
Extending CTL to Specify Quantitative Temporal
Requirements

Ammar Mohammed and Ulrich Furbach

Universität Koblenz-Landau, Artificial Intelligence Research Group
D-56070 Koblenz, Germany

Abstract. Computation tree logic (CTL) is expressive to specify those qualita-
tive properties which focus on the temporal order of events. It, however, lacks
to specify quantitative temporal requirements, which put time constraints on the
occurrence of events. Thus, this paper presents a novel variant of temporal logic,
RCTL (Region Computation Tree Logic), that extends CTL by incorporating the
notation of time explicitly. To accomplish this aim, the paper uses hybrid au-
tomata as a model of computation. The specification language of RCTL allows
us to express many properties in a concise and intuitive manner. To bring model
checking within the scope of RCTL, the paper focuses on the specification of
those properties that can be verified using reachability analysis, which is imple-
mented in a previous work.

1 Introduction

Originally, hybrid automata [11] have been introduced as mathematical formalism for
modeling and analysis of systems, whose behaviors are determined with discrete and
continuous change. In a previous work [15], it has been presented an approach to model
and verify multi-agent systems by means of hybrid automata. In this approach the defi-
nition of hybrid automata has been extended with events on each discrete transition. Ad-
ditionally, the approach has presented a way to construct the composition of automata
on-the-fly with the help of those events. Model checking, based on the reachability
analysis, has been adopted in this approach. In [16, 20] a tool environment with a con-
straint logic programming core has been implemented as a prototype of this approach.
In order to check properties, however, one needs a formal specification languages, as
this language in one of the primary interfaces to the tool. One of the most widely used
specification languages is temporal logic, which comes in two views : linear time (LTL)
[14, 18] and branching time (CTL) [7] temporal logics. Both views allow to express the
qualitative requirements of reactive systems; that is the requirements which focus on the
temporal order of occurrence of events. However, these temporal logics are insufficient
to specify quantitative temporal requirements, or what is so-called hard real time con-
straints, which put timing deadlines on the behavior of reactive systems. For example,
temporal logic can specify that theevent1 is always eventually followed byevent2, but
it can not reveal how long the period between the two events takes place. Therefore,
temporal logics should be refined, in order to permit such types of quantitative specifi-
cations. For accomplishing this aim, there have been proposed several temporal logics

Mohammed A. and Furbach U.
Extending CTL to Specify Quantitative Temporal Requirements.
DOI: 10.5220/0003021500700079
In Proceedings of the 8th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems (ICEIS 2010), page
ISBN: 978-989-8425-12-6
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



for both linear and computation tree logic with quantitative time (see [3, 6] for a sur-
vey). The underlying models of these logics are representedas state transition graphs
annotated with time constraints, using either event-basedor state based approach. In
the former approach, events record the changes of states at particular points of time,
whereas in the latter approach, the changes of states are recorded at each point of time.
The key difference between both approaches depends on the choice of time domain. In
particular, choosing the domain of time to be the set of natural numbers, gives what is
so calledDiscrete timemodel. In this model a transition between states, represented by
events, which happen only at the integer time values. The behavior of a discrete time
model is described by the timed trace over a set of events thatoccur during the evolu-
tion of the model. Examples of related works those logics, which follow the event based
model, areTimed Propositional Temporal Logic(TPTL) [4], andExplicit Clock Tem-
poral Logic [10, 19, 17] for linar time logics, andReal-Time Computation Tree Logic
(RTCTL) [9] for computation tree time logic. The main advantage of event based log-
ics together with their underlying discrete time model, is their simplicity to express the
quantitative properties, as they abstract lots of details of models. These logics, however,
can not specify quantitative properties, which may occur within an interval of time. For
example, it might be desirable to state that within some interval of time, say 10≤ t ≤ 20,
a certain property holds. This can not be expressed with events unless the boundaries of
the interval coincides with occurrence some events.

