
META-DESIGN PARADIGM BASED APPROACH FOR
ITERATIVE RAPID DEVELOPMENT OF ENTERPRISE

WEB APPLICATIONS

Athula Ginige
AeIMS Research Group, University of Western Sydney, Sydney, Australia

Keywords: Enterprise web application development, Meta-design paradigm, Iterative development, Auto generation of
web applications.

Abstract: Developing enterprise software or web applications that meet user requirements within time and budget still
remains a challenge. The success of these applications mostly depends on how well the user requirements
have been captured. The literature shows progress has been made on two fronts; improving ways
requirements are captured and increasing interaction between users and developers to detect gaps or
miscommunication of requirements early in the lifecycle by using iterative rapid development approaches.
This paper presents a Meta-Design paradigm based approach that builds on work already done in the area of
Model Driven Web Engineering to address this issue. It includes a Meta-Model of an enterprise web
application to capture the requirements and an effective way of generating the application.

1 INTRODUCTION

Today enterprises are depending heavily on web
based business applications to stay competitive. This
class of applications are broadly categorised as
Enterprise Web Applications. Still there are many
challenges to developing Enterprise Web
Applications within time and budget that meet user
requirements (Krigsman 2008). At the start
approaches that were taken to develop enterprise
web applications came from software engineering.
Since then these have evolved to meet specific
characteristics of Web based applications. Yet
Software and Web development approaches have
many things in common.

Many of the studies on software project failures
have identified difficulties of accurately capturing
user requirements as a major contributor to failure of
software development projects (Standish_Group
1995; Sauer, Gemino et al. 2007). Researchers have
found that this equally applies for web applications
as well (Escalona and Arago´n 2008).

Much effort has been spent on developing better
ways to accurately capture requirements. Yet the
various survey results on success rate of software
development projects show still there are major
challenges to accurately capturing the requirements

(Standish_Group 1995; Sauer, Gemino et al. 2007;
Escalona and Arago´n 2008).

A good approach to find whether the developed
system meets the user requirements is by giving the
system to the users as quickly as possible and to get
the users to use the system. If there was loss of
information in capturing the requirements or if the
requirements have evolved since these were initially
captured then by rapidly developing the system and
getting users to test it will bring these to light.

Thus we need better ways to capture
requirements as well as approaches to rapidly
develop the Web applications. In this paper we
propose an approach based on Meta-Design
paradigm which consists of an efficient model based
approach to capture the requirements and a model
transformation approach to rapidly generate the
application.

2 RELATED WORK

The literature shows in recent times progress has
been made to address the issues related to
requirements capture on two fronts; first by
improving ways requirements are captured
(Escalona and Koch 2007; Escalona and Arago´n

337
Ginige A. (2010).
META-DESIGN PARADIGM BASED APPROACH FOR ITERATIVE RAPID DEVELOPMENT OF ENTERPRISE WEB APPLICATIONS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 337-343
DOI: 10.5220/0003014003370343
Copyright c© SciTePress

2008). The second approach is to use rapid iterative
application development methods that enable users
to frequently see parts of the physical system as the
application get developed and provide feedback.
Getting frequent user feedback helps to detect gaps
or miscommunication of requirements early and
correct these accordingly.

Conventional software development approaches
consist of requirement analysis, design,
implementation and testing (Boehm, Egyed et al.
1998). Application requirements need to be
specified at the start of a development process. Once
implemented, making changes to the implemented
application become very expensive and time
consuming. Thus trying to rectify any missing
requirements is not cost effective with these
development approaches. Also for the same reason
these approaches are not suitable to develop
evolving web based applications.

Agile methods (Highsmith 2002) also need
requirements of the application to be specified at the
beginning of a development project. However with
Agile methods it is much easier to make changes to
the implemented software; yet it requires fair
amount of time and effort.

Model Driven Architecture (Soley 2000) and
Model Driven Development (MDD) are developed
by the Object Management Group (OMG) to
manage the changes in technology and the
proliferation of different kinds of middleware.
Model Driven Web Engineering (MDWE) (Moreno,
Romero et al. 2008) evolved from Model Driven
Development to provide a hybrid approach that uses
models to capture requirements and using model
transformation techniques provide a way to rapidly
develop the application.

Escalona and Aragon (Escalona and Arago´n
2008) have analysed set of empirical studies where
various modelling techniques were used to capture
user requirements and the process of translating
these into analysis models required by designers to
implement the system. They concluded that it is very
difficult to translate users’ necessities into Web
analysis models as requirements are frequently
defined using nonformal models.

This highlights the need for a comprehensive
model to capture the essential aspects of an
enterprise web application.

