
AN ASPECT-BASED APPROACH FOR CONCURRENT
PROGRAMMING USING CSP FEATURES

José Elias Araújo, Henrique Rebêlo, Ricardo Lima, Alexandre Mota, Fernando Castor, Tiago Lima
Juliana Lucena and Filipe Lima

Informatics Center, Federal University of Pernambuco, Recife, Brazil

Keywords: Concurrent programming, Aspect-oriented programming, Communicating sequential processes, JCSP, Met-
rics.

Abstract: The construction of large scale parallel and concurrent applications is one of the greatest challenges faced by
software engineers nowadays. Programming models for concurrency implemented by mainstream program-
ming languages, such as Java, C, and C++, are too low-level and difficult to use by the average programmer.
At the same time, the use of libraries implementing high level concurrency abstractions such as JCSP requires
additional learning effort and produces programs where application logic is tangled with library-specific code.
In this paper we propose separating concurrent concerns (CSP code) from the development of sequential Java
processes. We explore aspect-oriented programming to implement this separation of concerns. A compiler
generates an AspectJ code, which instruments the sequential Java program with JCSP concurrent constructors.
We have conducted an experiment to evaluate the benefits of the proposed framework. We employ metrics
for attributes such as separation of concerns, coupling, and size to compare our approach against the JCSP
framework and thread based approaches.

1 INTRODUCTION

Java usually relies on thread based mechanisms to
control concurrency. This is too low level and requires
much effort from programmers with solid background
on concurrent programming to develop simple and
small concurrent applications. Moreover, working
on thread-level makes the program difficult to debug
and error prone. Based on these observations, Welch
proposed the Java CSP (JCSP) (Welch, 2006) frame-
work, which adopts CSP constructs to create con-
current Java programs. JCSP’s programmers do not
rely on threads or concurrency patterns likefutureand
oneway(Goetz et al., 2006). Welch claims that JCSP
loses some ultra-low process management overheads
but wines the model for a mainstream programming
language. Unfortunately, concurrency features and
sequential processes are still intertwined (tangled) in
JCSP programs.

One might see the JCSP concurrency constructs
that span multiple sequential modules as a crosscut-
ting concern. Exploring the methodology introduced
by aspect-oriented programming (AOP), we could in-
troduce a new unit of modularization by implement-
ing the JCSP concurrency features as an aspect from

AOP. An aspect weaver, which is a compiler-like en-
tity, would automatically instrument the sequential
code with concurrency aspects to compose the final
system. In this paper, we explore these ideas to pro-
pose a new concurrency programming style for Java
programs, named Aspect-Oriented JCSP - AJCSP. We
essentially annotate sequential Java programs with
concurrency specifications using a CSP-like syntax.
We created a compiler to translate such annotations
into an AspectJ code, which is responsible for instru-
ment a sequential Java program with JCSP code.

This paper also presents quantitative assessments
of two systems implemented in three different ver-
sions: AJCSP, JCSP, and Java threads. Our study was
based on well-known software engineering attributes
such as separation of concerns, coupling, and size.
We have found that our aspect-oriented solution with
AJCSP improved the separation of concurrency con-
cern. In addition, we have observed that the use of
AJCSP: (i) decreased the coupling between the con-
current and the sequential code; (ii) can help to de-
crease code scattering, improving the modularity; (iii)
is useful to remove tangling of concurrency concern,
enhancing program readability, and (iv) reduced the
number of attributes, operations, and lines of code in

226
Elias Araújo J., Rebêlo H., Lima R., Mota A., Castor F., Lima T., Lucena J. and Lima F. (2010).
AN ASPECT-BASED APPROACH FOR CONCURRENT PROGRAMMING USING CSP FEATURES.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 226-231
DOI: 10.5220/0003014102260231
Copyright c© SciTePress

Producer = |∼| data: {1..100} @ ch!data -> Producer

Consumer = ch?x -> print!x -> Consumer

Program = Producer || Consumer

Figure 1: Producer and consumer in CSP.

a particular system due to the “aspectization” of con-
currency.