On the other hand, choosing the time domain to be the set of non-negative real
numbers gives what is so calledcontinuous/densemodel, in which states have to be
recorded at each time point. Therefore, the change of statesis represented by letting the
time to pass between one state to another. Examples of related works of dense logics are
Metric Temporal logic(MTL) [13] and Metric Interval Temporal Logic(MITL)[2] for
linear time with dense semantics, andTimed Computation Tree Logic(TCTL) [1], and
Integrator Computation Tree Logic(ICTL) [5] for computation tree time with dense
semantics. These logics are powerful and expressive to specify quantitative properties,
as they record the state of the model at each point of time. They cope with the limitations
of event based logics mentioned previously. They, however,lack to express properties
that entirely depend on events in models directly, despite the fact that events are used
to communicate and synchronize concurrent parts of a model –i.e. are used to construct
the parallel composition of a model. To specify and hence verify a property based on the
occurrence of events, an extra work has to be done on the specification of this property
by converting its event based specification into a suitable state based representation like
what Uppaal [8] and Hytech [12] are doing. For example, to specify and check that it
is always the case in a modelM that event1 is followed byevent2 within t time unit–
this property is called a bounded response property–, a traditional solution to this is to
translate this specification to a testing transition modelA, and then checking whether
the parallel composition ofA andM can reach a designated state ofA.

To this end, this paper proposes Region Computation Tree Logic (RCTL) that ex-
tends CTL by incorporating notation of time on states and events. Hybrid automata will
be used as the underlying model of RCTL. In particular, formulas of RCTL are inter-
preted on tree of regions – i.e. the set of all possible runs – generated from the transition
system of hybrid automata [15]. To plug the specification of properties into our model

71



checking approach presented in [16, 15, 20], the paper focuses on a fragment of this
logic that specifies those properties which can be verified using reachability analysis.
The main novelty of RCTL is that it encompass the expressive power of event ans state
based approaches. In contrast to other model checking tools, like Uppaal [8] and Hytech
[12], the verification of requirements are straightforwardchecked without unnecessary
translation to suitable specifications.

The structure of the paper is as follows. In Sec.2 we introduce the syntax and the
semantics of the region computation tree logic will be explained. In Section 3, the spec-
ification of several qualitative and quantitative properties in RCTL is given. Moreover,
the paper encodes these properties them into suitable constraint logic program quires,
and hence can be automatically verified by means of Reachability analysis. Finally,
Section 4 concludes the paper.

2 Region Computation Tree Logic RCTL

This section primarily focuses on the definition of the region computation tree logic
(RCTL), which extends the qualitative temporal logic of CTLwith time on states,
events, and constraints of variables. Thus, RCTL brings together, in the same level
of specifications, qualitative and quantitative requirements. The formulas of RCTL are
interpreted over the possible regions resulted from the runof hybrid automata.

A hybrid automatonH consists of a finite set of control locationsQ, a finite set
of real-valued variablesX = {x1,x2, ...,xn}, a finte set of events, and functions that
determine the continuous evolution of the variables w.r.t.some constraints insideQ, the
jump from locations, and howX are updated. Additionally, a hybrid automaton contains
an initial location and valuations of the variable which determine the starting state of
the automaton – Due to the space limitation, we assume the reader is familiar with the
syntax and semantics of hybrid automata. More details aboutthis can be find in [15].

Informally speaking, a stateσi = 〈qi ,vt , t〉 of a hybrid automaton describes the val-
uationsvt of the variablesX at time instancet in a control locationq. A run ρ =
σ0σ1σ2, . . . of a hybrid automaton is defined in terms of an alternating sequence of
states, which they are related to each others using a continuous or a discrete step. If
a stateσ1 relates toσ2 with a discrete setp, then an event should be fired. The con-
tinuous change of states in a run generates an infinite numberof states. It follows that
state-space exploration techniques require a symbolic representation way in order to
represent the set of states in an appropriate way. A good way to represent this is to use
mathematical intervals calledregions, which are able to capture all possible continuous
states. Thus, the run of a hybrid automaton can be rephrased in terms of reached re-
gions, where the change from one region to another is fired using a discrete step. which
are able to capture all possible continuous states. A regionΓ is written asΓ = 〈q,V,T〉
captures the possible states that can be reached using continuous transitions in each
locationq∈ Q.Therefore,T represents the continuous reached time. Additionally, a re-
gion captures the continuous values for each variablexi ∈ X. These continuous values
can be represented as an intervalV of real values. Thus, a run of a hybrid automaton
can be rephrased in terms of reached regions asρH = Γ0Γ1, ... where the change from
one region to another is fired using a discrete step – written asΓi

a−→
t

Γi+1.

72



Regions are the key essence of RCTL, such that RCTL can be viewed as a state
based quantitative temporal logics in a sense that regions capture the changes of states,
and as event based quantitative temporal logics in a sense that events mark the instanta-
neous exist from region to another. Thus, RCTL brings together, in the same framework,
the advantages of both approaches. In the following we show the syntax and semantics
of RCTL.

