
AN EXTENSIBLE, MULTI-PARADIGM
MESSAGE-ORIENTED MOBILE MIDDLEWARE

Yuri Morais and Glêdson Elias
Component Oriented Software Engineering Group, COMPOSE, Informatics Department

Federal University of Paraiba, Paraiba, Brazil

Keywords: Message-oriented Middleware, Mobile Computing, Communication Paradigm, Software Product Line.

Abstract: Message-oriented middleware (MOM) platforms are usually based in asynchronous, peer-to-peer interaction
styles, leading to more loosely coupled architectures. As a consequence, MOMs have the potential for
supporting the development of networked mobile applications. However, MOM platforms have been
implemented under a limited set of message-based communication paradigms, each one being specifically
adapted to a given application domain or network model. In such a context, this paper proposes a mobile
middleware solution which offers a comprehensive set of extensible, message-based communication
paradigms, such as publish/subscribe, message queue and tuple spaces. Supported by a Software Product
Line (SPL) approach, the proposed middleware is suitable for constrained devices as all supported
communication paradigms share and reuse a reasonable number of software components that deal with
common messaging features. Additionally, by means of an extensible design, new communication
paradigms can be easily accommodated, as well as existing ones can be removed in order to better fit in
more constrained devices.

1 INTRODUCTION

Ubiquitous computing, context-aware applications
and mobile services form one of the most promising
business opportunities in the near future. Ubiquitous
applications, however, introduce great challenges to
software developers, such as mobile nodes, scarce
resources and fragile wireless links. In such a
scenario, middleware plays a key role as it aims at
facilitating communication and coordination of
distributed components, concealing difficulties and
complexity raised by mobility to software engineers
as much as possible. However, the traditional client-
server, synchronous model used by traditional
middleware (e.g. RPC, RMI) is not adequate for
mobile environments. Instead, an asynchronous,
peer-to-peer style fits better for mobile computing,
as it leads to a loosely coupled architecture. Such a
communication style is provided by message-
oriented middlewares (MOMs). In MOMs, instead
of direct method invocations, communication is
accomplished by producing and consuming
messages, which are generic data structures created
by applications in order to transmit data.

MOMs have been implemented under a limited set
of message-based communication paradigms, each
one being specifically adapted to a given application
domain or network model. Examples of MOM
paradigms include publish/subscribe, tuple spaces,
message queues and notifications. In all of them,
communication is always done by means of message
exchanges. The main aspects that differentiate them
are their respective message delivery semantics: (i)
consumers are asynchronously notified or explicitly
retrieve new messages; (ii) messages are handled by
intermediate nodes or directly addressed to
consumers; and (iii) messages are consumed
according to a set of properties or in a predefined
order.

Taking into account the diversity of
communication paradigms, one of the main
problems in developing middleware for distributed
mobile applications is to decide which paradigm is
the best option to be adopted. Each paradigm
presents particularities and focuses on different
scenarios. Therefore, according to (West, 2005) and
(Costa, 2005), modern middleware platforms should
not be limited to a specific communication and
design paradigm, instead, they must be flexible

158
Morais Y. and Elias G. (2010).
AN EXTENSIBLE, MULTI-PARADIGM MESSAGE-ORIENTED MOBILE MIDDLEWARE.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 158-164
DOI: 10.5220/0003011501580164
Copyright c© SciTePress

enough to attend a wide variety of application
domains. Moreover, by supporting varied options of
communication paradigms, middleware platforms
are more likely to be reused in distributed
applications than a solution solely based on a
specific communication paradigm.

In such a context, this paper proposes a message-
oriented middleware solution for mobile computing
that offers a comprehensive and extensible set of
communication paradigms. In order to optimize
resource utilization in constrained devices, all
supported communication paradigms share and reuse
a reasonable number of software components that
deal with common messaging features.

In addition, supported by a reusable and
extensible architectural design, the proposed
middleware has been conceived based on a Software
Product Line (SPL) approach. The architectural
design permits the selection of supported
communication paradigms during deployment time,
enabling paradigms to be included or removed, as
well as creating new ones by filling in predefined
extension points, without modifying existing code.
Thereby, the middleware can be customized
according to application requirements and device
capabilities, and besides it is also able to
accommodate new features.