The remainder of this paper is organized as fol-
lows. Section 2 presents the existing framework to
implement concurrency control. Section 3 presents
our approach to implement JCSP features using AOP.
Section 4 presents a quantitatively assessment of the
impact of our AJCSP approach in a case study involv-
ing two systems. Also, study results in terms of sep-
aration of concerns, coupling, and size attributes are
presented. Finally, Section 5 includes some conclud-
ing remarks and directions for future work.

2 JAVA CSP

JCSP (Welch, 2006) is a Java library developed by
Professors Peter Welch and Paul Austin from the
Univesity of Kent at Canterbury. It is based on the
formal specification language CSP (Roscoe et al.,
1997; Hoare, 1985) created by Tony Hoare in 1975
and updated by Bill Roscoe in 1998, serving as an
implementation medium for this language. CSP
basic elements are events, processes and operators on
events and processes. Processes are behavioral units
that exchange data using the message passing model
of communication instead of the more traditional
shared memory model supported directly in Java as
discussed in Section 2.1.

Since JCSP is an object-oriented language, it
encapsulates the implementation details necessary
to support the elements of CSP, in terms of an API
which provides concepts as channels, processes and
operators. Thus, the translation from CSP to JCSP
is almost direct except for the treatment of recursion
and some CSP capabilities not supported by the
library; for instance, multiway-rendezvous (multiple
synchronization).

A key factor of using the combination between
CSP and JCSP is that one can model a system using
CSP, analyze its main properties, such as deadlock,
livelock and determinism via the CSP model checker
FDR (Hoare, 1985), and after being satisfied with
the model, translate it in terms of JCSP. This allows
an almost guaranteed implementation in terms of the
previous checked properties.

In what follows, we provide a brief overview
about JCSP using a simple example written in CSP

as well as in JCSP. With this, we expect the reader
can see that the translation is almost direct.

The example shown in Figure 1 is a classical
producer-consumer program written in CSP. This ex-
ample illustrates a synchronized parallelism between
two processes. The Producer process is responsible
for generating a random values from 1 to 100 and
then outputting this value through the channel ch.
The Consumer process waits for the random value
using an input communication via channel ch. After
receiving this value, the process sends it to its
environment via channel print.

Based on Figure 1, we can propose a JCSP
version capturing an equivalent behavior. As JCSP
needs more details to work properly we need three
figures: Figure 2(a) shows the JCSP version of the
Consumer process and the Producer process, and
Figure 2(b) of the parallel combination between the
Consumer and Producer processes.

We start our JCSP presentation with the
consumer-producer system depicted in Figure 2.
This figure illustrates the Producer process (lines1 to
10). The first thing to note about a JCSP process is
that it is a traditional Java class except for the need
to implement the interface org.jcsp.lang.CSProcess.
As a class, we have attributes, a constructor and
one or more methods, where the methodrun()
is mandatory. Our single attribute is a channel,
namedch (line 2), used to output values (this is
characterized by the keyword ChannelOutput). The
constructor simply initializes the output channel with
the single parameter with the same type. The method
produce() captures the CSP construction|∼| data: 1..100 @

as a function which returns a random value from 1
to 100. Finally, the methodrun() represents the
CSP recursion by an infinite loop, whose behavior is
basically sending the result of the methodproduce()
using the output channelch.

Similarly to the Producer, the Consumer
(lines 12 to 21) class implements the interface
org.jcsp.lang.CSProcess and provides a run() method
to be implemented. The ch attribute is used to input
values. Thus, this process begins reading a value
available in the ch channel and store it in another
attribute named data. The methodprint() captures
the CSP constructionprint!x which sends the value
bound to x to its environment via channel print. It
also represents the CSP recursion by an infinite loop,
where its behavior is to print values received from
channel ch.