Let X be a set of real variables,Φ(X) be a set of a linear constraints with free
variables fromX, Q be a set of proposition denotes a set of locations , andEventbe a
set of propositions denotes the occurrence of events.

Definition 1 (Syntax).The formulaΨ of RCTL are inductively defined as

Ψ ::= p | a | φ | ¬Ψ |Ψ1∧Ψ2 |t.Ψ | ∃(Ψ1UΨ2)| ∀(Ψ1UΨ2)

for t ∈ R≥0, p∈Q, a∈ Event, andφ ∈ Φ(X)

Let a regionΓ Conventionally takes the formΓ = (q,V,T), with q is its location,
andV andT are the interval of continuous valuation of variables with their respective
time at which the region is admissible. A sub-regionβ ⊆ Γ , andβ 6= /0 means that
β = (q,V

′
,T

′
) with T

′ ⊆ T andV
′ ⊆V. A stateσ ∈ Γ means thatσ = (q,vt , t), with

vt ∈V andt ∈ T. σ satisfies a constraintφ ∈ Φ(X), written asσ |=v ϕ , iff vt |= ϕ –i.e.,
the valuationvt satisfies the constraintϕ . In the following, we show the semantics of
RCTL formulas on the set of all possible runsΠH

Definition 2 (Semantics).Let Ψ is a RCTL formula, andΠH be the possible runs
of a hybrid automaton with a regionΓ = (q,V,T) ∈ ΠH . The satisfaction relation
〈ΠH ,Γ 〉 �T Ψ , which means thatΨ is satisfied in the regionΓ within a time interval T ,
is defined inductively as follows

- 〈ΠH ,Γ 〉 �
T

p iff p= q.

- 〈ΠH ,Γ 〉 �
T

a iff there is t′ ∈ T with Γ a−→
t′

Γ ′.

- 〈ΠH ,Γ 〉 �
T

φ iff there isβ ⊆ Γ , f or eachσk ∈ β ,σk �v φ .

- 〈ΠH ,Γ 〉 �
T
¬Ψ iff 〈ΠH ,Γ 〉 2

T
Ψ .

- 〈ΠH ,Γ 〉 �
T

t.Ψ iff 〈ΠH ,Γ 〉 �
T:=t

Ψ .

- 〈ΠH ,Γ 〉 �
T

Ψ1∧Ψ2 iff 〈ΠH ,Γ 〉 �
T

Ψ1 and(ΠH ,Γ ) �
T

Ψ2.

- 〈ΠH ,Γ 〉 �
T
∃(Ψ1UΨ2) iff there is a runΠ ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ = Γ0, for

some j≥ 0, 〈ΠH ,Γj〉 �
Tj

Ψ2, and〈ΠH ,Γk〉 �
Tk

Ψ1 for 0≤ k< j.

- 〈ΠH ,Γ 〉 �
T
∀(Ψ1UΨ2) iff for every runΠ ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ = Γ0, for

some j≥ 0, 〈ΠH ,Γj〉 �
Tj

Ψ2, and〈ΠH ,Γj〉 �
Tk

Ψ1 for 0≤ k< j.

In the previous semantics, the quantifiers∀, and∃ are called paths quantifiers. The for-
mulat.Ψ gives the current time, at which the formulaΨ occurs.〈ΠH ,Γ 〉 �

T:=t
Ψ means

that the formulaΨ is satisfied in the regionΓ when the timeT is restricted to the time
pointt. In caseΨ represents a proposition of an event, thent.Ψ gives the time at which

73



the event has occurred. This can be used to specify various quantitative properties, like
time bound response properties, as we will see in what follows. However, ifΨ repre-
sents a constraint formula, thent.Ψ evaluates the time interval at which the constraintΨ
is satisfied. This allows to specify quantitative properties, which could not be specified
using events.

In addition to the definition of formulas, There are standardabbreviations in RCTL
similar to CTL. For example, Eventually:♦Ψ = true UΨ , and Always:�Ψ = ¬♦¬Ψ .
Like � and♦, both∀ and∃ are dual. Thus, the formulas¬(∀♦Ψ ) and∃�¬Ψ , for
example, are semantically equivalent.

