
TOWARDS A COMMUNITY FOR INFORMATION SYSTEM
DESIGN VALIDATION

S. Dupuy-Chessa, D. Rieu and N. Mandran
LIG Laboratory, CNRS, University of Grenoble, 681 rue de la Passerelle, BP 72, 38402 St Martin d'Hères, France

Keywords: Design, Validation, Evaluation, Patterns, Community.

Abstract: Information systems become ubiquitous. This opens a large spectrum of possibilities for end-users, but the
design complexity is increasing. So domain specific languages are proposed sometimes supported by
appropriate processes. These proposals are interesting but they are under-validated. Even if validation is a
difficult task, which requires specific knowledge, we argue that validation should be systematic. But many
problems remain to be considered to achieve this goal: 1) computer scientists are often not trained to
evaluation; 2) the domain of information systems design validation and evaluation is still under
construction. To cope with the first problem, we propose to capitalize evaluation practices into patterns so
that they can be reusable for non-specialists of validation practices. For the second issue, we propose an
environment where evaluation specialists and engineering methods specialists can work together to define
their common and reusable patterns.

1 INTRODUCTION

Nowadays, technological progresses such as
microprocessors and sensors miniaturization, and
communication technologies explosion, allow end-
users to access information everywhere at any time
and in a personalized manner. In other words,
information becomes instantaneous, universal and
ubiquitous. This opens a large spectrum of
possibilities for the end-users: they can see their bus
timetable on their mobile phone; they can see
contextualized information on special devices while
visiting a museum; etc. For instance, simply
considering the new human-computer interaction
possibilities triggers business evolution (Godet-Bar,
2008). Therefore design complexity is increased by
adding parameters like devices, location, user’s
characteristics... As mentioned by L. Palen (Palen,
2002), the level to design such systems has been
moved up: many different people (designers,
stakeholders, sponsors end-users) are involved in the
design; many new domain specific languages are
proposed to represent the ubiquitous aspects;
personalised processes must be defined.

However if many proposals for languages or for
processes exist, they are focused too often on the
conceptual contributions while their validation, even

empirical, is not addressed. For instance, in the
software engineering domain, validation is absent of
approximately 30%-50% of the papers that require
validation (Tichy, 1997) (Zelkowitz, 1997).
Considering that this issue is increased by the
expansion of new languages and processes for
ubiquitous information systems, we think that it is
time to cope with the problem of validation in
information systems design methods.

In other domains of computer science such as
human-computer interaction or empirical software
engineering, evaluations are required for any
contribution. In information systems, some works
have defined conceptual frameworks for defining the
quality of languages (Lindland, 1994) (Krogstie,
1998) (Moody, 2003). If these proposals are
interesting to understand the characteristics of a
language or to provide a framework for evaluation,
they do not help non-specialists with practical
considerations. Only few works give practical
guidelines: for instance, (Aranda, 2007) (Patig,
2008) define generic experimental protocols for
models understandability. But evaluation remains
still very much an «art» than a «science» (Nelson,
2005).

To address this issue, we think that evaluation
specialists and engineering methods specialists must
collaborate in order to share and consolidate their

362 Dupuy-Chessa S., Rieu D. and Mandran N. (2010).
TOWARDS A COMMUNITY FOR INFORMATION SYSTEM DESIGN VALIDATION.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
362-367
DOI: 10.5220/0003016503620367
Copyright c© SciTePress

practices. They must create a community for
evaluation where they can exchange their
knowledge. This knowledge must be also reusable
even for non-specialists in evaluation so that
validation can become systematic. So we propose to
formalise evaluation knowledge with design
patterns, which are well-known by information
system specialists. We are creating an environment
for the diffusion of these patterns, but also for their
elaboration in a collaborative way.

In the next section, we present our vision of
patterns for validation. The third section details the
concept of collaborative design patterns and a tool
that we are currently developing for their creation.
Finally, we conclude this paper with some
perspectives.

2 PATTERNS FOR VALIDATION

2.1 Methods Validation Practices

An information systems design method consists of
modelling languages, a development process model
and tools to manage models or to support process.
The quality of all these aspects has been studied in
some extends in the literature (Dupuy-Chessa,
2009).

