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Abstract. We propose a model of coarse edge detection using self-adjusting
resistive-fuse networks. The resistive-fuse network model is known as a non-
linear image processing model, which can detect coarse edges from images by
smoothing noise and small regions. However, this model is hardly used in real
environment because of the sensitive dependence on the parameters and the com-
plexity of the annealing process. In this paper, we first introduce self-adjusting
parameters to reduce the number of parameters to be controlled. Then, we pro-
pose a heating-and-cooling sequence for fast and robust edge detection. The pro-
posed model can detect edges more correctly than the original one, even if an
input image includes a gradation.

1 Introduction

Edge detection is a common task in image processing. It can not only serve for pattern
recognition, such as image retrieval [1] and text extraction [2], but can also reduce the
image information to accelerate conventional image processing [3, 4].

In some applications, coarse edge detection is desired to reduce the complexity of
edge images. The resistive-fuse network model provides such a function [5]. This model
smoothes image noise and small regions, and detects discontinuities as coarse edges by
using iterative operations to minimize an energy function. This model can converge
faster than stochastic methods [6] or coupled MRF models [7]. Therefore, we have
used this model for coarse edge detection and have implemented it in an FPGA [8].

However, the resistive-fuse network model has two limitations: sensitive depen-
dence on the parameters, and complexity of the annealing process, which is necessary
to avoid local minimum. These two limitations greatly restrict the use of this model in
real applications.

In this paper, we propose a new resistive-fuse network model. We first introduce a
self-adjusting element to reduce the number of parameters to be controlled. Then, we
propose a new annealing sequence for fast and robust edge detection.

2 Original Resistive-fuse Network Model

Resistive-fuse networks (hereafter, RFN) are used to implement an image reconstruc-
tion model, which performs energy minimization for coarse edge detection [5]. The
energy function is given by
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E(f) = oZ(fz- —di)? + AZ(fi — fir)2(1 = 1) + aZli, (1)

where f;, d; andl; are the values of the pixel statg input data d and binary line

processesl at location i, respectively, and, \ anda are free parameters. The first

term forces the pixel statd to be close to the input data, while the second term

smoothes that. The third term, line processefsinctions as follows.
L Mfi— fir1)? > q,

0, otherwise.

So far, many methods have been proposed to solve the locahmmimproblem in an
MRF model, such as stochastic methods or using coupled MRfemidowever, a con-
tinuation method, such as the graduated non-convexity (GNg©rithm [9], can make
the model converge fast and is therefore suitable for ie@-image processing. Such
an method eliminates the line procesdeand gradually changes the energy function
from a convex shape to the final desirable one.

RFN circuit implements the model using the continuationhodt The original
RFN circuit is composed of voltage sources, linear rest&arand resistive-fuse ele-
ments, as shown in Fig. 1 (a). Each node corresponds to agiatelf; ;, when the
value of each voltage source represents the image ifpuat pixel (i, j). Each node
and voltage source are connected with a linear resistafmeserconductance is The
adjacent nodes are connected with resistive-fuse elenveimése conductance function
is given by

AV
T It exp{n(VZ—o2)} ®)

where) is the conductance of a resistive-fuges a parameter for changing the con-
ductance function, and is the threshold value of the resistive-fuse elements. Equa
tion (3) is derived by using a deterministic mean field appmation to the MRF model

of piecewise smooth surface interpolation [10], and theapestern in this equation
corresponds to the inverse of tteenperature 7' for simulated annealing [6].

I=G(V)

Resistive-Fuse
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Fig. 1. Original analog resistive-fuse network (a), and I-V chégstics (b) of a resistive-fuse
element.

The energy function of this circuit is given by



45

_aZf” dij)?+>. > / ()
i3 m,neN
whereN represents the nelghbormg nodeg®fj), andV = f; ; — frmn.

Whenn is close to zero, i.e. temperatufeis very high, the conductance is almost
linear, as shown in green color in Fig. 1 (b). In contrast, mhés equal to or larger than
unity, i.e. temperaturé’ is very low, the conductance becomes an ideal resistive-fus
characteristic, which is similar to the line process fumetias shown in red color in
Fig. 1 (b).

As described above, the original RFN model uses a contimatiethod to avoid
the local minimum problem, by gradually changing the parn@mefrom near zero to
unity or larger than that. This is based on the assumptiartiieaunique minimum of
the convex energy function is close to the global minimunheffinal function shape.