The final element of our JCSP version is the main
behavior. It is also given by a Java class but now
it does not implement interface CSProcess. Class
Program captures the parallelism between processes

AN ASPECT-BASED APPROACH FOR CONCURRENT PROGRAMMING USING CSP FEATURES

227

1public class Producer implements CSProcess {

2 private ChannelOutput ch;

3

4 public Object produce(){ ...}

5

6 public void run() {

7 while (true) {

8 Object data = produce();

9 ch.write(data);

10 }

11 }

12}

13public class Consumer implements CSProcess {

14 private ChannelInput ch;

15

16 public void print(Object object){ ...}

17

18 public void run() {

19 while (true) {

20 Object data = ch.read();

21 print(data);

22 }

23 }

24}

(a)

1public class Program implements CSProcess {

2

3 public void run() {

4 One2OneChannel ch = Channel.one2one();

5 Producer producer =new Producer(ch.out()) ;

6 Consumer consumer =new Consumer(ch.in()) ;

7 Parallel parallel =new Parallel();

8 parallel.addProcess(producer);

9 parallel.addProcess(consumer);

10 parallel.run();

11 }

12 public static void main(String [] args){

13 new Program(). run() ;

14 }

15}

(b)

Legend: Concurrency Concern Code

Figure 2: (a) Producer and Consumer classes implemented with JCSP. (b) The main Program class with JCSP.

Producer and Consumer. As the class Program simply
links the previous processes, we use a channel typed
One2OneChannel. After that, we create instances
of processes Producer and Consumer and use these
instances to create a group of independent (parallel)
processes. To execute the elements inside this group,
the methodrun() is called (Welch, 2006). The result
of Program is an infinite sequence of random based
communications between Producer and Consumer.

3 ASPECT-ORIENTED
JCSP - AJCSP

In this section we describe AJCSP programming style
as well as some important points connected to the
compiler implementation.

3.1 The AJCSP Programming Style

In AJCSP, the concurrency annotations are inserted
inside Java comments. It uses a Java single line com-
ment (//) followed by the symbol @# to indicate that

1 //@# var data

2 //@# data = produce() -> ch!data -> Producer

3 public class Producer {

4 public Object produce(){...}

5 }

6 //@# var data

7 //@# ch?data -> print(data) -> Consumer

8 public class Consumer {

9 public void print(Object data){...}

10 }

11 //@# Producer[||] Consumer

12 public class Program {

13 public static void main(String[] args

){

14 (new Program()). run() ;

15 }

16 }

Legend: Concurrency Concern Code

Figure 3: The Producer/Consumer implementation using
AJCSP approach.

the line contains AJCSP annotations. We call such an-
notationsclass prefix. Since they are Java com-
ments, AJCSP annotations are ignored if the conven-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

228

tional Java compiler is used. In this case, the compiler
generates a sequential Java program.

AJCSP processes are Java classes. Such processes
are composed through AJCSP constructs to define a
concurrent Java program.

3.2 An Example: Producer-consumer

In Section 2.2, we illustrated the implementation of a
producer-consumer concurrent problem using JCSP.
This section describes an AJSCP version of the same
problem.

ClassesProducer andConsumer in Figure 3 are
pure Java classes. No JCSP code is used to imple-
ment these classes. The AJCSP annotations are em-
ployed to specify the concurrent behavior processes
instantiated from such classes. The reader may com-
pare them with the classes in Figure 2. Notice that the
latter classes implements the JSCP interface CSPro-
cess. Moreover, CSP constructs are mixed with the
Java code used to implement the behavior of pro-
cessesProducer andConsumer.

In Figure 3 (line2), the methodproduce is in-
voked and return a value of type Object, which is
stored in variabledata. Afterwards, the process
Producer writes thedata value in the channelch.
At this moment,Producer is blocked until another
process(Consumer) reads the value sent through
channelch. Then,Producer is recursively invoked.
On the other hand, processConsumer reads the chan-
nel ch and waits until another process(Producer)
writes in the channelch. Consumer then prints that
value and is recursively called.

