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Abstract: Process and workflow models are typical means to describe the dynamic activities of a system. Therefore,
it is of high interest to validate these models. Many kinds of (business) rules, best practices, patterns, legal
regulations may serve as specifications which the models have to fulfill.
An already established technique to validate models of dynamic activities is model checking. In model check-
ing the requirements are expressed by temporal logic. Temporal logic allows describing temporal depen-
dencies. The models to be verified by model checkers are automata. In this context the question is how to
transform process or workflow models into automata and how to specify the temporal logic in the way that the
semantic of the process models is considered sufficiently.
In our paper we present three approach to transform process models to checkable automata. We use the exam-
ple of ARIS Event-driven Process Chains. In particular, the third approach introduces specializers enabling
semantic-rich requirement specifications. This reduces the gap between process models (consisting of different
model element types) and verification models.

1 INTRODUCTION

Workflows and processes are fundamental concepts in
computer-based systems. For example real-time sys-
tems as well as large scale business systems are based
on process execution. All the systems have in com-
mon that their dynamic behavior is the essential ele-
ment. Even a simple purchase system has to realize a
selling process.

There exist different modeling concepts for the
different types of systems, e.g. SDL or the model-
ing language Z for time-critical systems or business
process models for commercial systems. These pro-
cess and workflow models are potentially subject of
automated verification (Bérard et al., 2001). With the
paper we propose a step to close the gap between pro-
cess models and verification models to overcome the
loss of semantics due to surjective mappings and, in
consequence, to support the verification and testing
(with partial verification) in a way which is closer to
the world of the software develop

In the paper we use the business process model

of the modeling concept ARIS (Architecture of inte-
grated Information Systems): the EPCs (Event-driven
Process Chains) (Scheer, 1998) (Scheer and Nüttgens,
2000). EPCs are mainly used to model commer-
cial and administrative systems. The real application
models we use to demonstrate our approach is a high-
performance e-commerce system: Intershop Enfinity
(Intershop Communications AG) (Breitling, 2002).
This e-commerce system is used in large scale sys-
tems of retailers (e.g. Otto), in the automotive branch
(Volkswagen, MAN, BMW) or in e-procurement sys-
tems (run by the German Federal Ministry of the In-
terior or governments of other countries or large com-
panies). Besides the modeling of e-commerce sys-
tems ARIS EPCs are used to model almost all kinds
of commercial information systems, e.g. enterprise
resource planning systems (ERP) like SAP R/3. Orig-
inally ARIS has been developed in cooperation with
SAP AG to support the modeling of the ERP system.
Another interesting application of EPC models is the
description of processes in the administration. Specif-
ically data privacy protection problems are modeled
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in EPCs and then checked. Some alternative models
are the Business Process Modeling Notation (BPMN)
(OMG, 2006) or UML Activity Diagrams.

1.1 EPC Model Elements

As already mentioned the EPC model type is part
of the modeling concept ARIS. The basic elements
of an EPC model are shown in figure 1: The con-
trol flow is symbolized by a sequence ofevents(ma-
genta hexagons) andfunctions(green rectangles with
rounded edges) which are connected by arrows repre-
senting the control flow. Branches in the control flow
are defined by the Boolean logic operators: AND, OR
and XOR. In the figure an XOR is depicted. AND re-
quires that all paths of the branches are active. OR in-
dicates that at least one path is used. XOR allows that
one and only one path is chosen. The element type
organizational unit(rectangle with double line on the
left) is an example for a further element type.

Figure 1: Example of an EPC Model.

1.2 Gap in Checking Models

Our approach is based on the model checking tech-
nology (Clarke et al., 2001a). This kind of verifica-
tion typically takes finite state automata models and
checks if these models fulfill specifications. The spec-
ifications are expressed in temporal logic languages,
e.g. LTL (for linear time) and CTL (for branching
time). The checking is usually realized by search al-
gorithms on the model graphs and automata inclusion.

Like other process models EPC models provide
a more specific semantic than the automata models
of model checkers. This additional semantic is ex-
pressed by the various types of elements supported by
the EPC model: functions and events as well as orga-
nizational units and many more. These different ele-
ments have to be transformed into the automata mod-
els which serve as input for model checkers.

The problem is that our requirements specifica-
tions (in temporal logic) should consider these spe-
cific model elements. Alternatively, the specifications

have to be transformed resulting in a surjective map-
ping and thus loss of information.

2 STRAIGHT FORWARD
TRANSFORMATIONS

There are different possibilities to transform EPC
models to automata which are the input to model
checkers. These automata are represented as Kripke
structures or Kripke models, respectively, which de-
fine the formal framework of models in a model
checking approach. These are finite state automata in
the form of a 4-tuple consisting of a finite set of states,
a set of initial states (a subset of the set of all states), a
transition relation and a labeling function. The latter
marks states with certain properties or propositions,
respectively, which hold in the respective states.

