Towards Domain-specific Modeling for Java Enterprise
Applications

Moritz Balz and Michael Goedicke

Paluno — The Ruhr Institute for Software Technology
University of Duisburg-Essen, Campus Essen, Germany

Abstract. Enterprise Applications are usually developed in the context of cer-
tain frameworks and platforms, for example the Java Enterprise Edition. These
environments determine specific software architectures for such applications with
respect to modularization, distribution, and interface provision, so that the struc-
ture of the applications is often very similar. However, so far no domain-specific
models for these architectures exist. In this position paper we propose a domain-
specific model for such applications that considers design information available
as meta data in the program code. This will enable graphical design, verification,
monitoring, and design recovery for this class of enterprise applications.

1 Introduction

Enterprise applications are developed for and run in sophisticated server environments.
These usually provide services for networking, persistence, modularization, distribu-
tion, and interface provision that the applications can use. By this means repeating
tasks are shifted into the underlying platforms. Enterprise applications do therefore
usually not consist of monolithic program code blocks, but of smaller units of code
and configuration files using platform services provided by appropriate frameworks. If
server platforms are standardized, like the Java Enterprise Edition (JEE), services and
programming interfaces are independent from server implementations and a uniform
programming model exists.

This kind of development influences software architectures of such applications
since developers are in many aspects not free to choose, but bound to rules determined
by the frameworks. Architectures of different applications are thus in many cases very
similar. In addition, many frameworks ugaversion of contro[1]: Applications have
only limited influence of their life cycle; instead, since they fulfill the purpose to answer
requests over the network, they provide definitions of single modules that are instanti-
ated and used by the server. This results in architectures consisting of well-defined
modules with entry points published as interfaces, so that design information is avail-
able inside the applications.

Despite these very similar structures, currently no widely-accepted domain-specific
models for enterprise applications exist. Most model-driven software development
(MDSD) approaches focus on deriving implementations from abstract specifications
with program code generation [2]. However, this is not yet widely accepted: The fact

Balz M. and Goedicke M.

Towards Domain-specific Modeling for Java Enterprise Applications.

DOI: 10.5220/0003017600300039

In Proceedings of the 8th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems (ICEIS 2010), page
ISBN: 978-989-8425-12-6

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

31

that abstract modeling languages do not cover implementatetails often leads to
tuning and amendment of generated code [3] and preventsmaons synchronization
between models and code [4]. Efforts to specify detailedrimfation in modeling lan-
guages lead to modeling language stacks being as complée gdatforms they are
intended to abstract from [5].

Program code of enterprise applications is thus usuallgtecemanually. However,
since they are often comparatively large and used in busicetical situations, they
must meet certain demands to maintainability and religbiliherefore, models for en-
terprise applications are desirable to enable efficiengdeprogram comprehension,
verification, debugging, and even design recovery. In tlisitipn paper we propose
a domain-specific model for JEE applications that uses desigrmation available
inside enterprise applications instead of external madetiotations. Thus no incon-
sistencies between higher abstraction levels describésggd information and lower
abstraction levels of the implementation can occur, sirath bre already contained in
JEE applications.

This contribution is structured as follows: We describeigieénformation in JEE
applications in section 2. A model specification based upis proposed in section
3. We describe the value of the model for design, verificatitebugging, and design
recovery in section 4, and evaluate the approach in sectigfit&wards we consider
related work in section 6 and conclude in section 7.

2 Design Information in JEE Applications

The JEE provides development and deployment of servericampiplications [6] com-
prising web applications, interface provision (e.g. witebnservices), business logic
components, message services, and persistence compohegrgtated in the intro-
duction, we consider design information contained in JERliagtions to propose a
domain-specific model. We will thus now explain the JEE's\piples to represent de-
sign information, and afterwards describe the specificiftion containing the actual
design of enterprise applications.