TheProgram class (see Line 12 in Figure 3) rep-
resents the starting point of the Producer-Consumer
application, I define the parallel composition of the
Producer and Consumer objects (processes) (see Line
11 in Figure 3).

4 CASE STUDY

In this section, we present a case study conducted to
evaluate the benefits and limitations of AJCSP when
compared against JCSP and Java threads.

4.1 Study Settings

In this subsection, we describe the configuration of
our case study. In particular, we discuss the goals and
the research questions we intend to investigate. Fi-
nally, we discuss the metrics suite employed in our
study as well as our assessment procedures.

Table 1: Separation of Concerns metrics results.

System Version CDC CDO LOCC DOSC DOSM DOTC

Threads 4 8 62 0.92 0.94 0.83

ProdCons JCSP 3 6 44 0.99 0.93 0.73

AJCSP 3 0 6 1 0 0.67

Threads 4 10 21 0.95 0.88 0.38

Bingo JCSP 3 7 50 0.97 0.85 0.80

AJCSP 3 0 6 0.97 0 0.15

Goal. The main goal of the case study is to assess
whether AJCSP contributes to produce concurrent
code of higher quality, when compared against JCSP
and Java threads. Notice that such assessment is
based on modularity. Hence, we are concerned about
issues like: (i) scattering of concurrency concern; (ii)
tangling between the concurrency concern and the
sequential program.

Research Questions. We investigate seven re-
search questions in the case study. Which approach
contributes to decrease: (RQ1) scattering of the
concurrency concern?; (RQ2) tangling between the
concurrency concern and the sequential (business)
code?; (RQ3) the number of components?; (RQ4)
coupling between components?; (RQ5) the lines of
code in components?; (RQ6) the lines of code in
components?, and (RQ7) the number of attributes
and operations in components?

Metrics. In order to answer the research questions,
we selected a metrics suite proposed in (Sant’anna
et al., 2003) to evaluate separation of concerns, cou-
pling, and code size These metrics were adapted form
classic OO metrics (Chidamber and Kemerer, 1994)
to be applied to the AOP paradigm. We discuss the
employed metrics in the rest of this section.

Lower values for a given metrics implies better
results, for instance the two versions of scattering
metrics we use (DOSC and DOSM) varies from 0
(completely localized) to 1 (completely delocalized,
present in all components).

Separation of Concerns (SoC) metrics measure
the degree to which a single concern (concurrency
control in our study) affects the system. The coupling
metric CBC indicates the degree of dependency
between components. Excessive coupling is not
desirable, since it is detrimental to modular design.
Size metrics are important to evaluate the com-
plexity of the final system. For further details about
size metrics, refer to (Chidamber and Kemerer, 1994).

Assessment Procedures. We implemented three ver-
sions (using AJCSP, JCSP, and Java threads) of two
different applications: Producer and Consumer (Prod-
Cons); and the bingo game (Bingo). We implemented

AN ASPECT-BASED APPROACH FOR CONCURRENT PROGRAMMING USING CSP FEATURES

229

Table 2: Size and coupling metrics results.

System Version LOC NOA NOO VS CBC

Threads 74 4 11 4 5

ProdCons JCSP 52 2 9 3 7

AJCSP 22 0 5 3 0

Threads 190 10 26 5 7

Bingo JCSP 174 14 23 4 11

AJCSP 138 6 20 4 3

the same functionalities for each version of the appli-
cations. This is important to perform a fair compari-
son.

In the measurement process, the data was partially
gathered by the AJATO measurement tool1. It sup-
ports some metrics: LOC, NOA, NOO. Additionally,
we used the AOP metrics tool2 to collect CBC and
VS. Eventually, we collected the SoC metrics (CDC,
CDO, LOCC, DOSC, DOSM, and DOTC) (Sant’anna
et al., 2003; Eaddy et al., 2008) manually.