In practice, we calculate the pixel stdtby using discrete-time dynamics with an
equation derived from the Kirchhoff’s Current Law (KCL). &ldynamics is given by

fii@+1) = fi;(t) — & Z G(V) +20(fi; —dij)}, (5)

m,neN

where¢ is a step size parameter of gradient descent. The changesotalled an
annealing process, and the annealing schedule is usually as follows:

n(t+1) = kn(t), (6)
wheret is the index of iterations, andis a real number which fulfillg € (1, 2] [6, 9].

3 Limitations of Original RFN Model

The RFN model mainly has two limitations in actual applicat, and each of them is
described in a following subsection.

3.1 Dependence on the Parameters

The original RFN model has four parameters for controllimg énergy function, o,

n andd. Each of them affects the results of edge detecticemdo control the strength

of smoothing, while; andé control the range of that, i.e. the balance of smoothing and
segmentation. Therefore, it is necessary to make cleaethganships between these
parameters for the control of them.

First of all, let us focus our attention on the relationshgivbeen) ando. It is
obvious that the value of/o determines the constraint of the input image and the
strength of smoothing. Therefore, the results of edge tetenot only depend on the
thresholdy, but also sensitively depend difo, as shown in Fig. 2 (a). The larger the
ratio is, the stronger the strength of smoothing becomes.

Next, we discuss the relationship betweeandd. It is verified from Fig. 2 (b)
that the shapes of the energy function and conductanceidunGy-) vary according
to bothn andé. This means that the balance of smoothing and segmentatiioravy
accordingly when using the same annealing schedule arerdliff5. This makes it
difficult to select the threshold
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Fig. 2. (a) Edge detection results using RFN model, whéb) = 0.00055% = 1.1 and iterations
=80in Eq. (6), and (b) Variations of the shape of conductdanetion, when, = 0.01.

3.2 Complexity of Annealing Process

We use a simple circuit as shown in Fig. 3 (a) to discuss theaimy process. In this
case, the energy function is given by

Vi Vi
E(f)=o(f; —di)* + GW)dv + o(fiyr — dig1)? + G(v)dv, (7)

0 0
whereV; = f; — fir1.
When the energy functio®'(f) reaches a minimum, we can obtain the following
equations:

oF

97, — 2o (fi —di) + G(V;)} = 0. @)
a?fE =2{o(fi+1 —dix1) + G(=V;)} = 0. ©)

i+1

These two equations mean th reaches a minimum when the sum of the currents
at each node is zero, i.e. the circuit is in a stable statetr&ting Eq. (9) from Eq. (8)
gives

Viai — Vi
(o 9 s
whereV,y; = d; — d;+1. The right-hand side of Eq. (10) is therefore identical te th
current in the linear resistance betwegrandd;. In Fig. 3 (b), the black lines and the
red lines representy; (n = 1) and,;, wherelgr,; andI,; denote the left-hand and
right-hand side of Eqg. (10), respectively. It is clear tligtfollows a linear function
of V; becausé/yy; is given by the input. Therefore, the intersection pointghafim
represent the stable states of the circuit.

Figure 3 (b) and Table 1 show that the number of stable stafgsrais on the value

of V44:, which is the intersection point of the red lines andih@xis. There is only one

G(V;) = (10)
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(@ (b) © (d)

Fig. 3. A simple circuit (a) for discussion, and the relationship iBetweenl; and V; where
Vi = fi — fi+1- (c) and (d) show the definitions éfandB using relationship betweef andV;
and that betwee®s and Pz, (n = 1), respectively.

Table 1. Local minimum problem concerned with

Value of |[Vyai| | Emin G U Definitions

[Vaai| € (0,0) | single |Region $Region $A = 5\/1 +2,B=§(1+2),C=6(1+2)

|Vaai| € (6, A) |[multiple|Region $Region § Global E,,ir, whenn 2 1

Vaai| € (A, B)|multiple|Region LRegion § U Unique E,in, Whenn ~ 0

Vaai| € (B, C)|multiple|Region URegion Lj|Region S the region wher¢V;| < ¢
|Vaas| > C' | single |Region L{Region Lj|Region L the region wher¢V;| > ¢

stable state i/;4; is smaller thard or is large enough. However, there are two stable
states, which are denoted B¢ and Py, if Va4, € (A, B) whereA and B are defined
as shown in Fig. 3 and Table 1.