The middleware was initially proposed in
(Morais, 2010), by the definition of a preliminary
high-level architecture. In this paper, however, we
introduce the idea of an extensible design, along
with implementation details.

The remainder of this paper is structured as
follows. Section 2 presents an overview of the
proposed mobile middleware solution. In Section 3,
the architecture and design to support the proposed
features are presented. Section 4 describes
implementation details. Section 5 discusses related
work, and, finally, Section 6 presents concluding
remarks and future directions.

2 PROPOSED MIDDLEWARE

MOM was initially proposed for dealing with
communication issues in enterprise information
systems due to their versatility and robustness
(Eugster, 2003). Recently, their asynchronous, peer-
to-peer and uncoupled interaction style, along with
their fault-tolerance mechanisms showed to be the
most adequate way of providing communication in
mobile, wireless environments. MOM’s main goal is
to hide all the nasty communications from
applications by providing a simple high-level API

for distributed programming.

MOM

Applications

MOM

Applications

MOM

Applications

WLAN

Figure 1: Middleware operating environment.

The services offered by the proposed middleware are
intended to support mobile applications that need to
communicate with other ones in a local wireless
network, in an ad hoc fashion or connected by
means of an access point. Examples of such
applications include: cooperative games, file
sharing, mobile indoor guide, military battlefield,
and disseminating information (e.g., advertisement,
share prices) on a trade floor. Figure 1 shows the
environment in which the middleware must operate.

Such an environment is based on a peer-to-peer
model, in which each node can act as message
producer and/or consumer. There is no distinction
between server and client nodes, some of the server
functionalities (i.e. persistence, service
advertisement) are embedded in each node.

Moreover, instead of a monolithic architecture,
the middleware design is based on the product-line
concept. According to (Clements, 2002), a software
product line is a set of systems sharing a common,
managed set of features that satisfy the specific
needs of a market segment and that are developed
from a common set of assets in a prescribed way.

In such a sense, the middleware architecture
defines common messaging features that are shared
among the communication paradigms, forming the
product line kernel. On the other hand, messaging
semantics specific for each communication
paradigm are modelled as optional components.
Thereby, such optional components can be part or
not from each instance of the middleware.

The middleware message model has the
following goals: (i) support several communication
paradigms in a unified, extensible and customizable
platform; (ii) enable the development of applications
with different distributed interaction dynamics.

2.1 Messaging Common Features

Although the MOM interaction style suits well in
mobile, wireless scenarios, according to (Mascolo,

AN EXTENSIBLE, MULTI-PARADIGM MESSAGE-ORIENTED MOBILE MIDDLEWARE

159

2002), traditional monolithic MOM implementations
are not enough. Messaging features must be adapted
in order to deal with restrictions imposed by mobile
devices and wireless networks. Thus, the proposed
middleware adopts the following adaptations.
Sending Buffer. Taking into account the frequent
disconnections of mobile networks, this mechanism
temporarily stores messages in a local buffer while
waiting to be transmitted when connection is again
available. Such mechanism enables the sender
application to ‘fire-and-forget’ messages, trusting
the middleware to handle the delivery.
Message Time-to-Live (TTL). Despite local buffers
being an efficient way of dealing with
disconnections, long disconnection periods can
overload the device memory, which is usually very
constrained. Thus, applications must specify a
message time-to-live (TTL), which defines the time
that a message can be kept by the middleware while
waiting to be transmitted.
Persistent Messages. Although the sending buffer
provides an exactly-once delivery guarantee, in
cases of abnormal conditions, such as resource-
exhaustion, processing failure or device being turned
off due to low battery, messages managed by a
device may be lost. The proposed middleware
mitigates such an issue by allowing messages to be
marked as persistent and thus to be stored in a non-
volatile memory.
Service Location. Traditional MOM providers, such
as (Sun Microsystems, 2002), use a fixed,
predefined lookup service in order to transparently
find available services. However, in mobile
networks, it cannot always be assumed the existence
of a central entity to lookup services from. Due to
that, the proposed middleware advertise its services
in the network by means of a service discovery
protocol, similar to (Rellermeyer, 2010). In order to
look up services, the middleware sends a multicast
message to the network. Devices providing services
listen to that multicast address and reply in unicast
indicating their service addresses.

