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Abstract: A general procedure of average-case performance evaluation for population dynamics such as genetic algo-
rithms (GAs) is proposed and its validity is numerically examined. We introduce a learning algorithm of Gibbs
distributions from training sets which are gene configurations (strings) generated by GA in order to figure out
the statistical properties of GA from the view point of thermodynamics. The learning algorithm is constructed
by means of minimization of the Kullback-Leibler information between a parametric Gibbs distribution and
the empirical distribution of gene configurations. The formulation is applied to a solvable probabilistic model
having multi-valley energy landscapes, namely, the spin glass chain. By using computer simulations, we dis-
cuss the asymptotic behaviour of the effective temperature scheduling and the residual energy induced by the
GA dynamics.

1 INTRODUCTION

Genetic Algorithm (GA) (H.Holland, 1975) is a
heuristics to find the best possible solution for com-
binatorial optimization problems and it is based on
several relevant operators such as selection, crossover
and mutation on the gene configurations (strings)
leading to transition from one state to the others. In
this paper, in order to figure out the statistical prop-
erties of GA from the view point of thermodynamics,
we introduce a learning algorithm of Gibbs distribu-
tions from training sets which are gene configurations
generated by GA. A procedure of average-case per-
formance evaluation for genetic algorithms is exam-
ined. The learning algorithm is constructed by means
of minimization of the Kullback-Leibler information
between a parametric Gibbs distribution and the em-
pirical distribution of gene configurations. The for-
mulation is applied to a solvable probabilistic model
having multi-valley energy landscapes, namely, the
spin glass chain (Li, 1981) in statistical physics. By
using computer simulations, we discuss the asymp-
totic behaviour of the effective temperature schedul-
ing and the residual energy induced by the GA dy-
namics.

2 GA AND SA

As we mentioned, in this paper, we consider the statis-
tical properties of GA from the view point of thermo-
dynamics. In simple GA, we define each gene config-
uration (member) by a string of binary variables with
lengthN, that is,sss= (s1,s2, · · · ,sN),si ∈ {−1,+1},
and we attempt to make each configuration in ensem-
ble with sizeM to the state which gives a minimum
of the energy functionH(sss), say,sss∗D The problem
is systematically solved by GA if the system evolves
according to a Markovian process and the gene distri-

butionP(t)
GA(sss) at time (generation)t might converge as

P(t)
GA(sss)→ P(∞)

GA (sss) and we haveP(∞)
GA (sss) = δ(sss−sss∗) =

∏N
i=1 δ(si − si∗). On the other hand, one of the ef-

fective heuristics which is well-known asSimulated
Annealing (SA)(Kirkpatrick et al., 1983) is achieved
by inhomogeneous Markovian process. The process
is realized by Markov chain Monte Carlo method
(MCMC) which leads to an equilibrium Gibbs distri-
bution at temperatureT = β−1 (from now on, theβ is
referred to as ‘inverse temperature’), namely,

P(t)
B (sss) =

e−β(t)H(sss)

Z
, Z = ∑

sss
e−β(t)H(sss). (1)

In SA, the temperature is scheduled very slowly in
time asβ(∞) → ∞ (T(∞) → 0), and then, we can solve
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the problem asP(∞)
B (sss) = δ(sss−sss∗) = ∏N

i=1 δ(si −si∗).
Therefore, both the GA and the SA share a concept
to make the distribution convergence to a single (or
several) delta-peak(s) at the solution(s). However, in
general, the Markovian (dynamical) process of GA is
very hard to treat mathematically due to the global
transition between the states by the crossover or, espe-
cially, the mutation operator, whereas the SA causes
only local transitions between the states. From the
view point of EDA (Baluja, 1994), the dynamics of
GA should lead to an empirical distribution of states.

3 FORMULATION AND TOOLS

In this section, we explain our formulation and sev-
eral tools to evaluate the average-case performance of
GA through the effective temperature scheduling of
the Gibbs distribution that is trained from gene con-
figurations of simple GA.

