Extending CTL to Specify Quantitative Temporal
Requirements

Ammar Mohammed and Ulrich Furbach

Universitat Koblenz-Landau, Atrtificial Intelligence Research Group
D-56070 Koblenz, Germany

Abstract. Computation tree logic (CTL) is expressive to specify those qualita-
tive properties which focus on the temporal order of events. It, however, lacks
to specify quantitative temporal requirements, which put time constraints on the
occurrence of events. Thus, this paper presents a novel variant of temporal logic,
RCTL (Region Computation Tree Logic), that extends CTL by incorporating the
notation of time explicitly. To accomplish this aim, the paper uses hybrid au-
tomata as a model of computation. The specification language of RCTL allows
us to express many properties in a concise and intuitive manner. To bring model
checking within the scope of RCTL, the paper focuses on the specification of
those properties that can be verified using reachability analysis, which is imple-
mented in a previous work.

1 Introduction

Originally, hybrid automata [11] have been introduced as mathematical formalism for
modeling and analysis of systems, whose behaviors are determined with discrete and
continuous change. In a previous work [15], it has been presented an approach to model
and verify multi-agent systems by means of hybrid automata. In this approach the defi-
nition of hybrid automata has been extended with events on each discrete transition. Ad-
ditionally, the approach has presented a way to construct the composition of automata
on-the-fly with the help of those events. Model checking, based on the reachability
analysis, has been adopted in this approach. In [16, 20] a tool environment with a con-
straint logic programming core has been implemented as a prototype of this approach.
In order to check properties, however, one needs a formal specification languages, as
this language in one of the primary interfaces to the tool. One of the most widely used
specification languages is temporal logic, which comes in two views : linear time (LTL)
[14,18] and branching time (CTL) [7] temporal logics. Both views allow to express the
qualitative requirements of reactive systems; that is the requirements which focus on the
temporal order of occurrence of events. However, these temporal logics are insufficient
to specify quantitative temporal requirements, or what is so-called hard real time con-
straints, which put timing deadlines on the behavior of reactive systems. For example,
temporal logic can specify that tlevent is always eventually followed bgvens, but

it can not reveal how long the period between the two events takes place. Therefore,
temporal logics should be refined, in order to permit such types of quantitative specifi-
cations. For accomplishing this aim, there have been proposed several temporal logics

Mohammed A. and Furbach U.

Extending CTL to Specify Quantitative Temporal Requirements.

DOI: 10.5220/0003021500700079

In Proceedings of the 8th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems (ICEIS 2010), page
ISBN: 978-989-8425-12-6

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

71

for both linear and computation tree logic with quantitatiime (see [3, 6] for a sur-
vey). The underlying models of these logics are represeaestate transition graphs
annotated with time constraints, using either event-basexdate based approach. In
the former approach, events record the changes of statestatutar points of time,
whereas in the latter approach, the changes of states ameleecat each point of time.
The key difference between both approaches depends ondfeedf time domain. In
particular, choosing the domain of time to be the set of dtaumbers, gives what is
so calledDiscrete timemodel. In this model a transition between states, repreddnt
events, which happen only at the integer time values. Thawehof a discrete time
model is described by the timed trace over a set of eventotitair during the evolu-
tion of the model. Examples of related works those logicsctvfollow the event based
model, areTimed Propositional Temporal Logi@PTL) [4], andExplicit Clock Tem-
poral Logic[10,19, 17] for linar time logics, anBeal-Time Computation Tree Logic
(RTCTL) [9] for computation tree time logic. The main advage of event based log-
ics together with their underlying discrete time modelhisit simplicity to express the
quantitative properties, as they abstract lots of detéitlsarlels. These logics, however,
can not specify quantitative properties, which may occtiniwvian interval of time. For
example, it might be desirable to state that within somevaief time, say 16<t < 20,

a certain property holds. This can not be expressed withtewerhess the boundaries of
the interval coincides with occurrence some events.