Definition 3 (Satisfiability). Let H be hybrid automaton withΠH as its possible runs.
We say that H satisfies the RCTL formulaΨ , written as H�Ψ , iff (ΠH ,Γ0) �Ψ , where
Γ0 is the initial region ofΠH .

3 Model Checking as Reachability

For the purpose of verification by means of model checking, weneed to describe the
properties. Generally, the qualitative properties are often classified into reachability,
safety and liveness properties. However, when the time becomes a critical factor to react
in the environment, then the concept of safety and liveness properties should be refined.
In the following these types of properties will be reviewed with their specifications by
means of RCTL. For the purpose of model checking, these properties will be encoded
into suitable queries in Constraint logic program (CLP) following our CLP model pre-
sented in [15]. However, in order to put model checking within our framework, we will
concentrate only on the reachability requirements. Indeed, many properties of interest
can be specified as a form of reachability, as we will see in thesequel. Therefore, we
will start with specifying of reachability.

3.1 Reachability Properties

The reachability of a propertyΨ means starting from the initial state of an intial region,
there is a region along some run in whichΨ is satisfiable. This can be specified in RCTL
as follows:

init →∃♦Ψ

whereinit is the predicate characterizing the set of initial states and it expresses that
the run to be considered are those that start from the initialstate . In terms of the CLP
model, the reachability of a certain region that satisfies the formulaΨ is done by per-
forming forward reachability analysis from the system’s initial state, and then checking
whether the conjunction ofΨ with the possible reached regions is satisfied. For exam-
ple assuminginit has been assigned to the set of initial state, the following is the CLP
query to check the safety requirements.

%%% reachable(+init,-Region).
%%% perform reachability starting from the intial states

74



?- reachable(init,Reached),
member(Ψ,Reached),φ.

In this query,reachable is a predicate which takes the initial states of a model
and returns the possible reached state in a list of regions,member is the standard Pro-
log predicate.φ is a constraint formula over the variables, which might appear in the
formulaΨ . To demonstrate the previous specification in a concrete example, we take
a train gate controller example described in [15]. Assume that one wants to check the
possibility of reaching a region whose a state satisfy that the train is at near within
distance less than 10meters, and thegateis closed. First the initial states is given by

init : train. f ar ∧ gate.open∧ controller.idel ∧ x= 1000∧ g= 0 ∧ z= 0.

The intended formula is specifed as

init →¬∃♦(x≤ 10∧ train.near∧gate.closed)

Now, in CLP the previous formula is verified by asking the following query. The
successful answer to this query gives insight for the satisfaction of the reachability of
the specified formula.

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((near,close,_,Time,_,X,),Reached), X $=< 10.

It is often that in certain cases we may be interested in the reachability of certain
state either before or after a time deadline has expired, which we callTime bounded
reachability. For example, the possibility of a formulaΨ to be reached within the
bounded timeα is specified in RCTL as

init →∃♦ (t.Ψ ∧ t ≤ α)

Demonstrating this on the previous example withα = 19, in the following the query,
which check the reachability of the previous example within19 unite of time.

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((near,close,_,Time,_,X,),Reached),
X $=< 10, Time $=<19.

3.2 Safety as Reachability

A safety property states thatsomething bad must never happen. The bad thing represents
a critical property that should never occur. LetΨ represents this critical property, then
the safety property is specified using RCTL as:

init :→∀�¬Ψ .

Generally, a safety property can be violated within boundedtime, which means that the
exhibition of the previous formula by a single state within aregion, suffices to show

75



that the safety property does not hold. For this reason, safety property can be reduced
to reachability property as the following

init :→¬∃♦Ψ .

To illustrate the safety property in the train gate example,assuming one wants to
check that the state, where the train is near at distanceX = 0 and the gate is open, is a
forbidden state. This safety requirement can be specified as

init →¬∃♦(x= 0∧ train.near∧gate.open)

This formula asserts that during the run of the system, starting from the initial state,
there is no reached state where the train is near at distancex= 0 and the gate is at open
state. It turns out, to check the safety property, one checksthe unreachability of the
following query:

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((open,down,_,Time,_,X,),Reached), X $= 0.