4.2 Study Results

This subsection presents the results of the measure-
ment process. The data have been collected based on
the set of defined metrics. The presentation is orga-
nized in two parts. First, we describe the results for
the separation of concerns metrics. Then, we present
the results for the size and coupling metrics.

4.2.1 Separation of Concerns Measures

Table 1 shows the results for the SoC metrics. The
AJCSP versions of the target systems performed bet-
ter than the other two versions. The application of
the SoC metrics was useful to quantify how effective
was the separation of the concurrency control concern
in the target systems. In relation to the measure of
CDC, all target systems present similar results for the
three implemented versions. By considering the VS
metric from Table 2, we can observe (using the CDC
metric) that the concurrency concern crosscuts almost
the components of the target systems in all versions.
Thus, we can conclude that none of three versions
of the target systems provides a good separation of
concern regarding scattering. Code scattering is one
symptom that indicates that a system fails to modular-
ize a particular concern that is implemented in multi-
ple components (classes) (Laddad, 2003). Since all
versions demonstrated to be too scattered in relation
to their components, we employed the DOSC metric.
With the DOSC, we can quantify exactly the degree
of how scattered the concurrency concern is in each

1http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/
2http://aopmetrics.tigris.org/

version of the target systems. After measurement, we
realized that the AJCSP version presented the worst
results in implementing the concurrency control by its
components. This is due to the annotative approach
imposed by AJCSP.

Even though the AJCSP approach presents the
worst results for code scattering across components,
our approach is superior for both CDO and DOSM
metrics. We employed such metrics to quantify and
measure the degree of how scattered the concurrency
concern is in relation to all operations in the tar-
get systems. We observed that except our approach,
the other two (threads and JCSP) presented higher
CDO and DOSM. In fact, the AJCSP implementation
presents 0 for both CDO and DOSM. This divergence
is a direct consequence of the strategy we adopted for
annotating the concurrency behavior in classes. Since
we put all annotations before a class definition, we
decouple the methods (operations) from the concur-
rency concern code. As a result, we have a more leg-
ible code which implements only the business con-
cern. By considering the four metrics for scattering
measurement, the AJCSP approach is the answer for
the first research question (RQ1).

Code tangling is another symptom of non-
modularization of a particular concern (Laddad,
2003). Code tangling is caused when a component
handles multiple concerns simultaneously. Hence, to
measure the degree of tangling of the concerns (con-
currency and business) implemented by the three ver-
sions of the target systems, we employed the DOTC
metric. The AJCSP approach showed to be less tan-
gled when compared with the other approaches. We
can easily notice that by reasoning in how the AJCSP
approach is achieved. So, since we concentrate the
concurrency concern code as annotations in the be-
ginning of a class, this way, the rest of the code is
dedicated only to the business concern implementa-
tion. As a result, the code became less tangled with
the concurrency control code. The main reason is
that the concurrency concern code appears in several
methods of a class in the other approaches. This can
observed in the CDO and DOSM metrics previously
discussed. As a consequence of our approach, the tan-
gling degree isinversely proportionalto a system size
(LOC metric in Table 2). Thus, the greater the lines
of code of a system is, the lower degree of tangling it
is. Therefore, this answer the second research ques-
tion (RQ2).

Finally, regarding LOCC (Lines of Concern Code)
metric, we can observe that since AJCSP concentrates
the concurrency concern implementation into a sin-
gle place, it requires less lines of concern code to im-
plement such a concern in contrast to the other ap-

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

230

proaches. This properly answer the third research
question (RQ3).