2.1 Design Information Representation

The JEE specifies two ways for describing components: Farrimétion concerning
program code fragments, meta data in the code is usdb(ite-oriented program-
ming[7]) which is compilable and available at run time too. Ind#ve related concept
is calledJava AnnotationsSecond, design information that is not related to specific
program code elements is given in configuration files, reféto asdeployment de-
scriptors In general, components in the JEE are callederprise Java Beand&JBs)
[8] and are usually classes equipped with meta data so tbptcdn be managed and
executed by the server.

Access to design information in annotations and deployrdestriptors is stan-
dardized by the programming language and the JEE spedaifisaflools exist that read
annotations from source code, for example Java IDEs likip&el At run time, annota-
tions can be accessed from inside the application serveelaysof structural reflection

32

IFacade @Stateless
@Remote(IFacade.class}
FacadeBean public class FacadeBean implements IFacade {

@EJB.
doSomething () IBusiness dependency;

- public void doSomething() {
IBusiness dependency.doSomething();

BusinessBean }

Fig. 1. The concept of session beans and dependencies: At the tefttha conceptional view
on two dependent beans, at the right hand the implementatione bean in the program code
containing necessary design information as annotations.

[9] and also in the compiled Java bytecode. The design irdtion is thus accessible
with standardized programming interfaces.

2.2 Business Logic Components

Business logic in JEE applications follows threversion of controlprinciple. Single
units are a certain kind of EJBs callséssion bean§ hey have an implementation (the
class) and an interface which can be simply the programnnitegface of the class, a
separate Java interface publishing selected methods, @b aevvice interface provided
by the server. By this means session beans define certaitidnality of business logic
that can be executed. However, they don’t control actuatugi@n. Instead, the server
is responsible for receiving requests, instantiating #ssi®n bean they are targeted to,
and forwarding related data.

This influences dependencies between session beans, whispexcified descrip-
tively. This is done with a class attribute annotated withtar@ata. The dependencies
are then instantiated automatically too. All session beaeslefined with meta data to
be valid for single requests, user sessions managed byrer,sar the life time of the
whole application so that only a single instance exists.sTasession bean or a net-
work of dependent session beans is instantiated by therssgeerding to the lifecycle
definitions to serve single requests.

An example is shown in figure 1 with two dependent sessionsh&dreFacade-
Bean has an interfacé Facade published remotely as indicated with the annotation
@renot e. It contains a dependency to a session bean with the inedrBigsi ness
as specified by the annotati@@®JB. The variabledependency is injected by the
server with an appropriate implementation of the interfaBeisi ness. With these
simple meta data annotations the network of session bealesiieed so that it can be
instrumented by the server at run time.

2.3 Composition of Applications

Session beans are a vital part of JEE applications sinceptegde the actual busi-
ness logic. Therefore they are connected to other partseodfE environment. This
is always the case for session bean interfaces that can HeatiEast from inside the

33

Interface CustomerService CustomerService
Layer [Local Interface] [Web Service]
A 7

ICustomerService

CustomerServiceBean

Business
Logic
Layer

PersistenceBean ValidationBean

Data
Layer

Fig. 2. The structural view on the model with layers for web applarad, published interfaces,
business logic, and data models. The core of the model isusiadss logic which is connected
to the other layers.

server, for example from web applications on the same séngénce. When inter-
faces are published they are handled by respective comatioridayers provided by
the server. By this means remote access to the beans islpowsth different protocols
being handled by the server.

Business logic of enterprise applications is almost evieng telated to data stored
in databases. For this reason the JEE offers a persisteyare[18] that maps object-
oriented data to databases. This is also mostly configurédaminotations. The related
entity beansare classes carrying information about the underlyingimeial schema,
including information about relations between entitiesigk attributes and methods
can be decorated with validation information [6] restrigtihe value range of variables.
Both entails that rich information is available about théadamodel and its possible
state spaces. The mapping to an actual data base instarmefiguced in a separate
deployment descriptor.