3 META-DESIGN PARADIGM

Meta-Design paradigm builds on some of the
concepts in Model Driven Web Engineering and

End-User development. The meta-design paradigm
was initially proposed in the context of end-user
development by Fisher (Fischer, Ye et al. 2004;
Fischer and Giaccardi 2006). It was to accommodate
evolution in Information Systems.

We have applied this concept to development of
enterprise web applications. Instead of developing a
specific enterprise web application, we developed a
meta-model to store the individual application
models and generate the application from the meta-
model instanced values. The attributes of the meta-
model will corresponds to different aspects of the
physical application. When requirements change, the
end-users can change the values in the
corrosponding attributes of the meta-model and
regenerate the application thus providing an easy
way to evolve the web application. The relationship
between a web application and the proposed Meta-
Model is shown in figure 1.

Figure 1: Relationship between a web application and the
Meta-Model.

The figure 2 shows the conceptual model of two
very common enterprise web applications; a leave
processing system and a purchase requisition
system.

The “Leave Processing System” can be viewed
as an employee (actor) submitting a leave form
which then gets routed based on a set of business
rules to different actors for approval and processing.
From time to time managers (another actor) can
view leave records of the employees. Thus we can
conceptualise this application as a form being routed
based on a set of business rules and acted by
different actors.

Similarly a purchase requisition is raised by an
employee (actor) and acted by different people
(other actors) based on a set of business rules. Thus
one can see that both these applications are very
similar at a conceptual or the meta-level. But in the
detailed level, the leave object and the purchase
requisition object will have different attributes,
different business rules, different actors and different
reporting requirements. If these specific details can
be captured as instance values of a suitable meta-
model then from these values we can generate both

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

338

the applications as well as many more applications
that fit this meta-model.

As shown in figure 2 to auto generate a
enterprise web application we need an object
builder, workflow engine, access control system and
an interface renderer to interpret the meta-model
instance values and generate the applications.

Access
Control

Workflow
Engine

Object
Builder

Interface
Renderer

Access
Control

Workflow
Engine

Object
Builder

Interface
Renderer

Leave Processing
System

Purchase
Approval System

Application Level

Meta Application LevelMeta Application Level

• Leave Forms

• Leave Approval
Procedure

•Roles and Actors

•Reports

• Purchase Approval
Forms

• Purchase Approval
Procedure

• Roles and Actors

• Reports

Figure 2: Example of a meta-design paradigm.

4 META-MODEL
FOR ENTERPRISE WEB
APPLICATIONS

As mentioned previously, we view web-based
business applications as an instance of a Meta-
Model. In theory, by creating a meta-model and
developing tools to populate the instance values we
can generate business applications. In practice
however, creating a meta-model is not easy due to
the complexities of business applications.

Many researchers have proposed different ways
to model web applications (Schwabe, Rossi et al.
1996; Fratenali and Paolini 1998; Schewe, Thalheim
et al. 2004). A comparison of these methods can be
found in (Kappel, Pröll et al. 2006). Our task was to
select appropriate models to represent different
aspects of a web application and create an overall
meta-model to store attributes required to specify
these aspects.

The meta-model that we developed for
Enterprise web applications is shown in figure 3. It
is important to note that Meta-Model attributes are
high-level compositions of many basic attributes.
For example the “Rules for Sequencing Use Cases”
is represented as a state table. Thus this high level
attribute is a model in its own right and consists of
set of low level attributes to capture the details
required to represent a state table.

Below we explain how specific aspects of a web
application can be modelled as attribute values of
the Meta-Model shown in figure 3 using an example
of a Customer Relationship Management (CRM)
System. Figure 4 shows a screen shot of the
generated application using instance values stored in
the Meta-Model.

As can be seen from the expanded CRM menu in
the figure 4 this application has many use cases and
a link is provided from the Menu to perform the
activities in these use cases. Some of these use cases
are Company Details, Contact Details, Deals
Management, Task Management, ….. and Case
Management.

Most of the Use Cases are to manage some
aspect of an information object. These use cases
belongs to the Business Process category in the
meta-model and have specific tasks such as create a
new instance of the information object, edit, delete
view and approve. Typically approval process
consists of few use cases where different actors need
to perform set of tasks in a pre defined order. These
rules need to capture in the “Rules for Sequencing
Use Cases” attribute of the meta-model.

In our previous research we have developed the
concept of Smart Business Objects (SBO) (Liang
and Ginige 2006); objects that are aware how to
render, validate and store itself according to data
type of the attribute. These SBOs recognise high-
level data types such as email, address, photo,
description, document in addition to the low level
data types such as binary, varchar etc.

