols by
isolating the description of the processes in separateatiag In this way, the process
model represents a view of the processes needed to satisfyiaesbut without giv-
ing details of its implementation. Each business procedstigiled through a business
protocol. The detailed description of the protocols is giirethe protocol model.

3 Representing Service-oriented Software Architectures

Mapping requirements to architectural design demandsdlized architecture model
as target, must include the notions of services, comporamtsnterfaces at different
abstractions levels.

The i*-SOA Process is based on previous work by Grau and Rrgfj¢hat defined
several intentional component abstraction levels, fohlsetvices and components:

— Service:a set of related software functionality and the policied ttamtrol their
usage. A service is accessible over standard communiqaiitacols independent
of platforms and programming languages.

— Service Capabilities:the operations set defined for each service [5] independentl
of their implementation. Therefore, this notion is espigiaseful during service
modeling stages when the physical design of a service hasehbeen determined

— Service Componentsrepresents a specific component that can be integrated into
the service, to implement a capability.

Connectors are described according to their abstractign; Ithe following types
are proposed:

— Intentional Relationships:involve human or organizational actors and are present
in the requirements models; they represent the intentioeadls of the actors upon
the system:

e Goal Dependencies: functional requirement over the system.

56

e Resource Dependencies: flow of concepts, or a concept relevant to the domain
that does not physically exist.

— Architectural Relationships: occur among service components or services, as fol-
lows:

e Service Interfaces. describe relationships among services. The dependencies
definition encapsulates (hides) the deployment propentieking it vendor-
programming-language and technology-independent. &eintierfaces are de-
scribed with Web Services Description Language (WSDL) [7].

e Service Component | nterfaces: describe components relationship within a ser-
vice. they are described with the notation proposed by Han [8

Since a pattern services concept is required to apply thdifiarent abstraction
levels, Erl's [5] set of patterns is used:

— Services Design Patterndunctional service contexts are defined and used to orga-
nize available service logic. Within technology-indepenitontexts, service logic
is further partitioned into individual capabilities.

— Composition Design Patterns;provide the means to assemble and compose to-
gether the service logic that is successfully decomposatifipned, and stream-
lined via the service definition patterns.

Based on these definitions, the i*-SOA Process models thetecture at two dif-
ferent levels:

— Service Pattern View:In this model we apply service-oriented design patterns to
describe the system architecture. There are two model mwsy

e Service Design Pattern View:Shows the structure of components and con-
nectors for each service, based on services design pafeegasedundant im-
plementation, service data replication, message scrgestic).

e Composition Design Pattern View:Shows the structure and the dependencies
of services that form the system under development (e.giceemessaging,
service agent, asynchronous querying, etc.).

— Services Component ViewStates the different components that exist in the ser-
vice architecture (i.e. specific software component thatlmaintegrated into the
service architecture and fulfill with de capabilities). $imodel represents the de-
pendencies among components within a service.

4 Introducing the Case Study

The approach reusable learning content, by combining lieg@bjects (LOs) [6] has
emerged in educational technology and computer scieneanmgs The approach asso-
ciated with the LOs delivery rigor to the educational matisrdevelopment, making the
content cheaper to obtain and easy to reuse. LO are edugatgsources designed to
generate and support learning experiences. One of the roiiitias to be developed
in this area is to prepare courses, programs and activiiesdon these LO. According
to this idea LO can be used by different instructors and eastitictor can be reused in
different learning materials.

57

The i*-SOA Process approach has been tried and evaluatbdi¢arning Object
(LO) management system. The original motivation to the saisdy is the community
need for services to improve existing LO descriptions [B§ @nd generate LO assem-
blies automatically. Currently, teachers and trainerehalarge amount of resources
(digital or not) to prepare educational materials, updaggrtcontent and develop ed-
ucational activities. The evolution of content distrilmtimodels from a centralized
topology toward a decentralized and distributed one, fhtl@ scheme in which dig-
ital resources are widely and freely available. This weaklkther than an asset, can be
disadvantageous, since it adds a complexity level for usben discriminating good
quality and relevant resources for specific applications.

Using LO requires collecting related information, enapléearch, index and reuse.
The main problem is associated with the information that finds about a LO, which
is often imperfect (imprecise, incomplete and unrelialdigzice many LO are not clearly
classified for specific domains, search results are too geard with many possible
answers list, which is not practical for users.

Thus, there are two problems to solve and whose solutionsetistegrated:

— Automatically generate LO assemblies (e.g. presentgtmmsgses, classes) from
simple resources, via aggregation or composition and deriag imperfect infor-
mation.

— Improving LO Descriptions, gathering and synthesizingadeata from different
sources.