3.1 Kullback-Leibler Information

We start our argument from the distance between an

empirical distribution from GA dynamicsP(t)
GA(sss) and

a Gibbs distributionP(t)
B (sss) at the effective tempera-

ture T = β−1. The distance is measured by the fol-
lowing Kullback-Leibler information (KL)

KL(PGA‖PB) = ∑
sss

PGA(sss) log

{

PB(sss)
PSA(sss)

}

(2)

where the summation with respect to all possible
gene configurationssss = (s1, · · · ,sN) is defined by
∑sss(· · · ) ≡ ∑s1=±1 · · ·∑sN=±1(· · · ). In this paper, we
represent each component of gene configurations by
si =±1 instead ofsi =0,1 because we choose the cost
function of spin glasses to be minimized as a bench-
mark test later on. The ‘spin’ here means a tiny mag-
net in atomic scale-length andsi =+1 stands for ‘up-
spin’ and vice versa. We should keep in mind that the
above distance is dependent on the inverse temper-
atureβ. Thus, we obtain the following Boltzmann-
machine-type learning equation with respect toβ as

dβ
dt

= −∂KL(P(t)
GA‖P(t)

B )

∂β
= ∑

sss
P(t)

GA(sss) ·
∂P(t)

B (sss)/∂β

P(t)
B (sss)

.

(3)

We naturally expect that the effective temperature
evolves so as to minimize the KL information for each
time step. When both distributions become identical

one in the limit oft → ∞, namely,P(∞)
GA (sss) = P(∞)

B (sss),

we obtain

dβ
dt

= ∑
sss

P(∞)
GA (sss) · {∂P(∞)

B (sss)/∂β}/P(∞)
B (sss)

= (∂/∂β)∑
sss

δ(sss− sss∗) = ∂α/∂β = 0 (4)

and the time evolution of inverse-temperature then
stops. We should notice thatα ≡ ∑sssδ(sss− sss∗) is the
number of degeneracy at the lowest energy states.

3.2 Learning Equation for Spin Systems

Here we attempt to restrict ourselves to more particu-
lar problems, namely, we deal with a class of combi-
natorial optimization problems whose cost functions
are described by the energy function of Ising model.

We first reformulate the equation (3) by means of
Ising spin systems having the energy functionH(sss) =
−∑i j Ji j sisj . For the case of positive constant spin-
spin interactionJi j = J > 0, ∀i, j , the lowest energy
state is apparently given bysi =+1, ∀i (all-up spins)
or si =−1, ∀i (all-down spins). However, as we shall
see in the following sections, for the case of randomly
distributedJi j (the± sign is also random), the low-
est energy state is highly degenerated and it becomes
very hard to find the state.

Substituting the corresponding Gibbs distribution
PB(sss) = exp[−βH(sss)]/∑sssexp[−βH(sss)] into equation
(3), the learning equation leads to

dβ
dt

= ∑
sss

PGA(sss)

(

∑
i j

Ji j sisj

)

− ∑sss(∑i j Ji j sisj )exp[β∑i j Ji j sisj ]

∑sssexp[β∑i j Ji j sisj ]
(5)

where the second term appearing in the right hand
side of the above equation is internal energy of
the system described by the HamiltonianH(sss) =
−∑i j Ji j sisj at temperatureT = β−1, whereas the first
term is the energyH(sss) averaged over the empirical
distributionPGA(sss) of GA. Then, we immediately find
that the condition

∑
sss

PGA(sss)(∑
i j

Ji j sisj) = ∑
sss

PB(sss)(∑
i j

Ji j sisj)

=
∑sss(∑i j Ji j sisj)exp[β∑i j Ji j sisj ]

∑sssexp[β∑i j Ji j sisj ]
(6)

yieldsdβ/dt = 0 for PGA(sss) = PB(sss).
In general, it is very hard to calculate the internal

energy of the spin system

U({J} : β)≡−∑sss(∑i j Ji j sisj )exp[β∑i j Ji j sisj ]

∑sssexp[β∑i j Ji j sisj ]
(7)
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because 2N sums for all possible configurations in
∑sss(· · · ) are needed to evaluate theE({J} : β), where
we defined a set of interactions by{J} ≡ {Ji j |i, j =
1, · · · ,N}. To overcome this difficulty, we usually use
the so-called Markov chain Monte Carlo (MCMC)
method to calculate the expectation (7) by important
sampling from the Gibbs distribution at temperature
T = β−1.

On the other hand, the first term appearing in the
right hand side of (5), we evaluate the expectation by
making use of

UGA({J})≡−∑
sss

PGA(sss)

(

∑
i j

Ji j sisj

)

= − lim
L→∞

1
L

L

∑
l=1

(

∑
i j

Ji j si(t, l)sj (t, l)

)

(8)

wheresi(t, l) is thel -th sampling point at timet from
the empirical distribution of GA. Namely, we shall
replace the expectation of the cost functionH(sss) =
−∑i j Ji j sisj over the distributionPGA(sss) by sampling
from the empirical distribution of GA.