Many different ways have been proposed to
evaluate models (Lindland, 1994) (Lange, 2005) (Si-
Said, 2007) or languages (Krogstie, 2003) (Aranda,
2007). Only a few of them have addressed the
problem of process validation. Anyway we can note
the existence of different approaches, which can be
combined in order to offer a global vision of
evaluation practices.

The main approach to evaluate a language is to
realize empirical evaluations with user experiments.
These evaluations are complex because they must
not assess the quality of particular instances of the
languages (e.g. a particular class diagram), but the
quality of the language in general (the class
diagram). (Siau, 2001) uses an approach based on
the human-information processing model Goals
Operators Methods and Selection Rules (GOMS) to
evaluate UML diagrams. The authors measure the
execution time to realize some UML diagrams so as
to determine their complexity.

Another approach to measure a language
complexity is to study its meta-model. A complex
meta-model should lead to a greater expressive
power and thus to smaller models (Mohagheghi,
2007). (Rossi, 1996) explains that there exists an
intrinsic dependency between the meta-model and

the learnability of a language: a modelling language
is composed of a set of diagrams for which some
metrics are calculated. The conceptual complexity of
a diagram is a sum vector of the above diagram
metrics while the complexity of the whole language
is a sum vector of the complexity of its diagrams. In
such a view, the relations between diagrams are not
considered. However the approach has permitted to
compare several object-oriented languages and to
conclude that object-oriented languages become
more complex with time.

Based on their generic quality framework, which
defines the various views of language quality,
Krogstie et al. have also evaluated UML in its 1.4
version. They concluded that UML is difficult to
comprehend because there are many fundamentally
different concepts, which are not always formally
defined.

Finally there is a reverse inference approach
(Moody, 2005) where researchers work backwards
from the quality characteristics of the final system to
the characteristics of the model. We use this
approach to evaluate a new component model, called
Symphony Objects model, because we hypothesised
the existence of a causal relationship between the
characteristics of our conceptual model (the
Symphony Objects model) and the characteristics of
the code. Then we try to evaluate the Symphony
Objects model through the quality of several of its
implementations (Ceret, 2010).

All these proposals are valuable for language
validation and could be reused and combined to
ameliorate information systems design validation.
But they often need to be generalized and described
as practical guidelines.

For processes, their quality is generally
measured by evaluating the process model. For
instance, (Mendling, 2007) studies the
characteristics that make a process model
understandable. Many other works have been
realized in the domain of business process models.
But it is also possible to realize empirical
experiments to validate a process without
considering its model. In (Hug, 2010), we describe a
qualitative evaluation of a method for information
systems engineering processes.

2.2 Formalization with Patterns

Many approaches exist to validate a new language or
a new process. But there are rarely presented in a
reusable way. To be reusable, they must present
practical guidelines such as those proposed in
(Aranda, 2007) and (Patig, 2008). These works

TOWARDS A COMMUNITY FOR INFORMATION SYSTEM DESIGN VALIDATION

363

define generic experimental protocols for models
understandability. We want to promote such
proposals by developing these guidelines in a well-
known approach: design patterns.

A pattern proposes a solution to a recurring
problem occurring in a given context. Patterns are
used to represent both knowledge and know-how
that are linked together through methodological
guidance.

In our context, patterns can be used to provide
techniques and tools for capitalizing knowledge and
know-how of the validation domain. A pattern
allows to identify a problem to resolve (for example,
how to evaluate the understandability of a notation),
proposes a generic and correct solution to this
problem (for example, the generic protocol proposed
by (Aranda, 2007)) and finally offers indications to
adapt this solution to a particular context (for
instance, how to apply the protocol to UML
notation). In table 1, the solution of the pattern, i.e.
the protocol, is a know-how represented by an
activity diagram. The first step is to select the
notation. Then the assumptions about the notation
must be identified (“Articulate the underlying
theory” activity). The third activity is to formulate
the claims of the notation regarding comprehension.
A control must be chosen in order to have a baseline
for comparison. Then the claims are turned into
testable hypotheses. Other research area can also
bring some insights about the hypotheses (“inform
the hypotheses”). Finally the study itself is designed
and executed.

