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Abstract. During development of software systems multiple notations are in use

to describe requirements, design, source code, run time traces, and more. These
notations usually have different purposes and semantics so that it is difficult to
keep information consistent during development. In this position paper we pro-
pose an alternative approach to model-driven software development that enhances
program code with abstract specification information. Thus the program code can
be considered at different views for design, verification, execution, and monitor-
ing, while information of interest is continuously available in a coherent notation.

1 Introduction

When software systems are developed, several stages are passed through, in which dif-
ferent notations describe certain aspects of the software at different abstraction levels
and with different purposes. This entails that important information is not available con-
sistently; even worse, pieces of information in different notations are hard to synchro-
nize if the software is maintained over longer periods of time. An overview of notations

to encounter is given in figure 1.
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Fig. 1. Different stages of development processes and notations that are used to describe the
software or certain aspects of it. While all notations focus on different views of the software, they
are hard to synchronize over time.

At design time, software architecture and functionality are derived from require-
ments and recorded in semi-formalized description languages or formalized models.
Based on this, source code is derived from specifications, either with manual program-
ming or — in the case of some model-driven software development (MDSD) approaches
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— with code generation [1]. The notation of the source coderys to certain general-
purpose programming languages or domain-specific langu@g#_s). Design and im-
plementation can be verified afterwards, either at the lef/gpecifications or of the
programming language [2]. At run time, software is représefpy compiled machine
code or byte code containing detailed imperative statesn€nning systems can be
monitored, which usually relies on the existence of meta dealating executable code
to specifications [3]. Finally, when software is put out of\see, design recovery can
be applied to all existing information to transfer knowledgto successional systems.

These different notations are usually independent andatdrensynchronized auto-
matically because they describe specific aspects only. Argépurpose programming
language in which detailed algorithms are implemented &lus most cases, even
with code generation: When systems cannot be modelled etetypl generated code
is amended, tuned, or customized to fit special requiremARts, or frameworks [4].
Thus MDSD cannot reduce the number of notations since suibd does not integrate
in high-level specifications seamlessly. In contrastyaytes to cover all aspects by mod-
eling languages lead to modeling stacks being as compleroggsgmming languages
[5].

On the other hand, program code of modern programming layegisecame more
and more expressive over time. Fragments of object-oddatgguages can be arranged
according to informal or formalized design patterns [6]ldnguages providing con-
cepts for type-safe meta datdiribute-enabled programmin@] gives code fragments
additional semantics that are interpretable at developtirae and run time. We pro-
posed to enhance this to embed model specifications in progwde [8, 9] by defining
program code patterns representing the abstract syntaxdéls By this means pro-
gram code does not only carry implementation details, lmat alodel specifications, so
that different aspects do not require different notatidms,are views on the same soft-
ware. Since access to this code is possible with structeflaition [10] at run time, ex-
ecution frameworks can interpret and invoke the fragmemdstiaus execute the model
specifications. This is for example applicable to models tescribe the behavior of
(parts of) applications precisely, like state machinesroc@ss models.

We will here describe our approach to reduce the number atioots during devel-
opment. We introduce a concept for maintaining multipler@usion levels in program
code in section 2 and describe its systematic applicatimutihout the development
process in section 3. Afterwards we discuss the approadctiios 4, consider related
work with respect to alignment and synchronization of suctations in section 5, and
conclude in section 6.

2 Multiple Abstraction Levels in Program Code

Above we stated the goal to reduce the number of notatiorseptén many software
development activities. However, it is not desirable touaxthe number of views on
the software since different abstraction levels fulfillfdient purposes, especially if
formal specifications are used. Thus it is necessary to gdeootations and views. We
decided to enhance the idea of design patterns with regpémtnhal models and make
the program code interpretable for different views. Sinaalet specifications are by
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public class AfterMeasurementState implements IState —0 State Definition

{ [—0 Target State Pointer [—. Contract Pointer
@Tran51t10n(target =|UpUpState.class|, contract —\BeganpUpContract class\)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{
actor.doMeasure| ();

} ———@ Transition
/7 ...
}

L——@ Action Label

State and Transition Definition in Source Code

Contract Definition

3 public class BeginUpUpContract implements IContract<|IMeasurementVariables| > %