In summary, business logic in the JEE is described with &sieethe provided
program code fragments and its connections to the data iasigell as provided in-
terfaces. Applications consist of different modules fobvegplications, business logic,
and persistent data models. These modules can be mergguhitkageghat contain
deployment descriptors for the modules and are interpieyetie servers to start the
enterprise applications.

3 Approach

We have so far outlined the design information that is embddd program code and
configuration files of JEE applications. Based on this we wiiv propose a basic
domain-specific model that uses this information systerahyi

34

3.1 Obijectives

Our approach has the goal to apply the advantages of MDSDvto elaterprise ap-
plications. Selic defines the following to be the “qualityrobdels” [11]: Abstraction
hides implementation details and thus allows to cope withgexity; understandabil-
ity finds representations that can be understood intuitivety thos with less effort;
accuracyensures that models represent a real-world system reallgtipredictiveness
allows to infer properties from a modeled system that areafrést, but not obvious,
by formal analysis or experiments; finalipexpensiveness desirable since a system
can be better analyzed and constructed when it is based odel ride will use these
desirable properties of models as objectives for creationl (later on, as criteria for
evaluation) of our model.

3.2 Structural View

A visual view on the structural elements of the model is thated in figure 2. The
model is structured into four layers: Thesiness logic layecontains actual business
logic as session beans and the definition of interfaces detat of the programming
language. Thénterface layeris inferred from the business logic layer and represents
resulting interfaces of session beans explicitly. Ve layeris part of the model since
web applications can be part of enterprise application amsitipns. Although they are
not in the focus of our model, their interaction with sesdi@ans is comprehensible.
Thedata layercontains data models with entity beans. Although we will fogts on
data modeling here, we can use some of its properties tondietethe state spaces the
business logic is using.

Figure 2 contains a simple example with three session b&ae€ust oner Ser -
vi ceBean has an interfaceCust orer Ser vi ce published as a local interface and
available inside the server instance. In this case it is bgelweb application running
on the same server. In addition, the interface is publisiseal @web service accessible
by clients over the network. The bean has dependencies teethei st enceBean
and theVal i dat i onBean. Both have no separate interfaces and can thus only be
accessed from inside the business logic. Both use a datal mossting of a set of
entity beans.

In general, the structural view contains single units ofgpaon code for session
beans, interfaces, and definitions of dependencies whictbeaused in session bean
implementations to invoke methods of other session beans.

3.3 Behavioral View

Besides the structural view, behavioral aspects are repted in the model since re-
lated information is available in dependencies and metheatiations between session
beans. Thus a request from a client arrives at an interfageesults in a sequence of
method invocations. Possible sequences are determineathy gefined by the depen-
dencies which can be visualized similar to UML sequencerdiag [12] as illustrated
in figure 3. In this example, a request to the metbodat eCust oner in the web ser-
vice interface is handled by the interface implementatictheéCust oner Ser vi ce-
Bean and afterwards in th€er si st enceBean andVal i dat i onBean. Method

35

CustomerService [Web Servicel

CustomerServiceBean‘ ‘ ValidationBean ‘ ‘ PersistenceBean

createCustomer saveCustomer

validateCustomer

true

1 1
true void L

Fig. 3. The behavioral view on the domain-specific model. It corg@equences of method invo-
cations that occur when a request arrives at the providedaues.

invocations are identified by method names and, in the caparaimeter overloading,
by the parameter types (not shown here for clarity of thesttlation). Methods can re-
turn values or the placeholdepi d. Of course, similar to UML sequence diagrams,
method invocations might occur only under certain condgiowhich could also be
supplemented in the diagram.

3.4 Model Definition

Considered at an abstract level, the interface layer anblitbi@ess logic layer thus con-
sist of nodes, i.e. session beans and interfaces, and edgegpendencies, which are
used by method calls from one session bean to another. Tévésice:s thus provide en-
try points to the model, and invocations of these interféead to sequences of method
invocations in the session bean implementations.