In table 1, the pattern describes a know-how; so
it is a process pattern. A process pattern details the
steps to follow to reach a goal (for example, how to
evaluate understandability, how to formulate the
claims of the notation etc) whereas a product
pattern permits expressing a goal to reach (for
example, “What are the characteristics of languages
quality?”).

Finally, problems have still to be solved
regarding pattern organization in order to ensure
effective reuse. Patterns must organize hierarchically
and functionally problems and the manner to resolve
them. They form hence an engineering guide called
patterns catalogues. For the understandability
evaluation problem, all these activities of the pattern
solution (Table 1) can also be represented by
patterns that would be linked in order to show their
dependency. So we will obtain a catalogue of 8
patterns for “understandability evaluation”: one for
the global protocol and one for each of its
composing activity.

With patterns, all the different approaches for

Table 1: Pattern Example.

Pattern
name

Understandability evaluation

Problem how to evaluate the understandability of a
notation?

Motiva-
tion

The effectiveness of models depends on the
communication quality of their languages.
This quality aspect relies partly on
understandability, which can be validated
with this solution.

Solution

evaluation can be described and presented in an
uniform way so that it is easier to find the adequate
solution of a given problem. We hope that this can
help in making evaluation more systematic.

3 TOWARDS AN EVALUATION
COMMUNITY

3.1 Definition of Collaborative Patterns

Usually, patterns express consensual solutions of an
expertise domain. Then patterns are formulated by
domain experts and are used by a whole community.
Recently, the pattern concept has become a way of
sharing and concealing community knowledge
(ODP, 2010): the “best” solution can be at any time
reconsidered and then, modified. The pattern does
not belong to a person, but to a set of experts who
work together in order to consolidate the knowledge
of their domain. Patterns are becoming
collaborative.

We propose to manage collaborative patterns by
adapting the Lécaille’s work on the evolution of a
type of objects: the digigraphics during design
according to three action modalities (Lecaille, 2003):
• Draft is an object on which we apply the
modalities of creation and validation of
hypothesis or solutions to a problem. They are

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

364

defined by the design actor herself or conjointly
with other actors who use graphics represented in
traceable objects, printings or in screen views.
• Exhibit is an object on which we apply a
persuasion modality in accordance with what is
represented either for convincing about the existence
of a problem or for showing a solution and allowing
a common construction and the exchange of the
point of view.
• Enabled trace is a traceable or digigraphic
object that one applies a modality of circulation
without constraints. The creator accepts to diffuse it
to the others, after her consent or her agreement with
a collective prescription which she takes part to.

In our work, we consider Draft, Exhibit and
Enabled trace as the three possible states of a
collaborative pattern (Fig. 1).

Figure 1: Collaborative pattern lifecycle.

Drafts are kept in the personal (private)
workspace of a community member. Then the
creator needs to confront her ideas with other
members’ point of view; she proposes the pattern to
her proximity workspace based on her personal
network and her loyal relationships. In the proximity
workspace, the creator can expose herself to critics
and judgment of others. When the collaborative
pattern is considered as enabled, it is validated to be
transmitted outside the personal network in the
public space. In the public space, a pattern cannot be
modified but it can be used (i.e. selected and adapted
to a given problem). It can also be annotated (i.e.
commented with marks or evolution suggestions) so
that the pattern creator can decide to reconsider it if
necessary.

The operations on patterns cannot be realized by
anyone. We distinguish 3 roles for a pattern:
• Pattern owners are the pattern creator and any

other person that the creator has accepted as
owner. They can do all operations on their
patterns. In our case, owners will be experts in
evaluation.

• Pattern collaborators are people in the proximity
workspace of the pattern owners. They can view

and modify the pattern when it is in the
“Exhibit” state. For the domain of information
systems design validation, collaborators can be
other specialists in evaluation, but also
specialists in information systems design. Thus
the evolution of a pattern is a cooperative
activity where the experts of two different
domains must work together in order to create a
valid solution.

• Readers can view, use and annotate the pattern
when it is in the public space. Readers are non-
specialists of the pattern domain who are simply
looking for information. They can be
information system specialists looking for a way
of validating their proposal or evaluation
specialists who search for new evaluation
solutions.
Collaborative patterns seem to be a solution to

construct, gather and share the evaluation knowledge
for information systems design. However to be
easily used, they need to be available with a
common tool support.