3.3 Quantitative Properties

We showed that safety properties can be reduced to reachability problem. The safety
properties assert what may or may not occur, but do not require that anything ever does
happen. For example, in the train gate example, closing the gate permanently can main-
tain the safety of the system, but it is unacceptable for the waiting cars or pedestrians
in the front of the gate. For this reason, the liveness property is needed to specify such
requirements, which asserts that some property of interestwill always eventually occur.
In other words, there exists a time point in which the system is always in a good state.
It should be noted these type of properties can not be falsified in bounded time. We can
not say that the liveness property is violated because of occurring some state does not
say how long it will take for this state to occur. For this reason, these types of proper-
ties are not strong enough in the context of specifying quantitative properties. Here one
would like to see a time bound when the good state occurs. Thisbrings the next kind of
properties.

Bounded Response Properties.A bounded response property is one of the most im-
portant classes of quantitative timing requirements, which can be used to specify many
important application. It asserts that something will happen within a certain amount of
time. A typical application of bounded response property isthe specification of worst
case performance; that is the specification of an upper boundα on the termination of
a systemS: if started at timet, thenS is guaranteed to reach a final state no later than
α + t unit time. In the train gate example, a desired property is tospecify that once
the approach of a train is detected, the gate needs to be closed within a certain time
bound in order to halt car and pedestrian traffic before the train reaches the crossing the
intersection. Formally, the bounded response property canbe specified in RCTL as:

init →∀�(t1.event→∀♦(t2.event2∧ t2 ≤ α + t1)).

76



The previous formula states that whenever there is a requestevent1 occurs at time
t1, then it is followed by a responseevent2, at timet2, such thatt2 is at mostα + t1.

It should be mentioned that this property can be falsified within time bound, there-
fore this property can be specified as a kind of safety requirement, and hence can be
represented as reachability. For this reason, proving the previous property means prov-
ing that it is not possible to reach a state where theevent2 is not reached fromevent1,
within t2 ≤ α + t1. In other words, starting fromevent1, finding a reachable state satis-
fiesevent2, within α time bound, is sufficient to check the reachability of the property.
In terms of the CLP, this previous can be encoded into the following steps. First, getting
all possible reachable states fromevent1 within t1+α asL, then check that reachability
of event2 has not occurred. A positive answer gives a negative answer to the original
problem, and vis versa. The following is the CLP query encode, the previous specifica-
tion

?- reachable(Ψ0,Reached),
reached_from(L,event1,Reached),
reached_within(Target, α,L),
\+ memeber((_,..,_,event2),Target)

We should emphasize that the traditional way to verify this type of properties in real
time system tools, like UPPAAL [8] and Hytech [12], is to translate this property to a
suitable state based specification. In Hytech, for example,to specify that theevent2 is a
response toevent1 within α time unit, one has to augment the model under consideration
by an automatonA, whoseidle, wait, andviolate as its control locations andt as its
integrator. Initially, the control location in theidle. When a triggerevent1 occurs, control
pass towait location and the integratort is reset. The responseevent2 causes the control
to return to theidle location. The locationviolateis only enabled whent ≥α. Now, with
the parallel composition of the original model with the automatonA, the specification
of bounded response property can be specified as the un-reachability of the location
violate. As we said , the reason behind this translation is that thereis no direct use
of events in the model. The use of events are limited to construct only the parallel
composition of automata. In contrast to our presented approach, the direct use of events
with the model, allows us to avoid this translation process.This shows that RCTL is
more expressiveness, particularly in our setting, than anyother quantitative temporal
logics.

Bounded invariance Properties.Like the bounded response property, bounded invari-
ance property is one of the most important classes of quantitative timing requirements.
It asserts that once an event has been triggered, a certain condition will hold continu-
ously for a certain amount of time. It is often used to specifythat something will not
happen for a certain amount of time. Formally, specifying that a certain property hold
continuously for a certain amount of time in RCTL is like the following

init →∀�(t1.event→∀�(t2.Ψ ∧ t2 ≤ α + t1)).

whereα is the duration at which the formulaΨ must be continuously hold. An example
of such type of properties is to specify that whenever the train approaches the gate, the

77



distance of the train is always greeter than 100 for the duration of 20 time unit. The
propertyΨ = X ≥ 100 in this case represents the distance of the train, andapp is the
triggered event. Again, the bounded invariance property can be checked as a safety
property. Starting from timet1, finding a non-reachable violating state for the formula
Ψ , within α time bound, is sufficient to check the reachability of the property. Thus, we
specify this with CLP as the following

?- reachable(Ψ0,Reached),
reached_from(L,event1,Reached),
reached_within(Target, α,L),
memeber((_,..,X,_,Target), X$<100.