We thus define a domain-specific model for JEE applicatiorseta tupleM =
(E,I,B,D,S,C). Eis a set of entry points, each defined in an interfacel. B is a
set of business logic units that are connected by the setparatencied C B x B.

E and D imply that, beginning with the entry points, a set of possisgquencesS of
method invocations exists. A subsgts.q C S is realized as determined by method
invocations between session beans. Each seque#ac# is not always strictly linear,
but has a seP; of possible paths that can be také®.defines more than one path if
conditions of the set’ apply during method invocation that influence the specifit pa
a sequence takes.

This definition is comparatively simple, but covers the #jEations of the JEE
business logic on an abstract level. It can be used to dedtwstructural as well as the
behavioral view on the model, and is the foundation of ouppsal for the application
of MDSD techniques to JEE applications.

4 Value of the Model

The definition of the model as given above is no value in itdmit must be benefi-
cial during development of enterprise applications acogrtb the objectives given in
section 3.1 during different stages of the developmentgssc

At design timevisual design of structural elements is possible, i.e.éss®n beans,
interfaces, methods, and dependencies. When source codéten, the behavioral

36

view can be extracted to analyze paths of method invocati®doth views thus sup-
port the design of enterprise applications and at the same tinderstandability and
program comprehension. In addition, program code cangjaatie in model-to-model-
transformations: When abstract models are used for regemmedefinition, design, or
specification of applications, appropriate transfornragito our model can be created.
Thus source code stubs of structural elements can be gedematlifferences can be
detected. More important, design information in the sowage can be extracted and
transformed to abstract models if the transformation igreéadional. Theimplementa-
tion of the enterprise application is supported since the vidasign is tightly coupled
with creation and modification of the source code. In addjtibe implementation is
structured by graphical representations of source codacst The advantages regard-
ing program comprehension and understandability applg, tieo.

Several ways exist to use the model farification since abstract specifications
are connected to implementations directly. The model cavehiéed in structural and
behavioral views, and inconsistencies between model elenoan be discovered. On
the implementation level static source code analysis capphked since sequences and
paths allow to reduce complexity with slicing [13]. By thisesans a possible impact
of changes and resulting side effects can be detected aevkéedf the model. For
sequences, assertions can be given so that model checkitigefdava code [14] is
possible. The state space is reduced for this purpose bydesimg) only a limited set
of variables in related methods. When entity beans are tisedtate space is further
reduced since value ranges and relations are limited. Whtes code is connected to
the entry points, static analysis can be applied to anafytbe iinterface contracts are
fulfilled by clients. In general, single elements of the maxde be systematically used
for annotation with constraints, for example with the Javarklip Language [15].

At run time design information is also available to a cerd@gree as explained in
section 2.1 and can be used fmbugging and monitoringsraphical model representa-
tions can be reconstructed by means of reflection or byteaoalysis and thus support
detection of errors, especially when they visualize methedcations. When contracts
have been specified at model elements for verification, tlaeyatso be monitored at
run time to discover deviations.

Finally, when existing systems are abandoned, succes$sgsi@ms often re-use
existing processes or data to fulfill the same purposes. iShisually difficult since
models are mostly used as documentation, and as such hatemtlency to get out of
sync with the running systems when adaption, maintenamcktuening activities have
been applied for years. Since our model can be reconstrficedsource code and
partly even from compiled program codégsign recoverys possible by considering
the static elements of JEE applications.

In summary, the domain-specific model as proposed here ¢godudevelopment
and maintenance of JEE applications by different meansfierdnt stages of the de-
velopment process.

37

5 Evaluation

We will now evaluate the approach by considering its fulfdimh of the objectives de-
fined in section 3.1.