3.2 Tool Support

In our vision, the evaluation community will share
their knowledge in a web site. This web site will
present the community (their actors, their goals…).
It will also support discussion in a wiki or in a forum
in order to allow the community members to
contribute to the community life. The global
community will be managed by a moderator who
will be responsible for accepting new members,
validating patterns,…(Fig. 2).

Figure 2: Main use cases.

TOWARDS A COMMUNITY FOR INFORMATION SYSTEM DESIGN VALIDATION

365

Figure 3: Website generated by AGAP.

There are also two other actors inside a
community:
• Visitors who are not yet members of the

community. They can only view and search for
patterns.

• Members who have adhered to the community.
They can use and annotate patterns. They can
also create patterns, becoming then “pattern
owner”. And if they are “pattern collaborator”
of a pattern, they can modify this specific
pattern.

The evaluation community web site will also
contain collaborative patterns. Each pattern will be
described in a web page on which it will be possible
to realize the operations identified in the previous
section: creation, modification, use, reconsideration,
validation, but also sharing with the proximity
network or the community. For each pattern, we will
propose a forum to keep discussion opened and to
permit annotations.

As the management of the evaluation community
must be similar to the one of any other community,
we are developing a tool for managing collaborative
patterns in general. Our tool, C-OPEN
(COllaborative Pattern Environment), will permit
the creation of a new community (for instance the
evaluation one) and their management.

This tool will be based on the principles of the
AGAP tool (Conte, 2002) that was designed to
support pattern catalogues. AGAP allows designers
to enter information for patterns (structure, context,
motivation, solution, links between patterns etc) and
then to generate an autonomous website
corresponding to a patterns catalogue.
Fig.3 shows a screenshot of the main page of a
patterns catalogue, which represents the activities of
the Symphony development method. The main part

of the interface is dedicated to the display of the
pattern chosen by the user. In the pattern, the
solution, represented by a model (here an activity
diagram), can be selected in order to be reused.
Finally all the patterns are browsable with the list
presented on the left. They can also be found by a
search function.

C-OPEN will add the management of the
collaborative aspects that we have described
previously to AGAP. It will be implemented using
the Alfresco content management solution in order
to facilitate its maintenance.

4 CONCLUSIONS AND FURTHER
WORK

This paper argues for a more systematic validation
of the research proposals of the information systems
design domain. In order to achieve this goal, we
would like to create an evaluation community where
evaluation specialists could share their knowledge
via collaborative patterns. Patterns are viewed not
only as a way of describing knowledge
collaboratively, but also as a mean to share this
knowledge with non-specialists. A specific web site
can then present the knowledge into a user-friendly
way.

Currently we are working with evaluation
specialists so as to identify and describe some of
their knowledge. This will give us our first patterns
for information systems design evaluation.

Moreover, we will be soon able to propose a tool
support for the community so that it will be easy
share knowledge about evaluation. The first
community supported by the tool will be the
evaluation one with the patterns that we are

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

366

currently identifying. It will give us the starting
point of the evaluation community for information
systems design. We hope that the existence of this
community will encourage information systems
specialists to validate their proposals.

REFERENCES

Aranda J., Ernst N., Horkoff J., Easterbrook S., 2007, A
Framework for Empirical Evaluation of Model
Comprehensibility”, In Int. Workshop on Modeling in
Software Engineering (MISE’07), IEEE.

Ceret E., Dupuy-Chessa S., Godet-Bar G., 2010, Using
Software Metrics in the Evaluation of a Conceptual
Component, In Proc. Of the 4th Int. Conf. On research
Challenge in Information Science RCIS’2010, IEEE,
France.

Conte A., Giraudin J. P., Hassine I., Rieu D., 2002,Un
environnement et un formalisme pour la définition, la
gestion et l’application de patrons, revue Ingénierie
des Systèmes d’Information (ISI), volume 6 N°2,
Hermès. [in french]

Dupuy-Chessa S., 2009, Quality in Ubiquitous
Information System Design, In Proc of the 3rd Int.
Conf. On research Challenge in Information Science
RCIS’2009, IEEE, Maroc,

Hug C., Mandran N., Front A., Rieu D., 2010, Qualitative
Evaluation of a Method for Information Systems
Engineering Processes, In Proc. Of the 4th Int. Conf.
On research Challenge in Information Science
RCIS’2010, IEEE, France.