A straight forward transformation would be just to
transform functions and states directly into automata
states. We call this a direct transformation. A sec-
ond approach is the selective transformation. This
transformation considers only some selected model
element types.

An alternative is to use a more elaborate automata
model (we call it Extended labeled Kripke Structure,
ELKS1) supporting different types of elements. We
introduce this in section 3.

We use a typical problem in e-commerce systems
in order to illustrate the functionality of these three
different concepts. The modeling of a price alert pro-
cess which checks (in a loop) all current offers as long
as there is none within a given price limit (i.e. as long
as the price threshold is not achieved). If the thresh-
old is met the system does something, in our case it
purchases.

2.1 Direct Transformation

Figure 2 depicts an EPC transformation to a format
which can be processed by current model checking
technology. Events, functions and their connection to
each other are transformed to the only means a model
checking environment provides: states and transitions
(cf. the model on the right of figure 2).

In this straight-forward mapping approach we ne-
glect the differences of the model elements and map
all notation elements to states of a Kripke structure
(for the moment we ignore the organizational unit).
We assume that the names of the events and func-
tions in the EPC model are assigned to the states as
properties by means of the labeling function within
the Kripke structure. The straight-forward mapping
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Figure 2: Example of an EPC Model.

reveals a surjective mapping. This means, in partic-
ular, that multiple elements of the domain (here the
EPC language elements for both, events and func-
tions) are mapped to one and the same element in the
co-domain (here to the notation element representing
a state). Therefore, the surjective mapping leads to a
loss of information which becomes obvious as soon
as we try to verify given requirements.

The direct transformation is easy to realize and
moreover is supported by the standard model check-
ing approaches. This means that this approach does
not require the modification of model checking tools
and may be applied as is. The disadvantage is the
lack of detail. There is no suitable mechanism to dis-
tinguish between different element types. Hence, it
is not possible to check specific model element types
and their relations as presented in the following sec-
tion 3.

A more detailed report on this direct transforma-
tion may be found in (Speck, 2006).

2.2 Selective Transformation

The selective transformation allows skipping the
transformation of certain types of model elements.
For example only all EPC events are transformed into
the automata (ignoring all function elements). This is
comparatively coarse-grained. Nevertheless, if only a
few types of the model elements are of interest this
approach is sufficient.

The resulting automata model may be processed
by an ordinary model checker or the extended check-

ing concept (as presented in the following section 3).
The latter is only reasonable if more than one model
element type should be considered.

3 EXTENDED CHECKING
CONCEPT

In this section we present the two components of
the extended checking: The transformation to an ex-
tended automata model (focusing on the model exten-
sion) and the extended algorithm for checking. This
is the third way to deal with the semantic gap as men-
tioned in section 2.

3.1 Extended Checking Model

In an extended Kripke structure we separate different
types of model elements (Pulvermüller, 2009). In our
case these are events and functions (c.f. figure 3). By
means of transition states (event states) the transitions
become first-order objects. This approach is similar
to association classes in UML. Transition states play a
double role: On the one hand they represent the transi-
tion in the traditional way and, on the other hand, the
transition state is treated equally to traditional states
in a model checking approach. This has an impact
on the properties which may be assigned to transition
states, as well. Furthermore, upgrading a transition
to a first-order object opens enhanced possibilities to
their verification. In figure 3 the transition states are
depicted with rectangles.

The distinction of different kinds of elements in
the automata (and the Kripke structures) is the base
of improved checking algorithms. These algorithms
are able to distinguish between the different types of
elements and to support a more detailed specification
as described in the following subsection.

The transformation to an extended model requires
a more elaborated transformation mechanism. The
ordinary Kripke structure has to be modified as de-
scribed in (Pulvermüller, 2009). However, now we
may formulate specifications which are not supported
within the direct transformation. We illustrate this
problem by checking the models in figures 2 and 3
by the following sample CTL specification:
Always Check all current offersUntil Offer accepted.
With the direct transformation we cannot distinguish
between different model elements (functions and
events). Hence, the checker would present an error.
We propose to use the specializer operatorsFunction
andEventwhich means that we distinguish between
the model elements within our specification and also
within the extended model checking algorithm. With
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Figure 3: EPC Transformation to Extended Automaton.

our extended specification the above mentioned ex-
ample requirement looks as follows:Always (Func-
tion [Check all current offers] Until Event [Offer ac-
cepted]). It means: We check that the functionCheck
all current offersis true and do not consider other
events unless the eventOffer accepted(and no other
function) becomes true. This specification using func-
tions and events specializers is true which we expect
as result. We want to be able to select specific el-
ement types and focus on these in the specification.
This is an extension of the temporal logic CTL we
call ECTL1 (Extended CTL).