By a simple transformationβ → T−1 in equation
(5), we obtain the Boltzmann-machine-type learning
equation with respect to effective temperatureT as
follows.

dT
dt

= −T2(U({J} : T−1)−UGA({J})
)

(9)

From this learning equation, we find that time-
evolution of effective temperature depends on the dif-
ference between the expectations of the cost function
over the Gibbs distribution at temperatureT and the
empirical distribution of GA.

3.3 Average-case Performance

We should evaluate the ‘average-case performance’ of
the learning equation which is independent of the re-
alization of ‘problem’{J}. Namely, one should eval-
uate the ‘data-averaged’ learning equation

dT
dt

=−T2(
E{J}

(

U({J} : T−1)
)

−E{J} (UGA({J}))
)

(10)
to discuss the average-case performance, where
we defined the averageE{J}(· · · ) by E{J}(· · · ) ≡
∏i j

∫
dJi j (· · · )P(Ji j ). We should keep in mind that

in this paper we deal with the problem in which
each interactionJi j has no correlation with the oth-
ers, namely,E{J}(Ji j Jkl) = J2δi,kδ j ,l where we de-
fined J2 as a variance ofP(Ji j ) andδx,y stands for a
Kronecker’s delta.

4 MATHEMATICALLY
TRACTABLE MODEL

In this section, we introduce a spin glass model which
will be used as a benchmark cost function to be mini-
mized by GA. The model is called asspin glass chain.
It is one-dimensional spin glass model having only
nearest neighboring interactionsD It is possible for us
to investigate the temperature dependence of internal
energy and moreover, one can obtain the lowest en-
ergy exactly. The energy function (Hamiltonian in the
literature of statistical physics) is given by

H = −
N

∑
i=1

Jisisi+1, Ji = N (0,1) (11)

whereJi stands for the interaction between spinssi
andsi+1. N (a,b) denotes a normal Gaussian distri-
bution with meana variancebD We plot the typical
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Figure 1: Typical energy landscapeH(sss) = −∑i Jisisi+1
with P(Ji) = N (0,1), E(JiJj ) = δi, j of the spin glass chain.
The number of spins isN = 10. It should be noted that
the horizontal axisS denotes the label of states, that is,
S= 1,2, · · · ,2N(= 1028). For instance,S= 1 stands for a
state, say,sss(S= 1) = (+1,+1, · · · ,+1) andS= 2N denotes
sss(S= 2N) = (−1,−1, · · · ,−1). The right panel stands for
internal energy of spin glass chain as a function of temper-
ature. The solid line is exact resultU = −β

∫ ∞
−∞

Dx
cosh2 βx

,

whereas the dots denote the internal energy calculated by
the MCMC for N = 3000. The error-bars are calculated
by 10-independent runs for different choice of the{J} ≡
{Ji |i = 1, · · · ,N}. The inset indicates theUmin as a function
of J0. We setJ = 1.

energy landscape in Figure 1 (left). From this figure,
we find that the structure of the energy surface is com-
plicated and it seems to be difficult for us to find the
lowest energy state.

However, we should notice that in (11)si takes±1
and the productsisi+1 also has a value±1. Hence, we
introduce the new variableτi which is defined byτi =
sisi+1, thenτi takesτi ∈ {1,−1}. Therefore, in order
to minimize H(τττ) = −∑i Jiτi , we should determine
τi = sgn(Ji) for eachi and then, we have the lowest
energy asUmin = −∑i Ji sgn(Ji) = −∑i |Ji |. Namely,
whenJi obeys a Gaussian with meanJ0 and variance
J2, the lowest energy for a single spin is obtained in
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the thermodynamic limitN → ∞ as

lim
N→∞

Umin

N
= E{J}(|Ji |) =

∫ ∞

−∞

dJi√
2πJ

e−
(Ji−J0)

2

2J2 |Ji |

= −J0− J

√

2
π

e−
J2
0

2J2

whereE{J}(· · · ) here stands for the average over the
configuration{J} ≡ (J1, · · · ,JN).

Thus, for the choice of(J0,J) = (1,0), namely, in
the limit of the ferromagnetic Ising model, we have
the lowest energy asUmin/N = −1 (all spins align in
the same direction), On the other hand, for the choice
of (J0,J) = (0,1), we haveUmin = −

√

2/π. These
facts mean that the lowest energy changes according
to the value of ratioJ0/J.