On the other hand, choosing the time domain to be the set oihegative real
numbers gives what is so calledntinuous/densmodel, in which states have to be
recorded at each time point. Therefore, the change of sgtepresented by letting the
time to pass between one state to another. Examples ofdelatds of dense logics are
Metric Temporal logidMTL) [13] and Metric Interval Temporal Logi¢MITL)[2] for
linear time with dense semantics, afiched Computation Tree Log{@CTL) [1], and
Integrator Computation Tree Logi@CTL) [5] for computation tree time with dense
semantics. These logics are powerful and expressive tafgpg@ntitative properties,
as they record the state of the model at each point of timey @byee with the limitations
of event based logics mentioned previously. They, howéaek, to express properties
that entirely depend on events in models directly, deshiefact that events are used
to communicate and synchronize concurrent parts of a ma@elare used to construct
the parallel composition of a model. To specify and henciyaiproperty based on the
occurrence of events, an extra work has to be done on thefispéion of this property
by converting its event based specification into a suitaile $ased representation like
what Uppaal [8] and Hytech [12] are doing. For example, tccEpand check that it
is always the case in a model thateveni is followed byevens within t time unit—
this property is called a bounded response property—, &itmaal solution to this is to
translate this specification to a testing transition ma&lednd then checking whether
the parallel composition oA andM can reach a designated statedof

To this end, this paper proposes Region Computation Treecl (&L TL) that ex-
tends CTL by incorporating notation of time on states anchissélybrid automata will
be used as the underlying model of RCTL. In particular, fdaawf RCTL are inter-
preted on tree of regions —i.e. the set of all possible rurenegated from the transition
system of hybrid automata [15]. To plug the specificationroferties into our model

72

checking approach presented in [16, 15, 20], the paper &scan a fragment of this
logic that specifies those properties which can be verifigtgugachability analysis.
The main novelty of RCTL is that it encompass the expressivesp of event ans state
based approaches. In contrast to other model checking tikel&/ppaal [8] and Hytech
[12], the verification of requirements are straightforweh@écked without unnecessary
translation to suitable specifications.

The structure of the paper is as follows. In Sec.2 we intredhe syntax and the
semantics of the region computation tree logic will be ekpad. In Section 3, the spec-
ification of several qualitative and quantitative propestin RCTL is given. Moreover,
the paper encodes these properties them into suitableraorsogic program quires,
and hence can be automatically verified by means of Readiyadnilalysis. Finally,
Section 4 concludes the paper.

2 Region Computation Tree Logic RCTL

This section primarily focuses on the definition of the regammputation tree logic
(RCTL), which extends the qualitative temporal logic of CWlith time on states,
events, and constraints of variables. Thus, RCTL bringsttugy, in the same level
of specifications, qualitative and quantitative requirataeThe formulas of RCTL are
interpreted over the possible regions resulted from thefurybrid automata.

A hybrid automatorH consists of a finite set of control locatio¥ a finite set
of real-valued variableX = {xi,%y,...,Xn}, @ finte set of events, and functions that
determine the continuous evolution of the variables veoine constraints insidg, the
jump from locations, and ho¥ are updated. Additionally, a hybrid automaton contains
an initial location and valuations of the variable whichetatine the starting state of
the automaton — Due to the space limitation, we assume tleré&afamiliar with the
syntax and semantics of hybrid automata. More details ab@itan be find in [15].

Informally speaking, a states = (g, w,t) of a hybrid automaton describes the val-
uationsv; of the variablesX at time instance in a control locationg. A run p =
000102, ... of a hybrid automaton is defined in terms of an alternatingisege of
states, which they are related to each others using a continor a discrete step. If
a stateo; relates toog, with a discrete setp, then an event should be fired. The con-
tinuous change of states in a run generates an infinite nuaflstates. It follows that
state-space exploration techniques require a symbolieseptation way in order to
represent the set of states in an appropriate way. A goodavagptesent this is to use
mathematical intervals calledgions which are able to capture all possible continuous
states. Thus, the run of a hybrid automaton can be rephrasedns of reached re-
gions, where the change from one region to another is firetyusdiscrete step. which
are able to capture all possible continuous states. A rdgisnwritten as™ = (q,V, T)
captures the possible states that can be reached usingumni transitions in each
locationqg € Q.ThereforeT represents the continuous reached time. Additionally; a re
gion captures the continuous values for each varigbteX. These continuous values
can be represented as an inteVabf real values. Thus, a run of a hybrid automaton
can be rephrased in terms of reached regionsqas ly/1,... where the change from
one region to another is fired using a discrete step — Writse'n% [iy1.