Note that the series of the conductance function intersecpaint(s, Ad/2), which
can be calculated from Eq. (3) and is shownFasin Fig. 3 (c). ThusA, B andC in
Table 1 are defined as follows:

—If Vddi = A, E(Ps) = E(PL).
— If V44; = B, the red line moves acrogs.
— If V44; = C, the red line moves across A9).

As described in Sec. 2, the annealing process in RFN modes iah the assumption
that the unique minimum of the convex energy function iselasthe global minimum
of the final desired one at each node. Here, “close” can beatkéin in the same region
where|V;| < ¢ or |V;| > ¢, i.e. in the regiorSor regionL.

It is clear from Table 1 that such assumption is not valid whgn € (A4, B),
which we called agray zone. Note that if|V;| > J, the two nodes will be smoothed
from the beginning when using an annealing sequence, sutie asnealing schedule
shown in Eq. (6) or a simplified three-stage sequence praopiosg]. Because there
was no algorithm to prevent the nodes moving into the grayezeuach an annealing
sequence can not always give the global minimum solutioraelh @ode, and might
cause over-smoothing and lose some edges. Therefore,rikalary schedule should
be redesigned by considering the relationship betwegrand\/o.



48

4 Improved RFN Model

In order to improve the RFN model, we first introduce selfuating functions of\
andn to reduce the number of parameters to be controlled. Therprogose a new
annealing sequence for fast and robust edge detection.

4.1 Self-adjusting ofA

We first propose a self-adjusting function dfas shown in Eq. (11), which has the
similar effect as the annealing process.

A'm,n(t>(1 + hA), ‘V‘ < (5,

11
Amn(t)(1 — hy), otherwise. a1

Amn(t+1) = {
Here,h) is a small positive number and can be determined by the nuailierations
and the range of adjustment.

By using this self-adjusting function of, we can setr and the initial value of\

as constants, and letadjust itself to change the value &fo according to the local
voltage difference. Thus, the manual controhadndo becomes unnecessary. Further-
more, this self-adjusting can also improve the robustnésiseomodel because it can
reduce the length of gray zone by decreasifig when|V| > 4.

4.2 Self-adjusting ofn

In order to keep the balance of smoothing and segmentat®optain Eq. (12) for the
scaling of conductance function when parameters exgcaptd remain identical.

G1(V)lv=ks, : G2(V)|v=ks, = 61 : 02, (12)

wherek is a certain real number. Thus, we obtain the condition dsvisl by substitut-
ing Eq. (3) into Eq. (12).
moy = 1203 (13)

This means thag can be adjusted by and the desired shape of the conductance func-
tion.

Summarizing the above, the number of parameters need toriieolled can be
reduced to one, i.e. only the threshaldy using the self-adjusting functions sfand
7. This result significantly simplifies the control of the paeters, and makes it easier
to select the appropriate threshéld

4.3 New Annealing Sequence

We propose a heating-and-cooling annealing sequence,raplbg a “shaping” pro-
cess, which is named after that in the die making, to redueedmplexity and ambi-
guity of the inputimage for robust edge detection. The tetdithe proposed annealing
sequence are as follows. If the defined threshold validg, is
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“Sharpening” stagei = §,/2 andn = 1.
“Shaping” staged = §, andn = 1.
“Heating” staged = &, andn = 0.1/52.
“Cooling” stages = Jp andn = 5/52.

el

In the first stage, we use a smallo sharpen blurred boundaries. During this stage,
the interactions between two nodes whigfe > &,/2 will be cut off and blurred bound-
aries will be sharpened by the smoothing in a small range.

In the second stage, we set= §p andn = 1 to calculate the rough results which
obviously include the local minimum and small regions.

In the third stage, we use a smalli.e. high temperature to smooth small regions
and to lead to global minimum.

In the final stage, we use a largei.e. low temperature to “cool” the pixel states
down for coarse edge detection. Note thas a little smaller than unity in the final
stage. This is because that the binary resistive-fuse ctegistic is known as lack of
robustness [11]. Therefore, we uge= 5/42 in the final stage, whose characteristic is
close to that whem = 1, but more convex around whefg| = 4. Therefore, it may
lead to less local minimum in the interactions with neighibgeight nodes.