This LO management system will be developed based on a sewviented archi-
tecture, making available as web services the algorithatsthlve the problems of LOs
generation and assembly.

5 Goal Oriented Models to Service-oriented Architectural Design
Process

The i*-SOA Process extends the approach by Estrada [1]itbeskin Section 2.2. The
main objective is to derive architecture at implementatémel using additional model
called Deployment Model. The i*-SOA Process original stagee also improved to
give more semantic to dependencies intra- and inter- bssiservices and processes.
The i*-SOA Process generates alternative architectusgsiieet user requirements.

The method has been structured into four main activitiesrtrey iterate or inter-
twine as needed (see Figure 2). Section 5.1 explain thenattee SOA architectures
generation process using i*-based models.

5.1 Defining the Global Model

Two complementary views of the service global model havelgemerated at this first
phase (A).

— Abstract view of the global model: focused on representisgngle view of the
offered business services (see [1]).

58

// \ L /'/"\\\ /’""\\ -
\\Emerprise/’} (G o) (Cus(omer\‘ Goal)
A — //—ﬁ\

/ Service / /
4 Process ‘
(L) | | m} Serwce /< Goal >—<~\ Custcmer ‘ =
A N
y N Goal
(Customer\ l/E \
\\) @ nterprise
= -
Global Model(A) Process Model(B) Protocol ModeI(C) —
Customer 4 / Customer 4
Sevice Sevice
i S— o
P v ,;7:,,, — \\\
Ny N
%ﬁ’—{f / Fsm £llsc2| \
S [N \
pg s = N
J / . A
/ Service

7777777777777777777777 Semce\h Sl \ Mool
[Enterprise “nten‘ace‘ [Enterprise\ ‘
\ \
7 ; y 3 ___ .
. =
A

/~ Customer // ~ Customer / \ Customer |
/ Sevice Sevice \ G
o oal)
Service Components View (D.3) Service Composition Design Patterns View (D.2) Service Design Panerns View (D.1)

Deployment Model(D)

Fig. 2. The i*-SOA Process.

— Detailed view of the global model: focused on detailing tbalg that are satisfied
by the offered business services.

The Detailed view introduces the dependency relationsdnipsng services; specif-
ically intentional dependencies (goal or resource depeeids) between basic services.

Figure 3 exemplifies the Global Model Detail View for the casedy LO System,
the main services associated with the LO Management System a

— Learning Objects Management Service: creates new LOsiggésos from experts
intentionally categorical metadata; it also allows seanguate and delete of exist-
ing LOs.

— Metadata Retrieval Service: retrieves the LO descriptitatsiset, to generate the
initial database for the expert community.

— Metadata Synthesis Service: synthesizes and improvesQhadtadata using sev-
eral evidence sources.

— Learning Objects Assemblies Generation Service: usintetiraing objectives de-
scription provided by teachers, this service generatedidates LO assemblies that
meet the requested learning objectives.

The dependencies among basic services are representdn floDtMetadata Re-
source Dependency and Querying LO Databases Goal Depgndenc

59

__~7LOs Repository T

i __ Services / .
p el !
y e £
A pem A
P /LO Information'y | Management S N
y \\\ o Synthesis _/ \\\
f . \
. e T R
| el /} & /Metadata must\ /

/ Managing the ™, \be synthesized \ 4
_ metadata / /Assemblies | ('Querying\y

/ \ \ Gener rraticm/J \Databases / LOs
[M: it
Metadata \ agzgﬁg;e"

/ Synthesis
Service

Learning Object Manager
L A\
| »

| 4
z \ Querying LOs / ~ \ §
\ Objectives / |\ Databases /" LOs mustbe
/LVOs Assembhe;\\ /~ Assemblies Validation \ 7 L man‘aged »
\must be generated) 7 Seneration 4
“us © generaled Service / Assemblies y ‘A
X Generation 4 =L
4 3 y P
L \ Metadata / y \
PN S Retrieval / [Expert |
// \\ *\ Service / \ P /
{ \ - // v =
[Academic | T ////41; [Managing the 'y
\ T R———— _— ,\\t\ “\ LOs /‘
\ 28 be /LOs metadata must, £ o
7~ Describethe ™\ (.)
() \ beret
[requirements and | e retrieve ///
‘sg]gct the best sclugqu’ ‘17
V 4R
y A
Expert \‘
L Community |

_ [Metadata must",
.\ beimprove /

Fig. 3. Global Model Detail View.

5.2 Defining the Process Model

For each service a process model using the approach propddédrThe i*-SOA Pro-
cess adds the notion of dependency among processes, makiessary to specify the
dependency flow and to describe the resources dependemsesices or information).
For each milestone present among processes (if requiretdjusespecify the resource
or information which helps to achieve that relationshigufe 4 shows a LO Manage-
ment Service Process Model (the resources dependenciegamwices processes are
represented for the LO Metadata and New LO Metadata resedegendencies).