2.3 Messaging Styles

The messaging features presented in the previous
section consist in common facilities for dealing with
issues in mobility scenarios. Such features form the
basis for providing messaging exchanges in a variety
of message-based communication paradigms. In
order to provide multiple communication paradigms,
only the code specifically related to message
delivery semantics must be added. This subsection

specifies the communication paradigms considered
in this proposal and discusses design decisions.
Message Queue Paradigm. Message queuing is
based on the adoption of distributed queues, where
several producers send messages to a queue and then
various consumers retrieve them from the queue. In
contrast to traditional MOM platforms, in which
queues are created only by the system administrator,
queues in the proposed middleware are created
dynamically and on demand by applications.
By following the peer-to-peer style, message queues
can be hosted in any device of the network and
applications can access local or remote queues.
Additionally, the time interval that messages are
held is queues is also controlled in order to avoid
resource exhaustion. Traditional enterprise message
queue systems usually store messages indefinitely.
However, mobile devices have storage resources
very limited. Therefore, the message TTL defines
how long a message can spend in a queue until being
read or, otherwise, discarded.
Tuple Space Paradigm. The notion of tuple space
was originally proposed in Linda (Gelernter, 1985)
as a coordination language for concurrent
programming, however, its uncoupled and
opportunistic style of communication has been
shown to provide many useful facilities for
communication in mobile environments. Tuple
spaces provide a simple and powerful abstraction for
accessing a shared memory, which acts as a
repository of data structures for distributed
applications communicating by means of the
insertion and removal of tuples.
Each tuple has a set of application defined properties
which are used in retrieval operations and can
differentiate each one from the others. The retrieval
of tuples is by means of content association, that is,
by comparing a set of properties informed as
parameter and the properties of the tuples in the
space. A tuple space service can be created in any
device and serve as a mean to allow distributed
applications to communicate. Furthermore, similar
to message queues, tuple spaces services are created
on demand, by applications.
Publish/Subscribe Paradigm. In this paradigm,
communication is achieved by publishing events and
subscribing in certain types of events. An
intermediate service, called event channel, records
subscriptions and forwards events produced by
publishers for all interested subscribers. Each event
channel is identified by a topic service name, which
specifies a group of similar applications exchanging
messages.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

160

When an application creates an event channel, the
middleware takes care of advertising it, keeping
subscriptions and forwarding messages as they are
published. Applications can send or subscribe to
event channels hosted by their own device or in
other devices of the network. The location is
transparent, that is, applications obtain a reference to
the service by means of the service locator. In order
to publish messages, applications may create its own
topic or locate an existing one in the network. It is
important to highlight that if an event channel has no
connection with a given subscriber, the middleware
takes care of retransmitting the message later on.
Synchronous Paradigm. Differently from the
previous paradigms, in the synchronous paradigm,
each message is explicitly addressed to a specific
application, without using an intermediate service,
such as an event channel or tuple space. In addition,
this paradigm adopts the client/server model, in
which the client application sends a request message
to the server application, and then, the latter sends
back a response message to the former. Similarly to
RPC, the client side blocks while waiting for a
response. The difference is that, instead of directly
invoking a remote operation, a message object is
used to exchange information.
Point-to-Point Notification Paradigm. Similarly to
the synchronous model, this paradigm has no
intermediate service. It differentiates from the
previous model in that instead of a request-response
model, it uses one-way invocations. Moreover, it
may be used to split a synchronous remote
invocation into two asynchronous invocations: the
first one triggered by the client to the server
application – accompanied by the invocation
arguments and a callback reference to the client –
and the second one triggered by the server to return
the response message to the client.