73

Regions are the key essence of RCTL, such that RCTL can bestliew a state
based quantitative temporal logics in a sense that reg@apisie the changes of states,
and as event based quantitative temporal logics in a seasewbnts mark the instanta-
neous exist from region to another. Thus, RCTL brings togreth the same framework,
the advantages of both approaches. In the following we shewyntax and semantics
of RCTL.

Let X be a set of real variable®(X) be a set of a linear constraints with free
variables fromX, Q be a set of proposition denotes a set of locations ,Eavehtbe a
set of propositions denotes the occurrence of events.

Definition 1 (Syntax).The formula®’ of RCTL are inductively defined as
Wi=plalg| -V UAKILY I(HUUY)| V(HUW)

fort ¢ R=9, pe Q, ac Event, andp € ®(X)

Let a region~ Conventionally takes the forifi = (q,V, T), with q is its location,
andV andT are the interval of continuous valuation of variables withit respective
time at which the region is admissible. A sub-reg@riC ', and3 # 0 means that
B=(qV T)with T'C T andV' CV.Astatec € I' means thatr = (g, ,t), with
vt €V andt € T. o satisfies a constraigt € @(X), written aso =y ¢, iff w = ¢ —i.e.,
the valuationv; satisfies the constrairgt . In the following, we show the semantics of
RCTL formulas on the set of all possible rufg

Definition 2 (Semantics).Let ¥ is a RCTL formula, andTy be the possible runs
of a hybrid automaton with a regioh = (q,V,T) € l1y. The satisfaction relation
(My,) Er W, which means tha? is satisfied in the regiof within a time interval T,

is defined inductively as follows

My, r |:p|ff p=g.
My, r) Eaiff therelsteTW|thI'—>I"

- My, E @iff thereis C T, for eachake B, ok Ey @.
- iff <I‘IH,I'>}7£LIJ
- My, t.W iff <I_l|-|7 > |: W,

My, A Y iff <nH, >l=l#1and(l7H, =i
My,) E (WU) iff there |sarunl‘lel‘lHJ'lzl'o,f_l,'--,With/_:/_o- for

()
()
()
- (M, 1)
()
()EW
() EA(
some > 0, <I7H7I'j>lT:j%,and(ﬂH,I‘k>lT:kW1for0§k<j.
v(
(

—T —|‘I'I' =T =T =TT

(M, > YU) iff for every runll € Iy, M = o, M1,---, with T = T, for
some]>0, I‘IH,I'J->|T:%,and(ﬂH,ﬁ>lT:W1for0§k<j.
i k

In the previous semantics, the quantifigr@ndd are called paths quantifiers. The for-
mulat.¥ gives the current time, at which the formdaoccurs.(IMy, ") |: ¥ means

that the formula¥ is satisfied in the regiof when the timeT is restrlcted to the time
pointt. In case represents a proposition of an event, thé# gives the time at which

74

the event has occurred. This can be used to specify variarditptive properties, like
time bound response properties, as we will see in what falldtowever, if¥ repre-
sents a constraint formula, thek evaluates the time interval at which the constr&int
is satisfied. This allows to specify quantitative propestighich could not be specified
using events.

In addition to the definition of formulas, There are standaybreviations in RCTL
similar to CTL. For example, Eventuall}¥ = true U¥, and Always{1¥ = -,
Like O and ¢, bothV and3 are dual. Thus, the formulas(v{$W¥) and 30-Y, for
example, are semantically equivalent.

Definition 3 (Satisfiability). Let H be hybrid automaton witfiy as its possible runs.
We say that H satisfies the RCTL formtawritten as HE W, iff (My, o) E W, where
Iy is the initial region offy.

3 Model Checking as Reachability

For the purpose of verification by means of model checkingnesd to describe the
properties. Generally, the qualitative properties areroftlassified into reachability,
safety and liveness properties. However, when the timerhesa critical factor to react
in the environment, then the concept of safety and livenessaties should be refined.
In the following these types of properties will be revieweithvtheir specifications by
means of RCTL. For the purpose of model checking, these piiepavill be encoded
into suitable queries in Constraint logic program (CLP)daing our CLP model pre-
sented in [15]. However, in order to put model checking withiir framework, we will
concentrate only on the reachability requirements. Indethy properties of interest
can be specified as a form of reachability, as we will see irstitpiel. Therefore, we
will start with specifying of reachability.