In summary, we propose a heating-and-cooling annealingesex, and employ
“sharpening” and “shaping” processes to improve the rotasst of the model. Ideal an-
nealing sequences have to smooth noise and small regidressdme time, while keep-
ing the boundaries of large regions. However, simple cgetlown annealing cannot
achieve these functions due to the uncertainty of the inpatie, and may cause over-
smoothing. In contrast, the proposed annealing sequemcshzapen blurred bound-
aries and reduce noise in the input image before the “headtage for smoothing the
small regions. Therefore, the proposed annealing sequemrtechieve more robust
detection than simple cooling-down sequences.

5 Simulation Results and Discussion

Figure 4 (a) shows processing results obtained by appifiegelf-adjusting function
of X to the original RFN model. It is verified that these resules lass sensitive to the
initial value of A\/o compared with Fig. 2 (a). Figure 4 (b) shows the scaling of the
shape of conductance function, by keepi@g constant.

We also evaluated the similarity between the results wharga{ value of ) \ /o
is two and is four as shown in Table 2. The similarity is defi@adthe ratio of the
count of identical edge pixels to that of all the edge pixiishe simulation, 15 images
are selected from 4.1.01 to 4.2.07 in the USC-SIPI Imageliaa[12]. By comparing
3rd-column with 4th-columnin Table 2, it is verified that @elf-adjusting function can
significantly weaken the dependence of the modehgm, so that it can increase the
similarities of edge detection results when changirig. Furthermore, the similarities
of edge detection results come to more than 90% by additionsing our new anneal-
ing sequence as shown in the 5th-column in Table 2. Thergilo@enanual control of
A ando is unnecessary any more.

Figure 5 shows processing results for images with gradafioa rectangular region
in the input image has a gradation of 10 levels per pixel in-@%8| grayscale. These
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Fig. 4. (a) Edge detection results using self-adjusting\ofThe horizontal axis represents the
initial value of \/o. (b) Scaling of the shape of conductance functi¥), by usingné® = 1.
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Fig.5. Edge detection results in the case of gradation. Input infayevith a gradation, and
edge detection results using original RFN model (b), a sfiedlRFN model (c) in [8] using a
three-stage-cooling annealing sequence, and our proftsidnodel (d).

Table 2. Similarity Evaluation of Edge Detection Results.

5 OriginallAdjusting/Proposed

model |of A only| model
12/55.09% 69.13% | 91.44%
Lena (10/58.14%| 74.36% | 93.32%
8156.46% 77.59% | 93.64%
12/56.65% 69.43% | 92.94%
Averagel0|57.41% 73.85% | 93.61%
8157.12% 75.67% | 94.18%

results show that the original RFN model with an annealimgess described in Eq. (6)
can only detect coarse edges, and the model with a simplHiegtstage-cooling an-
nealing sequence [8] failed to detect correct edges in thdagion region. In contrast,
the proposed model in this paper can detect coarse edgeséwhdti, and can detect
fine edges wheh < 10.
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10 14 18 8

Fig. 6. Edge detection results using one-dimension input data @ithssian white noise. Input
data (a), and edge detection results using original RFN fr{bjland proposed model (c). Here,
red color shows the pixel state, and green color shows thalérszation of that.

Figure 6 shows some results using input data shown in blaldk oo Fig. 6 (a),
which is obtained by adding Gaussian white noise (sigma ©4hé data shown in
blue color. In this simulation) /o in the original RFN model and its initial value in
the proposed model were set to three. It is verified thatmalgRFN model can detect
almost no edges because the boundaries are over-smoaghsthvan in Fig. 6 (b). In
contrast, the proposed model can control the level of edggetien, as shown in Fig. 6
(c), when)\,,.;, = 2 and\,q = 4.

6 Conclusions

We analyzed the resistive-fuse network model for coarse eégection and clarified
its limitations. First, we proposed self-adjusting funas to simplify the parameter
control. We concluded that only the threshaldhas to be controlled, and the local-
adjusting of\ improves the robustness of edge detection. Then, we prdposew
annealing sequence for fast and robust detection. It wéfseekthat the proposed model
can detect edges more correctly than the original one, éaninput image includes a
gradation.
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