5.3 Defining the Protocol Model

The protocol model is generated based on the same procesexpan [1]. Figure 5
shows a LOs Managemet Service Protocol Model.

5.4 Defining the Deployment Model

The method to define the deployment model has three sub-ghase
D.1: For each service identified in phase A:

— Based on the Process Model, identify the service desigrpatt(e.g. Figure 6
shows Contract Centralization, Contract Desnormalimati@oncurrent Contract,
Service Faade and Agnostic Capability Patterns applieddanissemblies Gener-
ation Service) that fit the processes. For each patternifidgehin the service, are
specified the service components.

60

LOs
anagement
LOs LOs LOs LOs
Create Retrieve Update Delete

Input Retrive
information information
=

U Lt 2]
o

J
Information information information
g]

it ¢ /LOs mustbe
/ managed

\
A

Managing
LOs

Fig. 4. LOs Management Service Process Model.

Learning
Objetcs
Management

Delete

~
Accept/ Accept/ {
i | e |
Y Information Update

LOs
anagemen

LOs LOs LO Initial /
.Create .U pdate Metadata Mani%ﬂg the
s
Send LO
@ Information,

alidate LO alidate LO I end LO
Information, Information, Information
selection
Information,
LOs LOs

Send LO
Information
Delete ITO GetLO
nformatio

query
nformatior
LO Metadata

Fig. 5. LOs Management Service Protocol Model.

Retrieve LO
Information

— For each service component specify the operations (cdjedjiland the service
componentinterfaces, which are obtained from the curnerdd®s Model activities

and dependencies. Service interfaces among componendgsgebed using the
notation defined in Section 3.

Identifying this pattern yields the Service Design Patiéiew, which contains the
service components, service components interfaces avidegcapabilities description
for each pattern. Figure 6 shows Service Design Pattern Yoewne service in the
running example.

D.2: Services are joined to generate the complete systehmitecture:

— From Service Design Pattern Views, apply service compmsiesign patterns and
structure the system, at the level of its services, servdostomers and services

61

LOs Assemblies
Generation

A
ervice
Contra

LOs assemblies
ust be generated

escribe the requirements and
select the best solution

Fig. 6.LOs Assemblies Generation Service Design Pattern View.

interfaces. The interfaces among services and servicésnass are taken from
the Protocol Model described for each service. The systeviceggeneral structure
and interfaces among services are taken from the Global M&devices interfaces
are described using the notation defined in Section 3.

— This sub-phase yields the Service Composition Designiatiew. Figure 7 shows
the LOs Service Composition Design Pattern View for the nigexample.

A Model Transformation

Fig. 7.LOs Service Composition Design Pattern View.

D.3: The services pattern description to specific companirdt implement each
services capability and their interfaces. This yields thevi8es Component View.

62

6 Conclusions and Future Work

In this paper was proposed a systematic process for deraridgevaluating service-
oriented architecture from goal-oriented models. Thixpss allows to generate can-
didate architectures based on i* models. The main contabstare: 1) definition of
basic constructs for describing a SOA architecture usin@)*development enables
derivation of service-oriented architectures from reguients description, up to a com-
ponents and connectors level; 3) description of a systematicess that applies SOA
patterns in the SOA design alternatives generation.

Overall, we have proposed a systematic generation methdsidé architectures,
which allows mapping requirements (specified with i*) tohdtectural design alterna-
tives.

Future work will extend this proposal up to a technologicdlisons level, asso-
ciated with the architectural design. We are also devefppirmethod to select and
evaluate SOA alternatives design, including models andicseio generate and eval-
uate the solutions. We are developing automated suppoftaadopting and possibly
extending existing tools for this proposal, and validate éfficiency an effectiveness
of this proposal with an experimental study (after and ke=forplement an automatic
support).

Acknowledgements

This work has been patrtially supported by the Spanish prdj@¢2007-64753.

References

1. Estrada, H.: “A service oriented approach for the i* framaek”. Universidad Politcnica de
Valencia Phd. Thesis, 2008. Thesis Director Oscar Pastez.Lp

2. Grau, G. and Franch., X.: “On the Adequacy of i* Models fapResenting and Analyzing
Software Architectures”. Advances in Conceptual Modekmgindations and Applications,
2007, pages 296-305.

3. Rud, D., Schmietendorf, A., Dumke, R.: “Product metrios $ervice oriented infrastruc-
tures”. In Proceedings of the 16th International WorkshopSoftware Measurement and
DASMA Metrik Kongress (IWSM/MetriKon 2006), pp. 161-174p&ember 2-3, 2006, Pots-
dam, Germany.