Figure 4: EPC Transformation to Extended Automaton.

3.2 Checking ECTL1 Models

Our extended specification and model checking is
based on CTL (model checking). With our exten-
sion we can specify more semantic information over
a semantically extended verification model thus be-
ing more fine-grained and more precise in our require-
ments.

Figure 4 depicts an abstract example for an

ELKS1 (an extended Kripke structure). We ignore
the requirement of a total relation to simplify the ex-
ample. In the example model the propositionsp and
q hold in s4, for instance. The events in the result set
fulfill the given ECTL1 formula if chosen as starting
state. The first of the examples below means: Ifs is
one of the states in the setR and if s is taken as the
starting state in the system modelM then the prop-
erty (or requirement, respectively)p is fulfilled in the
model (M,s |= p).

ECTL1 examples (based on CTL):
(1.) M,s |= p, result setR: s∈ R= { e2, f 3, f 4, f 5 }

(2.) M,s |= Function[p], result setR: s∈ R= { f 3, f 4, f 5 }

(3.) M,s |= Event[p], result setR: s∈ R= { e2 }

(4.) M,s |= p∧q, result setR: s∈ R= { e2, f 4, f 5 }

(5.) M,s |= Function[p]∧Function[q], result setR: s∈ R= { f 4, f 5 }

(6.) M,s |= Function[p]∧Event[q], result setR: s∈ R= { }

(7.) M,s |= Event[p]∨Event[q], result setR: s∈ R= { e1,e2,e3 }

(8.) M,s |= EX p, result setR: s∈ R= { f 1,e1, f 3,e3,e4}

(9.) M,s |= AX Function[p], result setR: s∈ R= { e1, f 3,e3,e4 }

(10.) M,s |= Function[AX Function[p]], result setR: s∈ R= { f 3 }

(11.) M,s |= E[p U q], result setR: s∈ R= { e1,e2, f 3,e3, f 4, f 5 }

(12.) M,s |= Function[E[p U q]], result setR: s∈ R= { f 3, f 4, f 5 }

(13.) M,s|= E[Function[p]U Function[q]], result setR: s∈ R= { e1, f 3,e3,e4, f 4, f 5}

(14.) M,s |= E[Event[q] U Function[p]], result setR: s∈ R= { f 1,e1, f 3,e3, f 4, f 5 }

(15.) M,s |= A[Event[p] U Function[p]], result setR: s∈ R= { f 4, f 5 }

(16.) M,s |= A[Event[q] U Function[p]], result setR: s∈ R= { e3, f 4, f 5 }

(17.) M,s |= AF p, result setR: s∈ R= { f 1,e1,e2, f 3,e3,e4, f 4, f 5}

The example point to some special aspects. The
following explanations refer to the example numbers
given above.

The formulas in (1.) and (4.) are trivial and not
very different to traditional CTL. Examples (2.) and
(3.) demonstrate the specializers in their work as fil-
ters over the result set of example (1.).

In (8.), for instance, statef 3 (which is a function
state) is in the result set although it does not fulfill
EX p in the traditional CTL logic. In ECTL1, how-
ever, we consider half-steps. In a next stepf 3 reaches
a function state (here even two,f 5 and f 4) in which
p holds. Due to these function statesf 5 and f 4, both,
the function statef 3 as well as the event statese3 and
e4 are in the result set.