3 EXTENSIBLE DESIGN

The architecture of the proposed middleware
exploits the common aspects of the communication
paradigm, previously explained, and represents as
mandatory, shared components all features that are
common among the messaging styles. On the other
hand, the code related to each message delivery
semantic, and so specific for each communication
paradigm, is modelled as variable, optional. Figure 2
illustrates the architecture designed to support the
proposed solution. The optional components are

those that implement the communication paradigms,
represented in Figure 2 inside the dot-dashed box.

 Application 1

Message Excha nger

Per sistence
Manager

S
er
vi
ce

Lo
ca
to
r

Application 2

TTL
Monitor

Message Queue

Publish/Subscribe

Tuple Space

PTP N ot ification

Synchronous

Message Dispatcher

Messa ge
Manager

S
er
vi
ce

M
an
ag
er

Figure 2: Middleware architecture.

The message dispatcher component provides the
main API (Application Programming Interface) for
applications to interact with the middleware. It is
responsible for directing the called operations for the
specific components that implement the requested
communication paradigms. The message dispatcher
is further explained in the next sections.

The creation and discovery of services is
accomplished by the service manager and service
locator components. While the former offers and
API to applications and registers the services
internally with communication paradigm
components (e.g. the tuple space component), the
former is responsible for dealing with network
related issues, such as sending and replying
multicast messages.

The central functional entity of the architecture is
the message manager component. Internally, it
implements and manages a single data structure that
stores all messages handled by the middleware. For
each message, the message manager knows the
associated communication paradigm. Thus, any
component that implements a given communication
paradigm (e.g. the message queue component) does
not need to implement a data structure for managing
its handled messages. Instead, such messages are
directly retrieved from the message manager.

Such a central functional entity prevents having
to manage different data structures for each
paradigm or maybe for each application using the
middleware. Thus, each component that supports a
given communication paradigm has only executable
code for dealing with its specific delivery semantic,
and not code related to message storage.

As illustrated in Figure 2, the message manager
is a composite component. Whenever it receives a

AN EXTENSIBLE, MULTI-PARADIGM MESSAGE-ORIENTED MOBILE MIDDLEWARE

161

message marked as persistent, it calls the persistence
manager component for storing the message in a
non-volatile storage. Besides, it also instructs the
TTL monitor component for constantly monitoring if
such a message is still valid or should be discarded.

The message exchanger implements the
communication among devices by means of TCP
sockets. Both the message exchanger and the service
locator are the unique components that interact
directly with network specific functionalities, such
as sockets connections.

3.1 Structural Design

The proposed middleware exploits the open-closed
design principle (Clements, 2002). By following
such a principle, a set of base classes deals with
commonalities among paradigms, while the
particularities of each paradigm are modelled as
extensions from the set of base classes. Therefore,
the design is closed for modifications but open for
extensions. That means, in one hand, that we can
make the middleware behave in new and different
ways (add new paradigms), just by extending the
base classes. On the other hand, future extensions do
not cause modification in the existing code. In such
a direction, a set of extension points are defined in
the middleware design. In order to add a new
paradigm, the extension points must be fulfilled, but
no other part of the code must be changed.

Message
Queue Engine

Publish /
Subscribe
Engine

Tuple Space
Engine

<<extension point>>
Service Engine

Notification
PtP Engine

Synchronous
Engine

Figure 3: ServiceEngine extensions.

Service Engine. The ServiceEngine class actually
implements the delivery semantic of the respective
communication paradigm. By inheritance, it acts as
an extension point, as shown in Figure 3. Each
extended class defines specific operations for the
respective paradigm. For example, the
PublishSubscribeEngine registers the topics created
by applications and subscribes applications in each
topic. In the case of the TupleSpaceEngine, the
semantics for retrieving messages based on
comparing properties are defined, while the
MessageQueueEngine defines semantics for
retrieving on a first-in, first-out basis. Engine classes
are not visible at the application-side, instead, they

