
EVOLVABILITY IN SERVICE ORIENTED SYSTEMS

Anca Daniela Ionita
University “Politehnica” of Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania

Marin Litoiu
York University, 4700 Keele Street, Toronto, Canada

Keywords: Software Maintenance, Service Oriented Architecture, Cloud Computing, Performance Engineering.

Abstract: The paper investigates the evolution and maintenance of service oriented systems deployed in SOA and
cloud infrastructures. It analyzes the challenges entailed by the frequent modifications of business
environments, discussing their causes, grasping the evolution points in service architectures, studying
classifications of human actors involved across the whole life cycle, as well as pointing out possible risks
and difficulties encountered in the process of change. Based on the lessons learned in our study, four pillars
for improving service evolvability are identified: orientation towards the users, increasing the level of
abstraction, supporting automation and enabling adaptivity through feedback loops.

1 INTRODUCTION

The evolution of software conforming to a service
model is triggered by frequent changes in the
environment and the users’ expectations. Shortening
the maintenance life cycle and decreasing its costs
are essential for improving the efficiency of service
oriented systems. Maintenance efforts may generally
be reduced by decomposing the system into small
parts (Kafura, 1987). However, the subsequent
composition of parts – in our case services – is also
subject to change and it is difficult to evaluate its
maintenance costs and to define metrics suitable for
the high degree of distribution.

Service Oriented Architecture (SOA) allows a
system to respond easily to new requirements and to
assimilate new business services and new service
providers, while the business is developing. Services
may be created for processing data, streamlining and
reusing functionality incorporated in legacy systems
(Sommerville, 2006), integrating activities
performed by multiple business partners (Ionita,
2008). The architectures support a wide distribution
of the deployed software artefacts; agility and
extensibility are increased with the use of services
discovered at runtime, sometimes on the basis of
semantic technologies (Stojanovic 2006).

SOA is meant to reduce the maintenance efforts

and to prevent future problems (Lientz, 1980)
through the decoupling implied by the composition
of reusable and replaceable services; however,
supplementary efforts are transferred to developing
infrastructures capable to simplify the addition of
new functionality, by publishing new services and
orchestrating processes. SOA delegates a part of the
concerns related to the necessity of change towards
services supplied by external providers, for
preserving the integrity of the architecture.

Similarly, cloud computing is emerging as a new
computational model, where software is hosted, run
and administered in large web data centers and
provided as a service. Users of cloud services are
exonerated from software licensing, installation, and
maintenance, necessary if the programs are executed
on their own computers. The long held dream of
providing computing as a utility has been made
easier by two emerging technologies: virtualization
and software as a service (SaaS). Virtualization is a
process that substitutes a physical resource by many
logical (virtual) resources. SaaS is the delivery of
software functionality seamlessly, over the Internet,
instead of installing it on a local machine.
Depending on the content of the service, a cloud can
also offer Infrastructure as a Service (IaaS) - raw
computing services such as CPU and storage -
Platform as a Service (PaaS) - COTS, tools, middle-

245
Ionita A. and Litoiu M. (2010).
EVOLVABILITY IN SERVICE ORIENTED SYSTEMS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 245-250
DOI: 10.5220/0003040102450250
Copyright c© SciTePress

ware for developing / deploying applications.
However, similarly to SOA, when services are

deployed in cloud infrastructures, maintenance
efforts are reduced for the end users, but difficulties
are augmented for technical actors. Research in
cloud computing has recently ramped up, ranging
from small scale to very large projects (CERAS, FP7
RESERVOIR). Despite of this, there is no clear
vision of how different layers of the cloud, possibly
in different administrative domains, can collaborate
to satisfy stakeholders’ goals.

This paper analyzes the challenges related to the
evolution of service based systems, based on a study
of SOA and cloud infrastructures, applications and
services. First we present principles and models
regarding the maintenance of service oriented
systems (section 2). Then we identify four pillars for
improving evolvability: orientation towards the
users, increasing the level of abstraction, supporting
automation and feedback control loops (Section 3).