We next consider the case of finite effective tem-
perature, namely,β < ∞. For this case, internal en-
ergy per spin is explicitly given by limN→∞ 〈H〉τ/N=

E{J}(〈H〉τ) = −(∂/∂β) log∑τττ eβ∑i Ji τi with 〈· · · 〉τ ≡
∑τττ exp[β∑i Jiτi ]/Zτ where we defined∑τττ(· · · ) ≡
∑τi=±1 · · ·∑τN=±1(· · · ) and the partition function
Zτ = ∑τττ eβ∑i Jiτi is now calculated as{2cosh(βJi)}N.
Hence, we have the average free energy density de-
fined by f = limN→∞(logZ/N) = N−1

E{J}(logZ) is
evaluated as follows.

f =
∫ ∞

−∞
Dxlog2coshβ(J0+ Jx) (12)

where we definedDx ≡ dxe−x2/2/
√

2π. From the
above result, we immediately obtain the internal en-
ergy per spinU =−∂ f/∂β by

U =−β
∫ ∞

−∞

Dx

cosh2 βx
. (13)

for the case of(J0,J) = (0,1). In Figure 1 (right), we
show theU as a function ofT. From the arguments
we provided above, we have the following learning
equation (14) for the spin glass chain whose Hamilto-
nian is given by (11) is now rewritten as

dT
dt

= T2 lim
L→∞

1
L

L

∑
l=1

(

∑
i

Jisi(t, l)si+1(t, l)

)

− T
∫ ∞

−∞

Dx

cosh2T−1x
. (14)

5 RESULTS

The results are summed up below. We show the time-
evolution of effective temperature (14) and the resid-
ual energy for the case of spin glass chain with pa-
rameter sets:σ= 2 (The number of members in selec-
tion of tournament -type at each generation),pc = 0.1

(The rate for a single point crossover),pm = 0.001
(The mutation rate) in Figure 2. From this figure,
we find that the asymptotic behaviour of the effec-
tive temperature follows a power-law. This schedule
is faster than the effective temperature scheduling for
the optimal simulated annealing∼ 1/ log(1+ t) (Ge-
man and Geman, 1984), however, slower than the ex-
ponential decreasing. Thus, here we define the resid-
ual energy and its time-dependence as the difference
between the lowest energy and current energy ob-
tained by the GA dynamics. We find that the residual
energy which is defined by

ε ≡ H(sss)−min
sss

H(sss) (15)

also asymptotically goes to zero and it follows a
power-law in the scaling regimet ≫ 1.
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Figure 2: Time evolution of the effective temperature (up-
per panel) and the residual energy defined by (15) (lower
panel) for the case of spin glass chain. We used a simple
GA havingσ = 2, pc = 0.1, pm = 0.001. We set the number
of spinsN = 2000 and populationM = 100, respectively.
The inset stands for the asymptotic behaviour.

6 CONCLUDING REMARKS

We introduced a learning algorithm of Gibbs dis-
tributions from training sets which are gene strings
generated by GA to figure out the statistical prop-
erties of GA from the view point of thermodynam-
ics. A procedure of average-case performance eval-
uation for genetic algorithms was numerically ex-
amined. The formulation was applied to a solvable
probabilistic model having multi-valley energy land-
scapes, namely, the spin glass chain. By using com-
puter simulations, we discussed the asymptotic be-
haviour of the effective temperature scheduling and
the residual energy induced by the GA dynamics.

REFERENCES

Baluja, S. (1994). Population-based incremental learning:
A method for integrating genetic search based func-
tion optimization and competitive learning.Technical
Report, School of Computer Science, Carnegie Mellon
University, CMU-CS-94:163.

ICEC 2010 - International Conference on Evolutionary Computation

298



Geman, S. and Geman, D. (1984). Stochastic relaxation,
gibbs distributions, and the bayesian restoration of im-
ages. IEEE Trans. on Pattern Analysis and Machine
Intelligence, PAMI-6:721–741.

H.Holland, J. (1975).Adaptation in natural and artificial
systems. The University of Michigan Press.

Kirkpatrick, S., D.Galatt, C., and P.Vecchi, M. (1983). Op-
timization by simulated annealing.Science, 220:671–
680.

Li, T. (1981). Structure of metastable states in a random
ising chain.Physical Review B, 24:6579–6587.

A GIBBS DISTRIBUTION THAT LEARNS FROM GA DYNAMICS

299