Figure 3: High-level Meta-Model of an Enterprise Web Application.

META-DESIGN PARADIGM BASED APPROACH FOR ITERATIVE RAPID DEVELOPMENT OF ENTERPRISE
WEB APPLICATIONS

339

Figure 4: Screen Shot of the CRM application generated using meta-deign paradigm.

We used SBOML “Smart Business Object
Modelling Language” (Liang and Ginige 2008;
Liang 2009) to capture details of various businesses
objects used in Enterprise Web applications. The
expressive power of SBOML greatly simplified the
number of attributes required in the Meta-Model to
fully capture all the details of the enterprise web
applications.

Below we show using SBOML how we can
specify a “contact cases” object and a related
“owner” object in our CRM application.

This SBOML expression is entered through a

web form and stored in the object table of the Meta-
Model for enterprise web applications as an attribute
value. When generating the “Customer Relationship
Management” application, a new database with the
name (namespace) “crm” is created. In this database
two tables or classes; “contact cases” and “owner”,
are created with the attributes specified above using
SBOML. At any time we can edit the Business
object specification in the Meta-Model object table
and regenerate the business objects.

The Meat-Model also has database table where
we store the properties of the attributes. The main
properties are the data types such as varchar, integer,

date etc, how to validate the input values using a
regular expression, how an attribute when rendered
as an input on a web form should appear such as text
box, radio buttons, check boxes, text box with a
WYSIWYG JavaScript editor, upload button or a
date picker if the attribute is a date etc. Similarly
how an attribute when rendered as an output on a
web browser should appear such as if the attribute is
an email with an “mailto” link, if the attribute is an
address then as a location on Google maps, etc also
get stored. This now allows enterprise web
application objects to be specified using high-level
application domain concepts such as documents,
photos, email, birthday, address etc. When
developing multiple applications, this ability to reuse
high-level application domain knowledge becomes
very useful.

SBOML uses following syntax to represent
relationships among objects.

These text strings are stored in the relationship

table as attribute values and use during application
generation time to physically create the relationships
among objects in the enterprise web application.

Use cases support CRUD (Create, Read, Update
and Delete) operations on a namespace (set of
classes) class (table) or an instance value in a class
(record). How the use case specifications are stored

in crm, contact_cases has case_name, case_description,
status(which could be Unassigned or Assigned or Closed
or Re-Opened), contact(id), contact_group(id),
priority(High or Medium or Low), owner(has
employee_no, name, email, home_phone, mobile,
address), case_open_date(date), case_close_date(date)

crm contact_cases has crm contact

crm contact_cases has many crm contact_group

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

340

in the use case table in the meta-model is best
described by first showing an interface that get
generated when we create the required enterprise
application and then working backwards.

Figures 4 and 5 show two generated user
interfaces for the “Case Management” use case in a
CRM application that we developed using this
system.

The interface shown in figure 4 allows user to
perform CRUD operations on instance values in 4
classes; Contact Cases, Call, Mail and Meeting. User
can navigate from class to class using “Tab” menu at
the top. Within each tab selected attributes of the
instance values in that class are displayed in a table
form. Also there are navigation links to “Create
Contact Cases” as well as edit or delete existing
“Contact Cases”. Clicking on “Create Contact
Cases” or edit button will navigate the user to the
form shown in figure 5.

The specifications as to what classes to be
displayed in the “Tab” menu, what attributes of
instances in each class to be shown as table within
each tab and when navigated to a create or an edit

form what attributes to be shown are stored in the
Use case table of the Meta-Model. This string
expression is based on JSON data structure and for
the above interfaces this string expression is given
below.

Rules for sequencing of use cases are captured as
a state table. An example of a captured state table is
shown table 1.

Figure 5: Form interface to edit a Contact Case.

{crm::contact_cases->render_as_menu(
 item_order => [
 'contact_cases',
 'call',
 'mail',
 'meeting',
],
 'create' => '1',
 'search' => '1',
 'edit' => '1',
 'ajax' => '1',
 'view' => '1',
 'delete' => '1',
);
}

META-DESIGN PARADIGM BASED APPROACH FOR ITERATIVE RAPID DEVELOPMENT OF ENTERPRISE
WEB APPLICATIONS

341

Table 1: Showing Rules for sequencing of use cases as a state table.