2 MAINTENANCE FOR SERVICE
ORIENTED SYSTEMS

2.1 Evolution Laws and Models

Service oriented systems enable an easier adaptation
of the system to the “continuing change”. The
environment evolution may be supported through
the evolution of external services, on condition that
they respect the same interfaces and the same
standard protocols for communication and
information interchange, for not affecting the system
architecture. In addition, “increasing complexity” is
not applied to the system structure, but to the service
registry, in the way new leaves appear on a tree.
“Self regulation” is determined by the domain rules,
imposed by service providers, infrastructure
supporters and the end-user community. However,
“organisational stability” should often be judged for
virtual organizations, for which technical and
managerial decisions that influence the system
growth are highly distributed. End-users feel
comfortable with the “conservation of familiarity”,
even if they appreciate to discover the new, desired
functionalities, and they should not be aware of the
complexity and the “continuing growth” of the
system behind the curtain, nor should they be
affected by “declining quality”. Moreover, the
evolution process for service infrastructures
determine the creation of a “feedback system”,
influenced by the laws and policies of the

application domain, by management and marketing
decisions, by user requests and also by analyses of
the actual run-time performance. Thus, new
challenges and new techniques compensate each
other and the software dynamics is still subject to
Lehman laws (Lehman, 1997).

The importance of maintenance can be seen in
various models of software architecture. The SEI
model, called “views and beyond” (Clements, 2003),
takes into account the maintainer as a stakeholder
that needs detailed architectural documentation. The
model introduces three viewtypes, for which one can
apply various styles and create specific views,
documented with more or less details, in respect
with stakeholder necessity. The maintainer needs
details for all the views related to Module viewtype
(regarding decomposition, generalization, uses and
layers) and almost all from Component-and-
connector viewtype (shared data, communicating-
processes, peer-to-peer and client-server). Another
model, dedicated to service oriented systems and
called Service Views (Ibrahim, 2006), considers the
maintenance staff as part of the category “production
support”. It defines a special group of quality
attributes dedicated to maintenance, which are
important for the service providers and crosscut
eight specific views. Some maintenance attributes
are: (i) tools and procedure manageability; (ii)
architecture extensibility related to services and their
contracts; (iii) scalability at load increases by adding
new hardware or tuning existent infrastructure; (iv)
audit logging at service request and execution.

The question is if the existent models of
maintenance and evolution grasp the particular
nature of systems based on services and include
enough details for a precise evaluation. This is
difficult with the big diversity of architectures,
whose maintainability is hard to predict.

2.2 Aspects of Service Evolution

In this paper we analyze the “evolution” term as
defined in the stage model (Bennet, 2000) – the
stage when changes do not damage the architecture
integrity. In order to determine the key issues for
improving evolvability of systems based on services,
we analyzed five aspects (see Figure 1): (1) the
causes that determine a quick evolution; (2) the
architectural elements introduced to support
variabilities (we call them evolution points) (3) the
existent risks; (4) the large number of the actors
engaged and (5) the process of change.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

246

Causes

Evolution
points

Actors Risks

Change
process

Figure 1: Aspects of service evolution.

2.2.1 Causes

Software services enable and support business
operations in an economic environment
characterized by globalization and increased
competition. On one side, this imposes a quick
response to opportunities inside the enterprise, for
adapting to the rapid changes of the business
environment. For attracting new customers and
supporting a rapid growth, including merges and
acquisitions, it is necessary to:

 adjust the operational behaviour of services;

 adapt to new rules, regulations and policies;

 adapt to changes in operating conditions;

 transform manual into automated services;

 redesign business processes;

 improve the quality of service.

On the other side, there are more business
services involving cross enterprise cooperation,
determined by outsourcing, or by the creation of
larger consortiums. Service based systems have to
face the scaling challenges they have opened
themselves. Large infrastructures are being
developed, like in FP7 SOA4All project, and cloud
infrastructures are also challenged to support
dynamic scalability on demand.

2.2.2 Evolution Points

Identifying architectural elements that are supposed
to evolve is very important for facilitating
maintenance. One makes the difference between
“shallow changes” (Papazoglou, 2008), localized in
one service and only affecting its clients, and “deep
changes”, influencing the entire value chain of a
business process. The evolution of services may
concern their structure and behaviour; furthermore,
these changes may modify specifications, values of
various QoS (Quality of Service) metrics and
content of SLAs (Service Level Agreements).

To exemplify some possibilities to introduce va-

riations in SOA, let us consider LD-CAST - a
prototype for supporting cross-border business
cooperation using services provided by European
Chambers of Commerce (Ionita, 2008); some of its
evolution points allow one to introduce:

 new business processes for orchestration;

 new Web services;

 process and Web service annotation with
concepts of a business ontology;

 ontology changes reflecting domain evolution;

 new service providers and local agencies;

 new multilingual content of the portal.

2.2.3 Risks

One evolution point may attract other necessary
changes. If one does not cover the entire chain, it
may become inconsistent and may induce spurious
results, or even discontinuities. There are risks of not
respecting compatibility, compliance or conformity
of services (Papazoglou, 2008) or of deploying
business processes not appropriately configured.