interact with internal middleware components only.
Service Session. The ServiceSession class is an
application-side class that defines operations for
interacting with middleware services. Also acting as
an extension point, each extended class defines
specific operations for the respective paradigm. For
example, to take messages from a tuple space, the
TupleSpaceSession defines the take() method
passing as parameter the set of properties.
Differently, the PublishSubscribeSession has the
subscribe() method for registering in a given topic.
Service Administration. The ServiceAdmin class is
also an application-side class that allows managing
the associated service. For instance, in a
publish/subscribe service, its instance can be called
to inactivate the service or to identify the current
subscribers. Additionally, in a messaging queue
service, the number of messages in the queue can be
monitored. Note that an instance of such class is
only obtained by the application that creates the
service, that is, applications that are only clients of a
service cannot call administration operations. Like
the ServiceEngine and ServiceSession classes,
ServiceAdmin is also an extension point. Thus, each
paradigm must define a subclass of ServiceAdmin.

To sum up, supporting a new communication
paradigm is a matter of extending the
aforementioned classes. Similarly, if an existing
paradigm must be removed for optimizing
middleware footprint, removing its related classes
from the build is enough. Such flexibility is achieved
by adopting a naming convention for all classes that
implements extension points. Each class of a given
paradigm must be named as follows: paradigm name
+ extension point name. For example, tuple space
related classes must be TupleSpaceSession,
TupleSpaceEngine and TupleSpaceAdmin.

3.2 Behavioural Design

In order to support several communication
paradigms in an extensible way, the common, shared
components of the proposed middleware must not be
coupled to the particularities of any paradigm.
Instead, reflection mechanisms are used to
dynamically discover which extension class must be
called. Figure 4 shows an UML sequence diagram
for illustrating the interactions for creating a session
with a communication service.

First, the application discovers the existing
services by invoking findServices() in the service
manager, which in turn calls the same method of the
service locator, returning the set of references to
currently available services (ServiceReference[]).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

162

Service references make transparent to applications
all information required to access a service, such as
host, port, service type and name. Then, the
application calls createSession() in the selected
service, which in turn invokes the same method of
the message dispatcher, returning the service session
instance, according to the type of the service.

Figure 4: Obtaining references to communication services.

The type of the service session instance is
discovered dynamically by reflection. For example,
the message dispatcher identifies that the calling
service reference represents a tuple space service,
and thus, using the naming convention adopted for
extension points, it knows that a ServiceSession
subtype named TupleSpaceSession must be returned.

Similar to an HTTP cookie, internally, a session
ID is attributed to that session by the message
dispatcher. Now, in the following invocations to that
tuple space service, the middleware knows that the
message comes from a TupleSpaceSession and
therefore must be treated by the TupleSpaceEngine.

Although reflection causes additional overhead,
the use of sessions tends to soften such issue. That
is, reflection is performed only when an application
obtains the reference to a service at the first time.
The subsequent calls to that service are identified by
a session ID, which does not adopts reflection.

3.3 Implementation

In order to validate the proposed architecture, the
prototype has been implemented on top of the
Android platform (Android, 2010). Android is
optimized to allow running one virtual machine per
application. In addition, Android defines a
component model that provides background
processing as “services”. In such a context, the
middleware runs as a background service, which can
be accessed by applications through the supported
inter-process communication (IPC) technology.

Thus, it isolates the code of the middleware and
applications, enabling several user-interactive
applications to share a single middleware instance.

The source code of the middleware prototype
totalizes 2094 lines, in which 644 lines are related to
the extension classes that implement the supported
communication paradigms. That is, in a middleware
instance providing 5 communication paradigms,
69% of code is shared and reused among such
paradigms. The middleware deployment unit is
bundled into an Android package totalizing 92 KB.
Considering that Android phones have non-volatile
storage measured in gigabytes and average RAM of
256 MB (GSM Arena, 2010), it can be considered an
excellent footprint.

4 RELATED WORK

MobileMom (Jung, 1999) provides asynchronous
communication for mobile applications by means of
distributed message queues. However, MobileMom
does not support ad hoc scenarios, as it relies on
fixed hosts. Additionally, it supports only a single
paradigm (i.e. message queue), while the proposed
middleware supports multiple paradigms.