Current State Actor Function Buttons Do Action Next State
1 Contact Complaint Submit Create Issue 2
2 Manager Assign issue

Owner Employee
Assign Assign Owner, Email

Owner
3

3 Owner Process Issue Process Set Deadline 4
Reject Email Contact,

Manager
5

4 Owner Resolve Issue Resolved Email Manager,
Contact

6

Unresolved Email Manager,
Contact

6 Manager View Issues - 6

5 CONCLUSIONS

In this paper we have presented a meta-design
paradigm based approach to rapidly develop
enterprise web applications. Using the framework
that we developed, we are now able to develop
enterprise web applications within days which
could have taken weeks or months if developed in
conventional ways. One of the major trials we did
with the new approach was to develop a Customer
Relationship management system for couple of
Small to Medium size enterprises that we work
with. As these business owners were able to see the
discussed functionality and the interfaces that got
generated in few hours after each meeting we had
with them, they were able to interact closely with
the team that developed the application and get
things modified to suite their specific
requirements.

This showed that we can get some basic
specifications from the users, start creating the
system using this approach and system iteratively
get refined. It also supports evolution of user
requirements which happened many times during
this trial. Often when the business owners see a
generated interface they wanted a new attribute
added to a business object or change the way a
particular attribute is displayed. With this system
most of these changes can be done straight away
and show to the business users to verify whether
the requested change has been now implemented to
the satisfaction of the user.

In these trails we have also identified few areas
that require further research. At present use cases
are limited to small set of CRUD operations that
can be performed using set of pre defined
interfaces. The use case model needs to be further
refined to facilitate such wider range of operations.

This work has clearly demonstrated that the

Meta-Design paradigm is suitable way to get
Enterprise Web application that meet user
requirements developed on time and within the
agreed budget.

REFERENCES

Boehm, B., A. Egyed, et al. (1998). Using the Win Win
Spiral Model: Case Study. IEEE Computer. July
1998: 33-44.

Escalona, M. a. J. and G. Arago´n (2008). "NDT. A
Model-Driven Approach for Web Requirements."
IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 34(3).

Escalona, M. J. and N. Koch (2007). Metamodeling the
Requirements of Web Systems. Web Information
Systems and Technologies, Springer Berlin
Heidelberg. 1: 267-280.

Fischer, G. and E. Giaccardi (2006). Meta Design:A
framework for the future of end user development.
End User Development: Empowering People to
flexibly Employ Advanced Information and
Communication Technology. H. Lieberman, F.
Paterno and V. Wulf, Springer. 9: 427-457.

Fischer, G., E. G. Y. Ye, et al. (2004). "Meta Design: A
Manifesto for End -User Development."
Communications of the ACM 47(9): 33-37.

Fratenali, P. and P. Paolini (1998). A conceptual model
and a tool environment for developing more scalable
and dynamic Web applications. EDBT 98, Valencia,
Spain.

Highsmith, J. (2002). Agile Software Development
Ecosystems, Addison Wesley.

Kappel, G., B. Pröll, et al. (2006). Web Engineering -
Systematic Development of Web Applications,
Wiley.

Krigsman, M. (2008). Study: 68 percent of IT projects
fail. ZDNet.

Liang, X. and A. Ginige (2006). Smart Business Objects:
A new Approach to Model Business Objects for
Web Applications. 1st International Conference on
Software and Data Technologies, Setubal, Portugal

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

342

Liang, X. D. (2009). Smart Business Object. School of
Computing and Mathematics. Parramatta, University
of Western Sydney.

Liang, X. D. and A. Ginige (2008). Smart Business
Objects for Web Applications: A New Approach to
Model Business Objects. Software and Data
Technologies J. Filipe, B. Shishkov and M. Helfert.
Berlin, Springer Berlin Heidelberg. Volume 10: 307-
322.

Moreno, N., J. R. Romero, et al. (2008). An Overview of
Model-Driven Web Engineering and the MDA. Web
Engineering: Modelling and Implementing Web
Applications. G. Rossi, O. Pastor, D. Schwabe and
L. Olsina, Springer London: 353-382.

Sauer, C., A. Gemino, et al. (2007). "The impact of size
and volatility on IT project performance."
Communications of the ACM Vol. 50(No. 11): 79 -
84.

Schewe, K.-D., B. Thalheim, et al. (2004). Modelling
and Stories in Web Information System. Information
Systems Technology and its Applications (ISTA),
Salt Lake Ciy, Utah, USA.

Schwabe, D., G. Rossi, et al. (1996). Systematic
hypermedia application design with OOHDM.
seventh ACM conference on Hypertext, Bethesda,
Maryland, United States, ACM Press.

Soley, R. (2000). Model Driven Architecture, Object
Management Group.

Standish_Group (1995). Chaos. THE STANDISH
GROUP REPORT, The Standish Group

META-DESIGN PARADIGM BASED APPROACH FOR ITERATIVE RAPID DEVELOPMENT OF ENTERPRISE
WEB APPLICATIONS

343