State f 1 is not contained in the result set of (9.)
since there is a path( f 1,e2, f 2) on which the next
function state does not fulfillFunction[p]. In other
words, AX Function[p] does not hold inf 1 due to
the fact thatp does not hold inf 2. This is different
for the formulaEX Function[p] as only one path is
needed. This is fulfilled by the path( f 1,e2, f 3, . . . ).
As opposed toFunction[AX p] the result set in (9.)
also contains function states. In (10.) we filter the
result set of (9.) eliminating all function states.
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Example (11.) to (16.) give several variants of the
Until -operator with focus on the effect of the addi-
tional specializers. While example 11. may be trans-
lated to CTL by mapping function states and event
states to states (loosing the distinction between the
two) this is not generally the case for the successive
examples. Example (12.) filters the outcome of (11.)
and just eliminates all event states from the result set.
As opposed to that, the variant in example (13.) con-
tains both, function states and event states. Example
(13.) starts in all function states in whichq holds and
walks backwards until a function state is reached in
which p holds. The event states are just collected and
inserted in the result set if they are on the path. There
is no evaluation performed on them. Even event state
e1 is in the result set although neither the formula
Function[p] nor Function[p] nor p hold in it. Event
statee1 is only in the result set due tof 3. The result
set is maximized and therefore, we traverse the graph
backwards until we reach a function state in which the
formula does not hold. On our way back fromf 3 we
just collecte1 and do not evaluate any formula in it.
This is different for example (14.). Function statef 4
is in the result set as it directly fulfillsFunction[p].
Still we do not collecte4 into the result set on our
way backwards through the graph because the first
part of the formulaEvent[q] enforces an evaluation
on event states. However,Event[q] or q, respectively,
does not hold ine4. On the other hand,f 1 is in the re-
sult set which is due to the fact that it is just collected
(as it was the case fore1 in example (13.)).Event[p]
does not apply to function states and as the result set
is maximized f 1 is inserted into it. Due to the fact
that there might start a branch in a function state (as
it is true for f 1) we have to take care for theAlways-
quantifier. If we substituteE by A in example (14.)
function statef 1 is eliminated from the result set due
to the second branch. The second branch( f 1,e2, f 2)
has (in the given excerpt) no function state in which
Function[p] or p, respectively, holds. As in CTL
we could insert aWeak Until-operator (WU). As
opposed toA[Event[q] U Function[p]] the formula
A[Event[q]WU Function[p]] would containf 1 in the
result set due toEvent[q] in event statee2. Proposi-
tion q holds infinitely in all event states on the path
starting in f 1. In our example ECTL1 model this is
only the case because we limit to an excerpt and ig-
nored that real models have to be total (i.e. in a real
model f 2 would have at least one successor which
could change all our statements of the previous sen-
tences).

Example (16.) demonstrates again the difference
of theAlways-operator. Whilef 3 is in the result set
of example (14.) this is not the case in example (16.)

because starting inf 3 there is only one path on which
q holds in all event states until a function state is
reached in whichp holds.

4 RELATED WORK

Our approach is based on the model checking technol-
ogy (Grumberg and Veith, 2008; Clarke et al., 2001b)
which itself is already a push-button verification ap-
proach. This allows automating many steps releasing
the developer and end-user of tedious mathematical
tasks. In model checking the verification of process
models and software has always been a research issue.
Already early approaches like (Emerson and Clarke,
1980) or (McMillan, 1993) are about the verification
of models. However, all approaches imply a gap be-
tween the models and the checked automata.

A new alternative path to decrease the gap to ver-
ification models is to provide verification environ-
ments making the verification or compliance check-
ing more convenient (El Kharbili and Pulvermüller,
2009). Tools to simulate and generate or export veri-
fication models ease the task of a developer. This of-
ten embraces an automatic transformation of higher-
level models to a model format the checker under-
stands (Fötsch et al., 2005). Though this closes some
gap between the user and the verification level it does
not consider the information loss which comes with
the (automatic) mapping to the low-level verification
models.

In logics there are further approaches to improve
this semantic expressiveness (however, often without
clear relation to software development models and
their different kinds of model elements). Such ap-
proaches may be found in theµ-calculus (Bradfield
and Stirling, 2001; Kozen, 1983) or the multi-valued
logic research, e.g. (Chechik et al., 2003). In the lat-
ter, the logic is extended from the BooleanTRUEand
FALSE to further values (e.g.DON′T KNOW in a
three-valued logic). Extensions to the temporal logic
for LTL have been proposed in (Sagar Chaki et al.,
2004) or (Jonsson et al., 1990) and in (De Nicola
et al., 1993; De Nicola and Vaandrager, 1990). How-
ever, a link to software development models is miss-
ing as well as the general idea of specializers for dif-
ferent model elements. As opposed to (Sagar Chaki
et al., 2004; Jonsson et al., 1990; Giannakopoulou
and Magee, 2003; Kindler and Vesper, 1998) we
are able to explicitly distinguish and mix specializers
(and thus views) for different model elements.
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5 CONCLUSIONS

The paper presents three approaches for checking pro-
cess or workflow models.

The initial problem is the gap between the process
or workflow models with their various model element
types on the one hand and on the other hand the au-
tomata models serving as input for model checkers.

The first approach is a direct transformation map-
ping multiple model element types to one single ver-
ification model element type (surjective mapping).
The second approach supports the selection of spe-
cific model element types and transforms these while
ignoring the others. The extended model checking
approach results in the least loss of semantic infor-
mation. It extends the specification language as well
as the verification modeling language. It introduces
specializers, e.g.FunctionandEventfor EPC check-
ing. In this way it enables a more precise require-
ments specification.

A further improvement may be the support by a
graphical representation of the model and the specifi-
cation to ease the use for domain experts.
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