{

’—. Current Variable Values \—0 Variable Definitions

public boolean checkCondition( ‘IMeasurementVariables vars‘)

{
return (!vars.geﬂAbort() && !vars.ge() && vars.getTooLow|());
}

°
‘———@ Variable Labels &——

r. Cached Variable Values

public boolean validate( IMeasurementVarlables IMeasurement\/arlables

{
return ( after.getNumberOfWorkers|() == ( before.getNumberOfWorkers|() + before. ge()) D
)
} \—. Vanable Labels .—1

Contract Definition in Source Code

———® Guard

Update

’—. Current Variable Values

Fig. 2. A state definition with an outgoing transition and its coaotrdlhe first method of the
contract checks a pre-condition with the current variablees, while the second method checks
a post-condition by comparing the current values to previalues.

this means embedded in the program code structures, theaapis called “embedded
models”.

2.1 Example

An exemplary embedded model for state machines is shown umnefig. It is imple-
mented by a set of classes, each marked by interfaces to b@ata"“sr “contract”
class. The class at the top is a state class whose unique mgmEsents the state’s
name. Methods in state classes are marked as transition¥dwa aneta data annotation
@r ansi ti on whose attributes refer to the target state and a contrass ¢bottom
of figure 2) containing guards and updates. An interface tgberred to as “actor”
is passed to transition methods. Its methods are integpesteaction labels which are
called when the transition fires.

Guards and updates are implemented as two methods in acaisss, both eval-
uating boolean expressions. In case of guards (mettatk Condi ti on), the re-
turned boolean value decides whether the related transitiay fire or not. They use
the current variable values of the state machine for thigsaet In case of updates
(methodval i dat e), the returned boolean value indicates whether variablesm
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the expected value or value range after actions have betorped. Therefore updates
compare the current values with the values from the pointie before the transition
fired to validate the changes to the state space. Both metioogss a “variables” type
which is a facade type representing the variables consitifthe state space of the state
machine, thus allowing an abstraction over the state sphtfeeovhole system. The
“variables” type contains “get” methods for each variakaich are by this means de-
fined with a label and a data type and which may return aggedgddta in order to
realize the abstractions named above.

2.2 General Approach

The program code introduced above is interpretable atrdifteabstraction levels, e.g.
some lines of code are both a method in terms of the progragntaimguage and a
transition in terms of the state machine model. Considdtieglomain-specific nature
of these different abstraction levels, the program codet hegprepared to represent
different abstraction levels for each embedded model. Tieiple for all domain-
specific views is illustrated in figure 3.

Transformation Program Code Pattern
Model n Execution
Framework
Interfaces
Model-to-Model t
Transformations Other Code ‘
Specifications Program Code

Fig. 3. The elements of an embedded model definition relating prograde to model spec-
ifications at higher levels of abstraction. Code formeddiwihg the pattern is executed by a
framework and connected to other code by appropriate atest

First, themodel specificationsf interest must be defined. Since not all models are
backed by common meta models the specifications can be Viéeyedit and no gen-
eral definition can be given. However, the following kindet&fments can be expected:
Static elementsepresent static structures and their relationdodic for expressions
describes dynamic aspects by connecting static structvithdogical formulas. Ele-
ments or entities outside a model can be referencddtmlsthat provide appropriate
names. Connections between static structures and forratgdaealized byunctions
that arrange and combine model elements.

Based on this the core of the embedded model can be definptogkam code
patternarranges program code fragments so that they are intebpgetath respect
to model specifications. Considering programming langsdige Java or C#, a set of
appropriate fragments is available: Static structuresdearepresented by types, meth-
ods, and annotations. Their relations can be defined withnpater types, containment,
and inheritance hierarchies. Considering formulas, gmate expressions at least for
propositional logic exist. Connections between statigatires and/or expressions can
be represented in program code in different ways, for examjth annotations or con-
tainment. The pattern definition distinguishes two typepmifgram code fragments:
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Some of the code is creatpeér instancei.e. for one concrete model, following certain
rules how fragments must be arranged to represent the myataixs Such rules may
imply the use of certain types, interfaces, or meta data itiefiis that can be identi-
fied by tools. These amgre-definedi.e. specified and implemented when an embedded
model definition is created and shared among implementaéfiarwards.