3.1 Reachability Properties

The reachability of a property means starting from the initial state of an intial region,
there is aregion along some run in whi¢tis satisfiable. This can be specified in RCTL
as follows:

init — 3oW

whereinit is the predicate characterizing the set of initial states iaexpresses that
the run to be considered are those that start from the isitzdé . In terms of the CLP
model, the reachability of a certain region that satisfiesftimula¥ is done by per-
forming forward reachability analysis from the systemisiah state, and then checking
whether the conjunction ¢# with the possible reached regions is satisfied. For exam-
ple assumingnit has been assigned to the set of initial state, the followsrtgé CLP
query to check the safety requirements.

%846 r eachabl e(+ini t, - Regi on).
%86 perform reachability starting fromthe intial states

75

?- reachabl e(init, Reached),
menber (¥, Reached), @.

In this query,reachabl e is a predicate which takes the initial states of a model
and returns the possible reached state in a list of regiender is the standard Pro-
log predicateg is a constraint formula over the variables, which might a@ppe the
formula®. To demonstrate the previous specification in a concretmpbe we take
a train gate controller example described in [15]. Assuna¢ dme wants to check the
possibility of reaching a region whose a state satisfy thatrain is at near within
distance less than Ieters and thegateis closed First the initial states is given by

init : train.far A gateopenA controlleridel A x=1000A g=0 A z=0.
The intended formula is specifed as
init — -3 (x < 10Atrain.nearA gateclosed

Now, in CLP the previous formula is verified by asking the daling query. The
successful answer to this query gives insight for the satigfn of the reachability of
the specified formula.

?-reachabl e((far,[1000]), (open,[0]), (idle, [0]), Reached),
menber ((near, cl ose, _, Time, _, X,), Reached), X $=< 10.

It is often that in certain cases we may be interested in taeh@bility of certain
state either before or after a time deadline has expiredsiwivie callTime bounded
reachability For example, the possibility of a formuld to be reached within the
bounded timex is specified in RCTL as

init — 3O tL.YAt < a)

Demonstrating this on the previous example witk= 19, in the following the query,
which check the reachability of the previous example wittBrunite of time.

?-reachabl e((far,[1000]), (open,[0]), (idle, [0]), Reached),
menber ((near, cl ose, , Tinme, _, X,), Reached),
X $=< 10, Time $=<19.

3.2 Safety as Reachability

A safety property states thedmething bad must never happ€&he bad thing represents
a critical property that should never occur. l¥trepresents this critical property, then
the safety property is specified using RCTL as:

init :— VO-W.

Generally, a safety property can be violated within bourtded, which means that the
exhibition of the previous formula by a single state withinegion, suffices to show

76

that the safety property does not hold. For this reasontyspfeperty can be reduced
to reachability property as the following

init :— —-3OW.

To illustrate the safety property in the train gate examagsuming one wants to
check that the state, where the train is near at distane€d and the gate is open, is a
forbidden state. This safety requirement can be specified as

init — -3 (x = 0Atrain.nearA gateopen

This formula asserts that during the run of the system,istpftom the initial state,
there is no reached state where the train is near at distaadeand the gate is at open
state. It turns out, to check the safety property, one ch#éwoksinreachability of the
following query:

?-reachabl e((far,[1000]), (open,[0]), (idle, [0]), Reached),
menber ((open, down, _, Tine, _, X,), Reached), X $= 0.

3.3 Quantitative Properties

We showed that safety properties can be reduced to reaithgindblem. The safety
properties assert what may or may not occur, but do not redjuat anything ever does
happen. For example, in the train gate example, closingdteegermanently can main-
tain the safety of the system, but it is unacceptable for taiing cars or pedestrians
in the front of the gate. For this reason, the liveness pitgpeneeded to specify such
requirements, which asserts that some property of inteiié¢stlways eventually occur.
In other words, there exists a time point in which the systeways in a good state.
It should be noted these type of properties can not be falsifibounded time. We can
not say that the liveness property is violated because afroog some state does not
say how long it will take for this state to occur. For this r@asthese types of proper-
ties are not strong enough in the context of specifying dtativie properties. Here one
would like to see a time bound when the good state occurs.bFimgs the next kind of
properties.