4 Conclusions

Due to the lack of qualitative temporal logics to specify quantitative properties. We
showed in this paper how to extend the qualitative logic CTL to the quantitative logic
RCTL by adding time notation on linear constraints, states,and events. Hybrid automata
have been used as the interpretation model of RCTL. The formulas of RCTL are inter-
preted on the possible regions produced form the run of hybrid automata. With regions,
RCTL combined the expressive power of both state based and event based quantitative
temporal logics, which have been proposed already to extendthe qualitative temporal
logics. RCTL allows to express many properties in a concise and intuitive manner. To
bring model checking within the scope of RCTL, we concentrated on the specification
of those properties that can be verified using reachability analysis. Furthermore, the
paper showed how to encode these properties into suitable quires implemented with
constraints logic programming.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.Inf. Comput.,
104(1):2–34, 1993.

2. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

3. R. Alur and T. Henzinger. Logics and models of real time: A survey. Real Time: Theory in
Practice, Lecture Notes in Computer Science, 600:74–106, 1992.

4. R. Alur and T. Henzinger. A really temporal logic.Journal of the ACM (JACM), 41(1):203,
1994.

5. R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolicverification of embedded sys-
tems.IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

6. P. Bellini, R. Mattolini, and P. Nesi. Temporal logics forreal-time system specification.ACM
Comput. Surv., 32(1):12–42, 2000.

7. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time.Acta Informat-
ica, 20(3):207–226, 1983.

8. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W.Yi. Uppaal—a tool suite for au-
tomatic verification of real-time systems. InProceedings of the DIMACS/SYCON workshop
on Hybrid systems III : verification and control, pages 232–243, Secaucus, NJ, USA, 1996.
Springer-Verlag New York, Inc.

78



9. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.
Real-Time Syst., 4(4):331–352, 1992.

10. E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clocktemporal logic. InProceedings,
Fifth Annual IEEE Symposium on Logic in Computer Science, 4-7 June 1990, Philadelphia,
Pennsylvania, USA, pages 402–413. IEEE Computer Society, 1990.

11. T. Henzinger. The theory of hybrid automata. InProceedings of the 11th Annual Symposium
on Logic in Computer Science, pages 278–292, New Brunswick, NJ, 1996. IEEE Computer
Society Press.

12. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems. In
CAV ’97: Proceedings of the 9th International Conference onComputer Aided Verification,
pages 460–463, London, UK, 1997. Springer-Verlag.

13. R. Koymans. Specifying real-time properties with metric temporal logic.Real-Time Systems,
2(4):255–299, 1990.

14. Z. Manna and A. Pnueli.The temporal logic of reactive and concurrent systems: Specifica-
tion. Springer, 1992.

15. A. Mohammed and U. Furbach. Multi-agent systems:modeling and verification using hybrid
automata. In J.-P. B. Lars Braubach and J. Thangarajah, editors,Post-Proceedings of 7th In-
ternational Workshop on Programming Multi-Agent Systems at 8th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems, LNAI 5919, pages 49–66. Springer,
Berlin, Heidelberg, 2010.

16. A. Mohammed and C. Schwarz. Hieromate: A graphical tool for specification and verifica-
tion of hierarchical hybrid automata. In M. H. B. Mertschingand Z. Aziz, editors,KI 2009:
Advances in Artificial Intelligence, Proceedings of the 32nd German Conference on Artificial
Intelligence, LNAI 5803, pages 695–702. Springer, 2009.

17. J. Ostroff and W. Wonham. A framework for real-time discrete event control.IEEE Trans-
actions on Automatic Control, 35(4):386–397, 1990.

18. A. Pnueli. The temporal logic of programs. InFoundations of Computer Science, 1977.,
18th Annual Symposium on, pages 46–57, 1977.

19. A. Pnueli and E. Harel. Applications of temporal logic tothe specification of real-time
systems. InSystems, Proceedings of a Symposium on Formal Techniques inReal-Time and
Fault-Tolerant Systems, pages 84–98, London, UK, 1988. Springer-Verlag.

20. C. Schwarz, A. Mohammed, and F. Stolzenburg. A tool environment for specifying and
verifying multi-agent systems. In J. Filipe, A. Fred, and B.Sharp, editors,Proceedings
of the 2nd International Conference on Agents and ArtificialIntelligence, volume 2, pages
323–326. INSTICC Press, 2010.

79