Coming back to the LD-CAST example, for
preserving the system consistency when adding a
new process, it is necessary to perform the following
steps: model the process and transform it into an
executable workflow; annotate the process activities
according to the business ontology; register and
annotate new services; publish the new process
(Ionita, 2009). The evolution is supported by various
tools and actors of the system, so the risks for
producing incoherent processes are quite large.

It is important to predict propagation of changes
in the architecture, and to define dependencies
between the supported evolution points. In order to
reduce risks, one has to define policy and regulation
elements at a distinct level, to separate declarative
from control issues, and to reduce coupling by
creating independently evolving subsystems. Taking
into account service versioning and minimizing the
propagation of changes may also reduce the risks of
inconsistencies.

2.2.4 Involved Actors

One of the difficulties related to SOA is that
evolution points are maintained by multiple actors,
because they require different competencies. There
should be specialists in business process modelling,
in ontology maintenance, or service design. There
should be administrators for portals, actors for
collecting and evaluating change requests, service
provider clerks for execution monitoring.

EVOLVABILITY IN SERVICE ORIENTED SYSTEMS

247

Lin et al. identify two types of actor-roles in a
framework for semantic annotation of business
processes (Lin, 2009): social actors and technical
actors. A comprehensive description of existent roles
is given in (Kajko-Mattsson, 2007) – 6 that are
generally valid, and another 18 that are specific to
SOA, dedicated to: front-end and back-end support,
management, design, and quality assurance. With
Software as a Service running in cloud
infrastructures, new actors and responsibilities are
required. The responsibilities of three actors (cloud
administrator, application administrator and web
service developer) were also described for deploying
and managing the web services deployed in a cloud,
to ensure the quality of services (Li, 2009).

With all the involved actors and their tools,
architecture should be carefully designed and
modification rights should be carefully granted for
avoiding inconsistent states of the deployed system.

2.2.5 The Process of Change

The classical cycle of change (Yau, 1978) contains
five phases: request, planning, implementation,
verification & validation, and documentation.
Besides, service based systems also have to cope
with keeping portals and data bases behind services
up-to-date and consistent.

The implementation phase may be unburdened
by designing an extensible architecture, to allow
adding new services and business processes. One
may need to introduce new services by migrating
software legacy to SOA, but this has non-technical
implications also and it is often sustained by a big
effort for changing organization culture and for
adopting strategic approaches for human resource
management (O’Brian, 2008). One may need to
introduce new business processes by making the
transition between “as-is” and “to-be” service
models, which can be helped by a gap analysis,
measuring the impact of changes and realizing the
strategy of implementation (Papazoglou, 2008).

The verification and validation phase also faces
specific difficulties (Sommerville, 2006). The code
of services delivered by external providers is not
available; there are no standards for service
versioning; payment models may increase costs for
this phase; late bounding involves that real life
execution uses other services than the system tests.

One searches solutions for eliminating the ad hoc
character of change management, avoiding the
increase of complexity and assuring a consistent
propagation of changes. SAKE project proposes a
change ontology for e-Government (Stojanovic,

2006), which enables agile response to
unpredictable, frequent changes in the environment.
Their change management system aims to
harmonize the requests of change and their
resolution in a systematic way, and to improve the
decision-making process with a unified propagation
to the collaborative and knowledge space.

3 INCREASING EVOLVABILITY

3.1 Orientation Towards the Users

In the classical process of change, end-users are only
involved in the first and last phases, those of request
and validation; in between, the activities are handled
in the back-end and involve a great effort for highly
specialized actors.

Efforts are currently made to involve end-users
furthermore and let them act on the system, instead
of simply reporting their change requests. The trend
is to increase end-user involvement and to get the
evolution points closer to the causes of change,
making them visible not only to the clients in the
technical sense, but also to the users, who should
make choices and impose the desired configurations.

By implementing the third generation of services
(Fitzgerald, 2006), which are context-determined,
consumer-driven and dynamically composed, the
system can run according to the user preferences,
like cost, delivery time or trusted service providers.

Empowering end-users with new service front-
ends (Lizcano, 2009)) can also speed up some
maintenance cycles dedicated to customizing or
composing new services, or even to creating new
applications. Moreover, ontologies may self evolve
by the integration of folksonomies defined by the
user community. Thus, some evolution points
related to business processes, domain ontology and
even multilingual content may be managed directly.

The user-centric approach may also be expanded
to an approach leaning on increasing the power of
domain experts for performing the system evolution
and reducing the necessity of specialised technical
actors. Interdisciplinary studies, concerned with the
end-user business domain, are recognized to be
essential for this (Bennett, 2000) and can lead to an
increase of the abstraction level, as argued below.