Bounded Response PropertiesA bounded response property is one of the most im-
portant classes of quantitative timing requirements, tvicin be used to specify many
important application. It asserts that something will hepgvithin a certain amount of
time. A typical application of bounded response properthés specification of worst
case performance; that is the specification of an upper bauod the termination of

a systens:. if started at timg, thenSis guaranteed to reach a final state no later than
o +t unit time. In the train gate example, a desired property ispecify that once
the approach of a train is detected, the gate needs to bedclddign a certain time
bound in order to halt car and pedestrian traffic before tha nreaches the crossing the
intersection. Formally, the bounded response propertypeapecified in RCTL as:

init — VO(t1.event— VO (to.event Aty < a +17)).

77

The previous formula states that whenever there is a reguest occurs at time
t1, thenitis followed by a responsweng, at timet,, such that, is at mosta +t;.

It should be mentioned that this property can be falsifiethiwitime bound, there-
fore this property can be specified as a kind of safety remeérg, and hence can be
represented as reachability. For this reason, provingrindqus property means prov-
ing that it is not possible to reach a state whereahent is not reached fronevent,
within t, < a +t;. In other words, starting froravent, finding a reachable state satis-
fiesevens, within o time bound, is sufficient to check the reachability of thegandy.

In terms of the CLP, this previous can be encoded into thevidllg steps. First, getting
all possible reachable states fr@wvent within t; + o asL, then check that reachability
of event has not occurred. A positive answer gives a negative answiretoriginal
problem, and vis versa. The following is the CLP query enctueprevious specifica-
tion

?- reachabl e(4y, Reached),
reached_fron(L, eveni, Reached),
reached_within(Target, a,l),

\+ menmeber((_,..,_, eveny), Tar get)

We should emphasize that the traditional way to verify thietof properties in real
time system tools, like UPPAAL [8] and Hytech [12], is to tedaite this property to a
suitable state based specification. In Hytech, for exaniplepecify that thevens is a
response tevent within a time unit, one has to augment the model under consideration
by an automator\, whoseidle, wait, andviolate as its control locations anidas its
integrator. Initially, the control location in thiéle. When a triggeeveni occurs, control
pass towvait location and the integratoiis reset. The respons®ens causes the control
to return to thedle location. The locatioriolateis only enabled wheth> a. Now, with
the parallel composition of the original model with the antionA, the specification
of bounded response property can be specified as the unat@hiyhof the location
violate As we said , the reason behind this translation is that treer® direct use
of events in the model. The use of events are limited to cooswnly the parallel
composition of automata. In contrast to our presented aupr,ghe direct use of events
with the model, allows us to avoid this translation procd$ss shows that RCTL is
more expressiveness, particularly in our setting, thanahgr quantitative temporal
logics.

Bounded invariance Properties. Like the bounded response property, bounded invari-
ance property is one of the most important classes of qaséiméttiming requirements.

It asserts that once an event has been triggered, a certadgitioo will hold continu-
ously for a certain amount of time. It is often used to spetlifgt something will not
happen for a certain amount of time. Formally, specifyirgt th certain property hold
continuously for a certain amount of time in RCTL is like tlodldwing

init — vVO(t;.event— VO (1. W Aty < a +t1)).

wherea is the duration at which the formutd must be continuously hold. An example
of such type of properties is to specify that whenever thie tipproaches the gate, the

78

distance of the train is always greeter than 100 for the éraif 20 time unit. The
property? = X > 100 in this case represents the distance of the trainappds the
triggered event. Again, the bounded invariance property lsa checked as a safety
property. Starting from timé,, finding a non-reachable violating state for the formula
W, within a time bound, is sufficient to check the reachability of thegendy. Thus, we
specify this with CLP as the following

?- reachabl e(44, Reached),
reached_fron(L, event, Reached),
reached_within(Target, a,l),
memeber ((_,.., X _, Target), X$<100.