4.2.2 Size and Coupling Measures

We have also analyzed how the AJCSP implementa-
tion version has impacted positively or negatively on
the size and coupling measures in comparison with its
counterparts in Thread and JCSP. Table 2 presents the
results for these metrics for both AJCSP and evolved
system versions. The use of the annotative approach
of AJCSP led to a reduction of all size metrics (Ta-
ble 2). For example, in the Bingo system, the LOC
metric in AJCSP were, respectively, 27% and 20%
lower than its counterparts in Thread and JCSP. More-
over, AJCSP version of Bingo system showed less
NOA (40% and 57%, respectively) than Thread and
JCSP versions. Note that we had similar results for
the ProdCons system. (This answer the research ques-
tions RQ5 to RQ7).

The AJCSP solution in Bingo system was superior
to its counterpart solutions in terms of coupling. The
coupling (CBC) in the AJCSP implementation was
57% and 73% lower than Thread and JCSP, respec-
tively. The coupling was too lower in AJCSP when
compared to JCSP because the code of latter is com-
pletely dependent of the JCSP API. Since we abstract
the use of such API, we provided a significant reduc-
tion in the coupling metric. This is one indicative that
our approach provides a more reusable code against
the standard manner. Similar results can be observed
in Table 2 for the ProdCons system. (This answer the
research question RQ4.)

5 CONCLUSIONS

In this paper, we have presented a novel concur-
rency programming style for Java programs, known as
Aspect-Oriented JCSP - AJCSP. This new style uses
JCSP features to add concurrency behavior. JCSP is a
framework that implements CSP features in Java lan-
guage. By using JCSP one can abstract the use of
Java threads, whereas the main reason to use AJCSP
is to abstract the use of JCSP framework as a whole.
With AJCSP, a programmer writes special annota-
tions in the sequential Java code. Such annotations are
a CSP-like syntax. We use a compiler that translates
AJCSP annotations into AspectJ aspects with JCSP
code. Such aspects are responsible for adding the
concurrency behavior in a implicitly way. Currently,
we are also conducting more case studies to evaluate
qualities and limitations of AJCSP.

We believe that the usage of aspects to imple-

ment concurrency concern with JCSP introduces a
new level of modularity. In other words, our approach
is not invasive (the Java source code is not tangled
and scattered with the JCSP concurrency code). This
gives more flexibility to maintain the source code.
To better explain the impacts of AJCSP approach,
we have conducted a case study on two Java pro-
grams. We implemented those systems in three dif-
ferent ways: AJCSP, JCSP, and Java threads. We
used metrics such as separation of concern, coupling,
and size to evaluate our claims about modularity in
concurrent JCSP programs. The results provided ev-
idences that AJCSP may improve modularity of con-
current systems. Eventually, due to the simplicity of
our approach, we can argue that the maintenance ef-
fort is minimized when using AJCSP to develop con-
current programs.

REFERENCES

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite
for object oriented design.IEEE TSE, 20:476–493.

Eaddy, M. et al. (2008). Do crosscutting concerns cause
defects?IEEE TSE, 34(4):497–515.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D.,
and Lea, D. (2006).Java Concurrency in Practice.
Addison-Wesley, Upper Saddle River, NJ.

Hoare, C. A. R. (1985).Communicating Sequential Pro-
cesses. Prentice-Hall.

Laddad, R. (2003).AspectJ in Action: Practical Aspect-
Oriented Programming. Manning Publications Co.,
Greenwich, CT, USA.

Roscoe, A. W., Hoare, C. A. R., and Bird, R. (1997).The
Theory and Practice of Concurrency. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Sant’anna, C. et al. (2003). On the reuse and maintenance of
aspect-oriented software: An assessment framework.
In Proceedings of SBES’03, pages 19–34.

Welch, P. (2006). Jcsp: Communicating sequential pro-
cesses for java. http://www.cs.kent.ac.uk/projects/ofa/
jcsp/.

AN ASPECT-BASED APPROACH FOR CONCURRENT PROGRAMMING USING CSP FEATURES

231