3.2 Increasing the Level of Abstraction

Maintenance costs more than development and
inside it program comprehension consumes more
than 50% of the resources (Bennett, 2000).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

248

Therefore, it is essential to perform the changes as
much as possible without programming, whose costs
are twofold: code understanding plus developing
new code – as taken into account by estimation
models like COCOMO 2 (Sommerville, 2006).

A solution can be to perform more activities at a
higher level of abstraction. New service
compositions can be done by using a business
modeller based on a general process metamodel
(Estublier, 2005) or by defining process models
using concepts dedicated to the specific domain, for
example public administration (Peristeras, 2006).

The level of abstraction can be increased for
many evolution points of a service-based system.
One possibility is to define portal configuration tools
specific for the application domain, allowing their
administrators to manage new service providers, as
well as new identity providers. A friendlier
environment should also support domain knowledge
updates, necessary for semantic characterization of
process activities and Web services, for automatic
search and discovery of concrete services matching
user-specified criteria, and for rule-based reasoning
that improves the system adaptation. Process
modeling, including new designs and re-engineering,
has to be performed by domain experts and to be
seamlessly transformed into executable artifacts.

The complexity of service-based architectures
requires a large variety of actors for the system
maintenance and evolution; the definition of more
specific languages and tools for the social actors can
diminish the contributions of technical actors, which
are more expensive and less agile.

At a large scale, an increase of the level of
abstraction may also be observed in the current
efforts for creating reference architectures. One of
the proposals is a holistic approach, where a SOA
based system is assimilated to an ecosystem (Jansen,
2009) with multiple interactions between parts. This
is also the philosophy behind the OASIS Reference
Architecture for SOA – a viewpoint model with 3
views corresponding to multiple stakeholders:
Business via Services, Realizing SOA and Owning
SOA, each of them containing several models
defined with UML diagrams. Another effort for
creating a reference architecture is currently
undertaken by the project NEXOF-RA, dedicated to
a generic open platform facilitating the collaboration
between service providers and third parties.

3.3 Supporting Automation

When the system evolution is defined at a high level
of abstraction, there is a need to transform the

specified changes into an executable form.
Transformation criteria are given in the standard
specification of BPMN (Business Process Modeling
Notation), and an analysis of the context for
generating workflows from process models can be
found in (Roser, 2007).

Moreover, the architecture should create support
for gradually replacing manual activities with
automatic ones, in order to adapt to the rhythm
enterprises need to migrate to SOA. This also
requires a framework for self-validation and self-
testing of newly registered services.

3.4 Enabling Adaptivity through
Feedback Loops

The techniques of service late binding and the new
semantic technologies allow a run-time adaptation
that diminishes the needs for system change. On a
very fine granular time scale, Web Services need to
often evolve in order to satisfy SLAs. Degradation in
performance due to changes in workload or in the
underlying hosting infrastructure has to be
compensated by changes in individual Web services
or in their orchestration, so that the SLAs are met. In
a classical approach, those corrective changes have
to be done by a human actor. Adaptive services and
applications are able to sense the change in
operating conditions and to readjust automatically.

For services deployed in a cloud, to sense the
changes in operating conditions, the web services at
SaaS layers might require access to performance and
availability counters at PaaS layer. As an example,
Model Identification Adaptive Control (MIAC)
(Brun, 2009) can be used for adapting the web
services in cloud computing. The utilization of a
server is not directly accessible to the web service
unless it is exposed by PaaS. At the same time, PaaS
might need to expose control levers so the
adaptation algorithms can influence the behavior of
the quality of services of the controlled entities. For
example, if the response time of a web service is
above that specified by the SLA, the adaptation
algorithm should ask for more CPU from PaaS layer.

4 CONCLUSIONS

The purpose of this paper was to identify the key
issues for improving evolvability in service oriented
systems, including cloud infrastructures and
applications. We started with the analysis of the way
maintenance laws and models apply to service
oriented systems, then we identified five main

EVOLVABILITY IN SERVICE ORIENTED SYSTEMS

249

aspects that characterize service evolution: causes,
evolution points, involved actors, possible risks and
process of change.

The analysis led to the definition of some key
issues for obtaining an easier evolution of services
and of systems based on them: a user-centric design,
a process of change with more activities performed
at a high level of abstraction, supported by increased
automation of services and of the processes that
orchestrate them, as well as enabling a continuous
adaptation of the system to satisfy service level
agreements. We consider these issues as the pillars
for improving evolvability in service oriented
systems and for finding solutions to the challenges
raised by business environment dynamics

ACKNOWLEDGEMENTS

This work was supported by CNCSIS - UEFISCSU,
Romania, project number PNII – IDEI 1238/2008,
by OCE, the Ontario Centers of Excellence, and by
the IBM Toronto Centre for Advanced Studies, as
part of the program of the Centre for Research in
Adaptive Systems (CERAS).