The model certainly enablexbstractionfor JEE applications. It is based on in-
formation available in the program code, but extracts $times that are more coarse-
grained and simplified. This is true for the structural vievhich is reduced to in-
terfaces, business logic classes, and dependencies, smibalthe behavioral view,
which considers paths through the application. Desigrrin&tion in the program code
is therefore systematically used to enable working at ifie abstraction levels. For
the same reason, the model facilitatexerstandabilitysince the abstraction can be
used to create visual representations as boxes-and-adiagrams which are easily
understandable. This is especially true in comparison ¢o“ttaditional” enterprise
application development, which consists of manual creadibcompilation units and
distributed creation and adaption of meta data fragmerisdgram code.

The model can also contribute ézcuracy With model-to-model transformations
and visual representations, the implementation of enta@pplications is more sys-
tematic and can be partly automated. Usage of the model fdiication as proposed in
section 4 enablegredictivenesssince appropriate tools can infer properties of model
and implementation at different abstraction levels.

When such tools as described here are available for diffefevelopment tasks,
the development of enterprise applications canldss expensiveModel-to-model-
transformations can be used to generate substantialstaliparts of the source code.
Visual design tools allow for faster creation of the struety and can also shorten the
time needed for program comprehension. The verificatiorhaugisms can help to pre-
vent some classes of errors, and integration in debuggoig tan fasten the detection
of errors that occur at run time.

In summary, we think that such models support the objectwektherefore fulfill
the requirements. However, this is so far only a proposahabno implementation and
no empirical evaluation exist. In addition, the model défami is so far limited to the
business logic and does not cover all JEE specifications.

6 Related Work

As mentioned in the introduction, most MDSD approachesida@nsource code a re-
sult of automated derivation from high-level notationsisTleads to problems when
requirements, programming interfaces, libraries, orgra@on into existing or cus-
tomized source code are not supported by modeling toolsoirast, we consider
models that already exist as design information in JEE egfiins. Thus we do not
need round-trip engineering [16] between notations siheg@togram code contains all
necessary abstraction levels.

For the same reason we do not propose domain-specific laag@a&L) [17] with
separate notations. Model execution [18] is not applicabiee the execution of JEE
applications is completely controlled by the applicati@nver. The models proposed
here are also not derived from abstract models and embeddeel program code [19],
but use only semantics of the JEE framework that are alrezaligale.

38

Since our approach relies on well-known program code sirast neither design
recovery [20] nor pattern detection [21] are applicablesitney aim at detecting design
information that is not known beforehand and thus work witkzly data. For the same
reason tool support for program comprehension of arbitpaogram code [22] is not
necessary.

7 Conclusions

We proposed a domain-specific model for JEE enterprisecgifns. This model does
not rely on any specific notation, but considers design métion that is available in
program code of JEE applications, which are based on attribtiented programming
with the respective meta data. This enables working atréiffeabstraction levels, in
which we see the potential for appropriate design, verificatdebugging, and design
recovery tools.

The approach has been evaluated theoretically with respdesirable properties of
models: Abstraction, understandability, accuracy, mtdiness, and inexpensiveness.
These are from our point of view given since appropriatesaan enable program
comprehension, accurate implementation of requiremeetsjcation of the related
program code, and reduction of effort for these tasks. Hewdhe tools are still to
be developed to verify these assumptions. In addition, thdehspecification is not
complete, since only the most important aspects of the basilogic are covered.

For the future we thus plan implementations of tools to destrate the feasibility
of the approach. For this purpose a bachelor’s thesis igotlyrwritten at our work-
ing group that implements, as a first step, the visualizatibdesign information as
extracted from the program code. We will also consider theeage of different JEE
specifications and for thus purpose define the model morasgfhgcin summary, we
are convinced that the approach to consider design infiomat enterprise applica-
tion frameworks is promising and want to stimulate disaussibout its potential.