4 Conclusions

Due to the lack of qualitative temporal logics to specify fitative properties. We
showed in this paper how to extend the qualitative logic Cd lthie quantitative logic
RCTL by adding time notation on linear constraints, staad,events. Hybrid automata
have been used as the interpretation model of RCTL. The flasvaf RCTL are inter-
preted on the possible regions produced form the run of bywiomata. With regions,
RCTL combined the expressive power of both state based ard based quantitative
temporal logics, which have been proposed already to extendualitative temporal
logics. RCTL allows to express many properties in a conamkiatuitive manner. To
bring model checking within the scope of RCTL, we conceetiain the specification
of those properties that can be verified using reachabitiglysis. Furthermore, the
paper showed how to encode these properties into suitalesgmplemented with
constraints logic programming.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking ierée real-time.Inf. Comput,
104(1):2-34, 1993.

2. R. Alur, T. Feder, and T. A. Henzinger. The benefits of rglgxpunctuality. J. ACM
43(1):116-146, 1996.

3. R. Alur and T. Henzinger. Logics and models of real timeufvsy. Real Time: Theory in
Practice, Lecture Notes in Computer Scien®@0:74-106, 1992.

4. R. Alur and T. Henzinger. A really temporal logidournal of the ACM (JACM¥1(1):203,
1994.

5. R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbol&rification of embedded sys-
tems.|EEE Transactions on Software Engineeri2g(3):181-201, 1996.

6. P.Bellini, R. Mattolini, and P. Nesi. Temporal logics feal-time system specificatioACM
Comput. Sury.32(1):12-42, 2000.

7. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic odibching time Acta Informat-
ica, 20(3):207-226, 1983.

8. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, aiil Wppaal—a tool suite for au-
tomatic verification of real-time systems. Rtoceedings of the DIMACS/SYCON workshop
on Hybrid systems Ill : verification and contyglages 232-243, Secaucus, NJ, USA, 1996.
Springer-Verlag New York, Inc.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

79

. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasanaftitative temporal reasoning.

Real-Time Syst4(4):331-352, 1992.

E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clo@mporal logic. InProceedings,
Fifth Annual IEEE Symposium on Logic in Computer SciencéJdne 1990, Philadelphia,
Pennsylvania, US/ages 402—413. IEEE Computer Society, 1990.

T. Henzinger. The theory of hybrid automataPhoceedings of the 11th Annual Symposium
on Logic in Computer Sciencpages 278-292, New Brunswick, NJ, 1996. IEEE Computer
Society Press.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A mcteecker for hybrid systems. In
CAV '97: Proceedings of the 9th International ConferenceCamputer Aided Verificatign
pages 460-463, London, UK, 1997. Springer-Verlag.

R. Koymans. Specifying real-time properties with neeteimporal logicReal-Time Systems
2(4):255-299, 1990.

Z. Manna and A. PnueliThe temporal logic of reactive and concurrent systems: iipac
tion. Springer, 1992.

A. Mohammed and U. Furbach. Multi-agent systems:modelnd verification using hybrid
automata. In J.-P. B. Lars Braubach and J. Thangarajalorgdiost-Proceedings of 7th In-
ternational Workshop on Programming Multi-Agent Systetr&tfalnternational Joint Con-
ference on Autonomous Agents and Multi-Agent Systaifd 5919, pages 49—66. Springer,
Berlin, Heidelberg, 2010.

A. Mohammed and C. Schwarz. Hieromate: A graphical toospecification and verifica-
tion of hierarchical hybrid automata. In M. H. B. Mertschiagd Z. Aziz, editorskKl 2009:
Advances in Atrtificial Intelligence, Proceedings of the@&erman Conference on Artificial
Intelligence LNAI 5803, pages 695-702. Springer, 2009.

J. Ostroff and W. Wonham. A framework for real-time déterevent controllEEE Trans-
actions on Automatic ContrpB5(4):386—397, 1990.

A. Pnueli. The temporal logic of programs. Foundations of Computer Science, 1977.,
18th Annual Symposium ppages 46-57, 1977.

A. Pnueli and E. Harel. Applications of temporal logicth® specification of real-time
systems. IrSystems, Proceedings of a Symposium on Formal TechnigéeesalrTime and
Fault-Tolerant Systempages 84-98, London, UK, 1988. Springer-Verlag.

C. Schwarz, A. Mohammed, and F. Stolzenburg. A tool enwirent for specifying and
verifying multi-agent systems. In J. Filipe, A. Fred, and $harp, editorsProceedings
of the 2nd International Conference on Agents and Artifibiélligence volume 2, pages
323-326. INSTICC Press, 2010.