At the level of the program code the patterns describe mad&mnces. This descrip-
tion entails that no detailed execution information is eiméd in the program code,
since this would mix high-level specifications with algbritic details. For this reason
executionis realized by frameworks that access the program codeninifpthe pattern
by reflection. Interpretation and invocation of code fragtseat run time thus result in
a sequence of events and data flow matching the semantios fufrthal model.

Embedded models are not self-contained, but part of arpimagram code so that
well-definednterfacesealize abstractions between model specifications and pthe
gram codeData-oriented abstractiomeans that data read from the program code into
the model may be aggregated, thus one value delivered toddelrmay be composed
of many variable values in the program code. Botion-oriented abstractigmnmeth-
ods provide entry points to arbitrary business logic whiehefferenced in the model,
thus abstracting from the actual implementation in the @ogcode. By this means
every abstraction between model and actual implementatiexplicitly visible in the
interfaces.

When the program code pattern is by this means defined, iteanrsidered at dif-
ferent abstraction levels. For this reagmnsformation®xtract view-specific informa-
tion from program coddnternal transformationgrovide non-persistent views on the
code so that no additional notation is necessary. This igad#s since changes in one
view are reflected in the others directly. However, extenmhtions may be necessary,
for example if specific tools require certain file formatsfanbdels are communicated
outside the actual development so that program code is abteidn this casexternal
transformationdranslate model information from a program code patterm éxternal
notations. If these notations carry the information of tbarfal model completely, it
can also be transformed or merged back to program code ugamisly.

With these elements of an embedded model definition the pnogode can carry
information at different abstraction levels. We will nowsdeibe the systematic use of
this information throughout the development process.

3 Development Process

Program code containing embedded models with informatiafifeerent abstraction
levels can be the primary notation during development, abttte number of notations
can be reduced as shown in figure 4: Only source code and ceinmibgram code
are needed as explicit notations, with the compiled codegogerived from the source
code. During design, verification, monitoring, and desiggorvery, the models are spe-
cific views on the program code that are extracted on demaadvilhow explain the
use of embedded models in the development process in dettif exemplary domain
of state machines.
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Fig. 4. Different views on source code and compiled byte code dulmglopment which are
provided by unidirectional and bidirectional transforioas. The views may rely on separate
notations, but the essential modeling information is add in the program code in any case.

3.1 Design and Implementation

When the program code carries design information as wehasttual implementa-
tion, the related activities in the development processatelearly separated. During
design, we expect two use cases for embedded models:

First, models are usually defined in dedicated notations @deting tools. Such
models can be refined and/or exchanged between tools witiopigte model-to-
model transformations where source and sink carry the séicsasf the models so
that the transformation is unambiguous. This does usuallyapply to program code
since it contains detailed execution logic only. Howeveogoam code patterns with
their expressiveness can participate in model transfoomsitWith external transfor-
mations (compare section 2.2), program code structurebeameated as a result of
model transformations, and modeling information can beaex¢d from the code and
used in other notations.

Second, modeling can be used to create the program codelyifgds is useful
if the design is not that complex that it requires externahtions. In this case design
tools create program code directly from visual represenmat for example for state
machines. The design information is thus only a differeetwbn the system to de-
velop and by this means an internal transformation betweedeispecifications and
the program code.

3.2 \Verification

When program code has been designed and implemented witbdeletd models, the
contained modeling information allows for verification affelent abstraction levels.
However, verification with respect to models relies not amiythe existence of a model,
but also of a specification the model is verified against. Tdpropriate views must
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provide model specifications and interpret the embeddedeframtordingly. For this
purpose subsets of the modeling information that are ofésteare extracted from the
program code. Any abstraction or refinement explicitly happalongside interfaces or
pre-defined types.

For state machines we developed an external transformiatioiimed automata
[8] to verify them in the model checker UPPAAL [11]. By genting states out of
state classes, transitions out of transition methods dguemd updates out of contracts,
and model variables out of the respective facade type msftzofibrmal state machine
model can be extracted from the code and checked e.g. fotabéad More precise,
this allows to check the actual implementation against mé&bispecification instead of
just checking the models.