Java Message Service (JMS) (Sun Microsystems,
2002) is a standard for enterprise-messaging systems
which provides two messaging models: message
queuing and publish/subscribe. However, its
implementations are based on a central, resource full
server, which is not always available on mobile
networks. In addition, JMS queues and topics are
created administratively, which is not adequate for
dynamic scenarios. Oppositely, the proposed
middleware enables such services to be dynamically
created by applications.

On the other hand, (Vollset, 2003) describes the
design and implementation of a JMS solution for
mobile ad hoc networks (MANETs). However, it
requires all clients to have a local copy of an
identical configuration file in order to access remote
topics and queues. In the proposed middleware,
however, it is adopted a service discovery protocol,
enabling devices to lookup messaging services in
any unknown network.

RUNES (Costa, 2005) is a middleware for
embedded systems that supports an extensible set of
communication paradigms, such as tuple spaces,
publish-subscribe and remote procedure call.
Whereas RUNES enables communication paradigms
to be plugged, common facilities to be reused among
different paradigms are not defined.

AN EXTENSIBLE, MULTI-PARADIGM MESSAGE-ORIENTED MOBILE MIDDLEWARE

163

5 CONCLUDING REMARKS

This paper has presented a MOM platform to
support communication among distributed mobile
applications. As an important contribution, the
middleware supports multiple paradigms in an
integrated architecture, in which common messaging
features are shared among distinct communication
paradigms. Such integration enables constrained
devices to support various communication
paradigms by demanding much less resources.

Additionally, the product-line extensible design
enables features customization, that is, existing
paradigms can be removed in order to better fit in
more constrained devices, as well as future
extensions and new behaviours can be easily
accommodated. It is important to note that such
customization does not require existing code
modification, instead, it is done by adding/removing
a set of classes on predefined extension points.

As a future work, it is planned a performance
evaluation for measuring the cost of using reflection
and IPC, and so, comparing their benefits against the
added overhead. In addition, it is also important to
measure the runtime memory footprint.

ACKNOWLEDGEMENTS

This work was supported by the National Institute of
Science and Technology for Software Engineering
(INES)¹, funded by CNPq, grants 573964/2008-4.

REFERENCES

Rellermeyer, J.S., 2010. jSLP project, Java Service
Location Protocol. http://jslp.sourceforge.net.

GSM Arena, 2010. http://www.gsmarena.com.
Costa, P. et al., 2005. The RUNES Middleware: A

Reconfigurable Component-based Approach to
Networked Embedded Systems. In: Proc. of IEEE
16th Int. Symp. on Personal, Indoor and Mobile Radio
Communications.

Wuest, B., 2005. Framework for Middleware Executed on
Mobile Devices. Master’s Thesis. Informatik der
Universität Kassel.

Jung, D., Paek, K., and Kim, T., 1999. Design of MOBILE
MOM: Message Oriented Middleware Service for
Mobile Computing. In: Proc. of the International
Workshops on Parallel Processing.

Morais, Y., Elias, G., 2010. Integrating Communication
Paradigms in a Mobile Middleware Product Line. In:
9th Int. Conf. on Networks.

Clements, P., and Northrop, L., 2002. Software Product
Lines: Practices and Patterns. SEI Series.

Sun Microsystems, 2002. Java Message Service
Specification. Version 1.1.

Mascolo, C., Capra, L., and Emmerich, W., 2002.
Middleware for Mobile Computing. Tutorial. In: Proc.
of the Int. Conf. on Networking.

Gelernter, D. 1985. Generative Communication in Linda.
In: ACM Trans. on Prog. Languages and Systems.

Eugster, P. et al., 2003. The Many Faces Of
Publish/Subscribe. In: ACM Computing Surveys, Vol.
35, No. 2, June 2003, pp. 114–131.

Android, 2010. http://developer.android.com.
Vollset, E., Ingham, D., and Ezhilchelvan, P., 2003. JMS

on Mobile Ad-hoc Networks, LNCS 2775, pp. 40-52,
Springer.

¹ wwww.ines.org.br

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

164