Godet-Bar G., Dupuy-Chessa S., Rieu D., 2008, When
interaction choices trigger business evolution, In Proc
of 20th International Conference on Advanced
Information Systems Engineering (CAiSE'08), LNCS
5074, Springer, Montpellier, France, pp 144-147.

Krogstie J., 1998, Integrating the Understanding of
Quality in Requirements Specification and Conceptual
Modeling. Software Engineering Notes, ACM
SIGSOFT, 23(1), pages 86-91.

Krogstie J., 2003, Evaluating UML Using a Generic
Quality Framework, chapter UML and the Unified
Process, Idea Group Publishing, pages 1-22.

Lécaille P., 2003, La trace-habilitée, une éthnographie des
espaces de conception dans un bureau d’études
mécanique: l’échange et l’équipement des objets
grapho-numériques entre outils et acteurs de la
conception, PhD dissertation in INPGrenoble,
novembre 2003. [in french]

Lange C., Chaudron M., 2005, Managing Model Quality
in UML-based Software Development”, In Proc. Of
the 13th Int. Workshop on Software Technology and
Engineering Practice (STEP’05), pages 7-16.

Lindland O. I., Sindre G., Solvberg, A., 1994,
Understanding quality in conceptual modeling. 1EEE
Software, pages 42-49.

Mendling J., Nemann G., Van Der Aalst W., 2007, On
correlation between process Model Metrics and Errors,

In Proc. 26th Int Conference on Conceptual Model
(ER’2007),New Zealand.

Mohagheghi P., Aagedal J., 2007, Evaluating Quality in
Model-Driven Engineering, In Int. Workshop on
Modeling in Software Engineering (MISE’2007),
IEEE.

Moody, D. L., 2003, The Method Evaluation Model: a
Theorical Model for Validating Information Systems
Design Methods. In 11th European Conference on
Information Systems ECIS 2003.

Moody D., 2005, Theoretical and practical issues in
evaluating the quality of conceptual models: current
state and future directions, Data & Knowledge
Engineering, Vol 55, pages 243-276.

Nelson J., Poels G., Genero M., Piattini M., 2005, Quality
in Conceptual Modeling: five examples of the state of
the art”, Data & Knowledge Engineering, vol 55,
pages 237-242.

Ontology Design Patterns web site, 2010, http://
ontologydesignpatterns.org/wiki/Main_Page (last
consultation March 2010).

Palen L., 2002. Beyond the Handset: Designing for
Wireless Communications usability. ACM
Transactions on Computer-Human Interaction, 9(2),
pages 125-151.

Patig S., 2008, A practical guide to testing the
understandability of notations, Conferences in
Research and Practice in Information Technology
Series; Vol. 325, In Proc. of the fifth on Asia-Pacific
conference on conceptual modelling - Volume 7,
pages 49-58

Siau K., Tian Y., 2001, The Complexity of Unified
Modeling Language: A GOMS Analysis, In Proc. Of
the 22th Int. Conference on Information Systems,
pages 443-447.

Rossi M., Brinkkemper S., 1996, Complexity Metrics for
System Development Methods and Techniques,
Information Systems, Vol. 21, num. 2, pages 209-227.

Si-Said Cherfi S., Akoka J., Comyn-Wattiau I., 2007,
Perceived vs. Measured Quality of Conceptual
Schemas: An Experimental Comparison . In Tutorials,
posters, panels and industrial contributions at the 26th
International Conference on Conc, Grundy, John and
Hartmann.

Tichy W., Lukowicz P., Prechelt L., Heinz E., 1997,
Experimental evaluation in computer science: a
quantitative study. Journal of Systems Software, 9,
pages 9-18.

Zelkowitz M., Wallace D., 1997, Experimental validation
in software engineering, Information and Software
Technology, 39, pages 735-743.

TOWARDS A COMMUNITY FOR INFORMATION SYSTEM DESIGN VALIDATION

367