Since embedded model interfaces are interpretable wileot$o model semantics,
assertions can be made about other code connected with Tiiese assertions are
based on the semantics of the interfaces, for example wittrexiistence of pre- and
post-conditions surrounding method calls. In state mahithe update information in
contract classes can be used as additional assertionsrftim@ous validation with real
data during run time, thus implicitly checking the whole teys behavior against the
abstract model.

For the same reason, views for static analysis can deterfwitieer program code is
valid with respect to the model specifications it is inteirsgtvith. In addition, dynamic
analysis and model checking (for example with Java Patlgfifi®]) are applicable to
validate data exchange and state spaces at run time. Inothisxt an embedded state
machine eases any static analysis based on slicing simséttoas offer natural starting
points for slices. In general the patterns used to strucheeode with respect to any
class of models can be used to structure the verificationegsand reduce the search
space.

3.3 Execution

After compilation in Java, the resulting bytecode contairsst static structures like
classes and methods and provides access to them with stiuetflection at run time.
However, this has limitations since not all source code seicmare available; for ex-
ample, Java reflection treats method contents as black bloxdss context embedded
models are executed by frameworks using reflection for nepdinterpreting, and in-
voking program code. The resulting sequences of actionsradb the semantics of the
underlying formal model. Execution is thus a specific viewcompiled program code
that accesses modeling information to create sequences@hs.

Considering execution semantics of state machines, thehmsdonnected to busi-
ness logic during transitions, and the paths through thte stachine depend on deci-
sions in guards and thus on variable values. The purpose atdte machine is thus to
invoke actions in an appropriate sequence. The executionework instantiates state
classes beginning with the initial state. It reads annmatin transition methods after-
wards and instantiates contract classes referenced fhieea.the guard methods are
invoked and the variables are passed to them, and the resided to determine if the
related transition will fire. The next state is then detemxdifrom the class reference
given in the annotation, and the procedure is repeatedaifitibl state is reached.
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3.4 Monitoring

Compiled code with embedded models is interpretable fairtgpand monitoring with
respect to the model specifications. This is of interesteserobedded models interact
with other business logic and use real data at run time. Thare eomplex state spaces
can exist than those used for verification. For monitorinaces in terms of class in-
stantiations, method calls, and changes of variable valaede generated. Two kinds
of monitoring can be distinguished:

Activemonitoring is controlled by the execution framework natify listeners so
that appropriate views can be realized at the level of thadrmork. However, the degree
of detall is limited by the platform’s reflection capab#iti, and overhead introduced by
interpretation and emission of information must be congiddor productive systems.
Passivemonitoring relies on instrumentation techniques of thefpian. In Java the
debugging interface is appropriate to gather informatiooua running software. Since
program code patterns define entry points into program dadgntiations and invo-
cations of that code can be surveyed. Passive monitoringeapplied to all elements
of the programming language, including method contentthaba running embedded
model can be considered in detail. However, noticeablehmaat of instrumentation
techniques entails that this will not be usable in produrcéovironments.

For state machines the following information is of inter€4) Initialization and
start of a state machine with information about all statesditions, and variables as
extracted from code; (2) activation of states indicatiraf #uard evaluation and tran-
sition selection in this state will happen subsequently;s@ection of transitions in-
dicating that program control will be handed over to businegic; (4) validation of
updates after transitions with a comparison of currentme values and cached vari-
able values from the point in time before the transition firdth an appropriate tool
as shown in figure 5, an embedded state machine can be analjtherkspect to a
graphical representation highlighting active states aadisitions, variable values, and
guard evaluation.

In summary, the views used at development time can be tnaadf® the run time
when the well-defined program code structures are executed.

3.5 Design Recovery

When software is put out of service, data and business lagioféen to be transferred
to successional systems. However, experience shows teatrsmtation is often in-

complete, out of sync with the actual system, or not exisieatl. Especially modeling

information would in such cases be of help since model spatifins are often used to
describe essential parts of the system that may be of intieneeengineering or can
support the recovery of design in the software.

Modeling information in source code or byte code can be aetkas described for
design, verification, execution, and monitoring. It is apgpiate for reengineering and
design recovery since it is no external meta data, but doiesi (a part of) the actual
system that is to be replaced. Thus embedded models suggsighdecovery if basic
information about their use is available.
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Fig. 5. A state machine view realized by a monitoring tool. It shoelestion of states and tran-
sitions as well as variable values and evaluation of guandsiadates.