References

1. Fayad, M., Schmidt, D.C.: Object-Oriented Applicatiomfeworks. Communications of
the ACM 40 (1997) 32-38

2. Brown, A.W., lyengar, S., Johnston, S.: A Rational appho@® model-driven development.
IBM Systems Journal 45 (2006) 463-480

3. Hailpern, B., Tarr, P.: Model-driven development: The@djothe bad, and the ugly. IBM
Systems Journal 45 (2006) 451-461

4. Baker, P., Loh, S., Weil, F.: Model-Driven Engineeringaiharge Industrial Context — Mo-
torola Case Study. In Briand, L., Williams, C., eds.: ModeiM@n Engineering Languages
and Systems, 8th International Conference, MODELS 2005tbtm Bay, Jamaica, October
2-7, 2005, Proceedings. Volume 3713 of LNCS., Springer%2@36—491

5. Fowler, M.: PlatformindependentMalapropism (2003piittvww.martinfowler.com/bliki/
PlatformindependentMalapropism.html.

6. Sun Microsystems, Inc.: Introduction to the Java EE 6f@Mat. White Paper (2009)

7. Schwarz, D.: Peeking Inside the Box: Attribute-OrienfBedgramming with Java 1.5. ON-
Java.com (2004) http://www.onjava.com/pub/a/onjava4206/30/insidebox1.html.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

39

. Sun Microsystems, Inc.: JSR 318: Enterprise JavaB¥a&ns - Proposed Final Draft (2008)

http://jcp.org/en/jsr/detail ?id=318.

. Demers, F.N., Malenfant, J.: Reflection in logic, funodband object-oriented program-

ming: a short comparative study. In: In IJCAI '95 Workshop Reflection and Metalevel
Architectures and their Applications in Al. (1995) 29-38

Sun Microsystems, Inc.: JSR 220: Enterprise JavaB¥anersion 3.0 - Java Persistence
API (2006) http://jcp.org/en/jsr/detail ?id=220.

Selic, B.: The Pragmatics of Model-Driven DevelopmeBEE Software 20 (2003) 19-25
Raistrick, C., Francis, P., Wright, J.: Model Driven Aitecture with Executable UML.
Cambridge University Press, New York, NY, USA (2004)

Weiser, M.: Program Slicing. In: ICSE '81: Proceedinfjthe 5th International Conference
on Software Engineering, Piscataway, NJ, USA, IEEE Pre381(1439-449

Visser, W., Havelund, K., Brat, G., Park, S., Lerda, Foddl Checking Programs. Auto-
mated Software Engineering Journal 10 (2003)

Beckert, B., Hhnle, R., Schmitt, P.H.: Verification of jedi-Oriented Software. The KeY
Approach. Springer-Verlag New York, Inc. (2007)

Sendall, S., Kster, J.: Taming Model Round-Trip Engiimee In: Proceedings of Workshop
on Best Practices for Model-Driven Software Developme2@04)

van Deursen, A., Klint, P., Visser, J.: Domain-Speciimguages: An Annotated Bibliogra-
phy. ACM SIGPLAN Notices 35 (2000) 26-36

Hen-Tov, A., Lorenz, D.H., Schachter, L.: ModelTalk: Famework for Developing Domain
Specific Executable Models. In: Proceedings of the 8th OQ®®lorkshop on Domain-
Specific Modeling. (2008)

Bravenboer, M., Visser, E.: Concrete Syntax for Objedtsmain-Specific Language Em-
bedding and Assimilation without Restrictions. In; OOPSIOA: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programgmsystems, languages,
and applications, New York, NY, USA, ACM (2004) 365-383

Kraemer, C., Prechelt, L.: Design recovery by automsgedch for structural design patterns
in object-oriented software. In: Proceedings. 3rd Workiunference on Reverse Engineer-
ing, Monterey, CA 1996. Los Alamitos, Calif. (1996) 208-215

Philippow, I., Streitferdt, D., Riebisch, M., Naumai®; An approach for reverse engineer-
ing of design patterns. Software and Systems Modeling 45285-70

Schauer, R., Keller, R.K.: Pattern Visualization foft&are Comprehension. In: IWPC '98:
Proceedings of the 6th International Workshop on Programmi@ehension, Washington,
DC, USA, IEEE Computer Society (1998) 4