4. Aier, S. and Ahrens, M., and Stutz, M., and Bub, U.: “DeriySOA Evaluation Metrics in an
Enterprise Architecture Context”. Service-Oriented Catmg - ICSOC 2007 Workshops:
ICSOC 2007, International Workshops, Vienna, Austria,tSeper 17, 2007, Revised Se-
lected Papers, 2007.

5. Erl. T.: “SOA Design Patterns”. Prentice Hall/PearsoRR;TUpper Saddle River, NJ, USA,
2009

6. IEEE. draft standard for learning object metadata - psedostandard. Technical report,
IEEE, Piscataway, 2002.

7. Web Services Description Language (WSDL) Version 2.@ PaPrimer, W3C Working
Draft 3 August 2005, http://www.w3.org/tr/2005/wd-ws@tprimer-20050803/

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

63

Han, J.: “A Comprehensive Interface Definition Framewfok Software Components”.
APSEC '98: Proceedings of the Fifth Asia Pacific Software iBegring Conference 1998,
IEEE Computer Society.

. Liu, L. and Yu, E: “From Requirements to Architectural @gs- Using Goals and Scenar-

ios”. First International Workshop From Software Requiesits to Architectures (STRAW
01), 2001, Toronto, Canada.

Chung, L., Nixon, B., and Yu E.: “Using Non-FunctionalqR@ements to Systematically Se-
lect Among Alternatives in Architectural Design”. Proct Irt. Workshop on Architectures
for Software Systems, 1994, pp. 31-43.

Brandozzi, M., Perry, D.E.: “From goal-oriented requients to architectural prescrip-
tions: the preskriptor process”. Second Internationatvre Requirements to Architectures
Workshop (STRAW’03)., 2003, pp. 107-113.

Van Lamsweerde, A.: “From system goals to software &chire”. Formal Methods for
Software Architectures, 2003, pages 25-43.

Lucena, M., Castro, J., Silva, C., Alencar, F., Santoand Pimentel, J.: “A Model Transfor-
mation Approach to Derive Architectural Models from Goali€dted Requirements Mod-
els”. OTM '09: Confederated International Workshops andtBis on On the Move to Mean-
ingful Internet Systems: ADI, CAMS, EI2N, ISDE, IWSSA, MONEOnToContent, ODIS,
ORM, OTM Academy, SWWS, SEMELS, Beyond SAWSDL, and COMBEK20Vilam-
oura, Portugal, pp. 370-380.

Gross, D., and Yu, E.: “From Non-Functional RequireragntDesign through Patterns”.
Requirements Engineering, Volume 6 (1), 2001, pp. 18-36.

Liu, Y. and Traore, I.: “Complexity Measures for Secuss\ice-Oriented Software Archi-
tectures”. PROMISE '07: Third International Workshop oreéfictor Models in Software
Engineering, 2007.

Qian, K., Liu, J., and Tsui, F.: “Decoupling Metrics foerSices Composition”. ICIS-
COMSAR '06: 5th IEEE/ACIS International Conference on Cartgp and Information Sci-
ence and 1st IEEE/ACIS International Workshop on CompeBaised Software Engineer-
ing, Software Architecture and Reuse, 2006, pp. 44-47.

Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: “A Mies Suite for Evaluating Flexibility
and Complexity in Service Oriented Architectures”. ICSQID& Workshops: ICSOC 2008
International Workshops, Sydney, Australia, December238, pp. 41-52.

Chan, L.M.: “Inter-Indexer Consistency in Subject Gadang”. Information Technology and
Libraries, 1989. 8(4): p. 349-358.

Currier, S., Barton, J., O'Beirne, R., and Ryan, B.: “f@ua\ssurance for Digital Learning
Object Repositories”. Issues for the Metadata Creationdas ALT-J, research in Learning
Technology, 2004. 12(1): p. 6-20.

Mylopoulos, J., Chung, L., Yu, E.: "From Object-Oriethtt® Goal-Oriented Requirements
Analysis”; Commun. ACM 42(1): 31-37 (1999).

Garlan, D., Monroe, R. and Wile, D.: "Acme: An ArchiteaDescription Interchange Lan-
guage”; Proceedings of CASCON97, 1997, 169-183.

Quartel, D.A.C., Engelsman, W., Jonkers, H., and vade3en, M.J. “A goal-oriented re-
quirements modelling language for enterprise architetturhirteenth IEEE International
EDOC Enterprise Computing Conference, EDOC 2009, 1-4 S&9,28uckland, New
Zealand. pp. 3-13. IEEE Computer Society Press.