4 Discussion

The approach presented here is contrary to other MDSD agpipesasince it consid-
ers program code not as result derived from abstract spstoifits, but the primary
notation containing information about models. We chosg #gproach because pro-
gram code is an integral part of most software developmadivitiaes: When complex
requirements, specific libraries or frameworks, or peramge requirements demand
non-standardized solutions, model specifications canmatrccomplete applications
under development. This leads to situations where a seogartiexists between model
specifications and the actual program code that is derived them or must interact
with derived code. The use of different notations thus iases complexity which is not
reduced by tools unambiguously.

Embedded models are therefore applicable when domainfispeodels are used
in programs where developers have to work with program cegkoily. In such cases
the tight integration of specifications and program codeezxidbed in this contribu-
tion is desirable from our point of view and can be used thhoud the development
process. Notations that are only used to provide domainHspgiews on the program
code can be replaced by appropriate program code patterdedign, verification, exe-
cution, monitoring, and design recovery of software. Therapch has so far been eval-
uated in the development of mid-sized real-world applarai[13]. The development
activities described in this contribution are already sarpgd by tools that interpret the
program code at development time and run time and providefapeiews for differ-
ent purposes. However, different semantic gaps can be et different modeling
classes, so that further research is necessary to detetmiapplicability of embedded
models.
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In summary, we are convinced and have partly evaluated thbédded models are
appropriate for the given use case of application developme

5 Related Work

We consider work related to this contribution that aimsaesitht reducing the number
of different notations in use during development or at seamkynchronization with
respect to formal models.

While model round-trip engineering identifies relationsAmen program code and
models, it requires manual effort since modifications indbee cannot always be inter-
preted with respect to semantics of abstract models [14joihtrast, embedded models
only consider program code that follows the syntax of progmde patterns and is
therefore interpretable unambiguously. Several appesotiate source code to high-
level specifications using meta data, e.g. [15], thus enhgnts formal description at
the same abstraction level while using different notati@isnilar, framework-specific
modeling languages consider the semantics of frameworksable continuous round-
trip engineering at this abstraction level [16]. Differémthese approaches, embedded
models focus on establishing relations between differkstraction levels.

In contrast to Internal DSLs [17], embedded models allow ard to interpret
statements, but more complex static structures in the @thter than design patterns
specified with respect to modeling languages [18], embeddedels are completely
founded on formal model semantics. In difference to modetionstraints in object-
oriented source code [19] or model checking for source ct8g pmbedded models
do not focus on verification of the program code itself, buitemelations to high-level
specifications.

While execution of model specifications like UML diagram8]Zonstraint or ac-
tion languages [21], or DSLs [22] leads to a clean and modetri view of systems,
it requires complete modeling of applications or integnaibf modeling notations with
program code. Program code patterns of embedded modetstirast, are invoked ac-
cording to the execution semantics, while all informatismbedded in the program
code.

In summary, these related approaches are not approprieté&r reduce the num-
ber of notations in use during development or enable a sesamigchronization that
considers formal models as well as program code.

6 Conclusions

In this contribution we presented an approach to reducedhgber of notations used
during software development if the implementation is basedanodel specifications.
Since program code is explicitly available in many projeets considered the expres-
siveness of modern object-oriented general-purpose @noging languages and en-
hanced the idea of design patterns with program code pattieahrepresent the syntax
of models. By this means less notations are required sire@rbgram code itself is
interpretable at different levels of abstraction. The lasy domain-specific views on
the program were discussed with the example of state maxcfondesign, verification,
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execution, monitoring, and design recovery of softwarebEdded models are thus ap-
plicable for software under development that uses domaécifc models together with
program code that is not based on models. Since the develt@muivities described
here have been evaluated in mid-sized real-world appticatand are supported by
appropriate tools we can state that the approach is feasible

Future work will focus on extending the concept with resgedifferent aspects.
First the transfer to other modeling domains will be of ieswhich will include com-
pletely different modeling domains like components, oogids, or rules. In this context
the integration in meta-modeling languages (like UML's OMIRd model interactions
will be of interest, both with the objective to cover largerts of applications under
development and leverage the principle of working with coe notation for different
abstraction levels.
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