REFERENCES

Bennett, K. H., Rajlich, V. T, 2000. Software Maintenance
and Evolution: a Roadmap. In The Future of Software
Engineering, Finkelstein A., ed. ACM Press.

Brun, Y. et al., 2009. Engineering Self-Adaptive System
through Feedback Loops. In Software Engineering for
Self-Adaptive Systems, Cheng B. et al. ed. Springer
Verlag.

Chinneck Li, J., Woodside, J., Litoiu, M., Iszlai, G., 2009.
Performance Model Driven QoS Guarantees and
Optimization in Clouds. ACM/IEEE ICSE Workshop
on Cloud Computing, Vancouver, 2009, pp. 15-22.

Clements, P. et al., 2003. Documenting Software
Architectures: Views and Beyond. Addison-Wesley.

Estublier, J. and Sanlaville, S., 2005. Extensible Process
Support Environments for Web Services
Orchestration, Int. Journal of Web Services Practices,
1(1-2), pp. 30-39.

Ibrahim, D., Misic, V. B., 2006. Service Views: a
Coherent View Model of the SOA in the Enterprise,
IEEE /SCC'06, Chicago, USA 2006, pp. 230-237.

Ionita, A. D., Catapano, A., Giuroiu, S. and Florea, M.,
2008. Service oriented system for business
cooperation, ICSE / SDSOA, Leipzig 2008, pp. 13-18.

Ionita, A. D., Florea, M., Jelea, L., 2009. 4+1 Views for a
Business Cooperation Framework Based on SOA,
IAENG Int. Journal of Computer Science, 36(4).

Kafura, D., Reddy, G. R., 1987. The use of software
complexity metrics in software maintenance, IEEE
Transactions on Software Engineering, SE-13(3), pp.
335-43.

Kajko-Mattsson, M., Lewis, G. A., and Smith, D. B. 2007.
A Framework for Roles for Development, Evolution
and Maintenance of SOA-Based Systems. In SD-
SOA’07, Minneapolis, May 20 - 26, 2007.

Fitzgerald, B., Olsson, C. M. ed. 2006. The Software and
Services Challenge, Contribution to the preparation of
the Technology Pillar on “Software, Grids, Security
and Dependability” FP7, Ver 1.1.

Jansen, S., Finkelstein, A., Brinkkemper, S., 2009. A sense
of community: A research agenda for software
ecosystems. ICSE Companion 2009, pp. 187-190.

Lehman, M. M. 1997. Laws of Software Evolution
Revisited, EWSPT96, Oct. 1996, LNCS 1149, pp. 108-
124.

Lientz, B. P., Swanson, E. B., 1980. Software
Maintenance Management, Addison-Wesley.

Lin, Y., Krogstie, J., 2009. Quality Evaluation of a
Business Process Semantic Annotations Approach,
IBIS, 3 (1), pp. 9-29.

Lizcano, D., Soriano, J., Reyes, M., and Hierro, J. J. 2009.
A user-centric approach for developing and deploying
service front-ends in the future internet of services. Int.
J. Web Grid Serv. 5(2), pp. 155-191.

O’Brian, J., Marakas, G., 2008. Management Information
Systems, 8th ed. McGraw-Hill.

Papazoglou, M. P. 2008. The Challenges of Service
Evolution. In CAISE’08 Z. Bellahsène and M. Léonard
eds. LNCS, 5074, pp. 1-15.

Peristeras, V. and Tarabanis, K. 2006. Reengineering the
public administration modus operandi through the use
of reference domain models and Semantic Web
Service technologies, AAAI /SWEG, California, USA.

Roser, St., Lautenbacher, F. and Bauer, B. 2007.
Generation of workflow code from DSMs, OOPSLA
Workshop on Domain-Specific Modeling, Montréal,
Canada 2007.

Sommerville, J., 2006. Software Engineering, 8th ed.
Addison-Wesley.

Stojanovic, N., Mentzas, G., Apostolou, D., 2006.
Semantic – enabled Agile Knowledge-based e-
government, in AAAI /SWEG, California, USA 2006.

Yau, S. S., Collofello, J. S., MacGregor, T., 1978. Ripple
effect analysis of software maintenance,
IEEE/Compsac, Computer Society Press, pp. 60 – 65.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

250

